CN100483752C - Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof - Google Patents
Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof Download PDFInfo
- Publication number
- CN100483752C CN100483752C CNB2003101170001A CN200310117000A CN100483752C CN 100483752 C CN100483752 C CN 100483752C CN B2003101170001 A CNB2003101170001 A CN B2003101170001A CN 200310117000 A CN200310117000 A CN 200310117000A CN 100483752 C CN100483752 C CN 100483752C
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- gallium nitride
- luminous
- efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical class [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 73
- 230000000694 effects Effects 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims description 332
- 238000000034 method Methods 0.000 claims description 52
- 230000007704 transition Effects 0.000 claims description 45
- 229910002601 GaN Inorganic materials 0.000 claims description 44
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 37
- 230000008859 change Effects 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 30
- 239000011247 coating layer Substances 0.000 claims description 26
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052594 sapphire Inorganic materials 0.000 claims description 15
- 239000010980 sapphire Substances 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000002356 single layer Substances 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 229910007948 ZrB2 Inorganic materials 0.000 claims description 3
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims 23
- 239000004411 aluminium Substances 0.000 claims 4
- 239000002210 silicon-based material Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 2
- 238000005253 cladding Methods 0.000 description 55
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 7
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及氮化镓系列发光二极管,特别是有关于一种高发光效率的氮化镓系列发光二极管及其制造方法。The invention relates to gallium nitride series light-emitting diodes, in particular to a gallium nitride series light-emitting diode with high luminous efficiency and a manufacturing method thereof.
技术背景technical background
习知使用蓝宝石基板成长氮化镓系列的发光二极管装置如图1所示,此称为传统结构。其中包含一氮化镓缓冲层2,一N-型氮化镓欧姆接触层3,一包含氮化铟镓的发光层4,一P-型氮化铝镓披覆层5及一P-型氮化镓欧姆接触层6依续外延成长于蓝宝石基板1,最后于P-型氮化镓欧姆接触层6上制作一P-型半穿透金属导电层7,并制作P-型金属电极8于半穿透金属导电层7之上及一N-型金属电极9于N-型氮化镓欧姆接触层3之上。由于该多层氮化镓外延结构的折射系数(n=2.4),蓝宝石基板的折射系数(n=1.77)而封装用的树脂封盖材料的折射系数(n=1.5)的分布,使得发光层所发出的光只有接近25%能一次射出而不被接口所反射,而其余75%的光均被蓝宝石基板及封装用的树脂封盖材料所构成的光导结构所局限并经由多次的接口反射而增加光被重吸收的几率进而无法有效地被取出利用,故此种发光二极管装置结构其光线取出的机制受限于半穿透金属导电层的吸收及内部外延结构的重吸收。The conventional light-emitting diode device using a sapphire substrate to grow GaN series is shown in FIG. 1 , which is called a traditional structure. It includes a gallium
为了提升上述发光二极管装置结构光线取出的效率,如美国专利第6,091,085号已揭示一种中断光导效应的方法,其一方法乃是将蓝宝石基板的表面先产生粗化纹路,接着在其上成长氮化镓系列的发光二极管多层外延结构,另一方法乃是直接成长氮化镓系列的发光二极管多层外延结构于蓝宝石基板之上,接着再从外延结构的表面上直接制作隧道,此隧道往蓝宝石基板方向延伸并植入折射系数小于多层氮化镓外延结构的折射系数(n=2.4)的材料。In order to improve the light extraction efficiency of the light-emitting diode device structure, for example, U.S. Patent No. 6,091,085 has disclosed a method for interrupting the light-guiding effect. One method is to first produce roughened lines on the surface of the sapphire substrate, and then grow nitrogen on it. GaN series light-emitting diode multi-layer epitaxial structure, another method is to directly grow the GaN series light-emitting diode multi-layer epitaxial structure on the sapphire substrate, and then directly create a tunnel from the surface of the epitaxial structure, the tunnel to Extending in the direction of the sapphire substrate and implanting a material with a refractive index lower than that of the multilayer GaN epitaxial structure (n=2.4).
然而,由于方法一需利用机械抛光或化学蚀刻的方法制作其粗化纹路而容易造成蓝宝石基板上的表面粗糙程度不均匀而影响后续外延的条件且不易控制其生产良率;而其方法二为了制作隧道及植入材料需增加制作的复杂度相对地亦增加其成本。However, because method one needs to use mechanical polishing or chemical etching to make its rough texture, it is easy to cause uneven surface roughness on the sapphire substrate, which affects the conditions of subsequent epitaxy and is not easy to control its production yield; and method two is for Making tunnels and implanting materials requires increasing the complexity of making and correspondingly increasing its cost.
再者,美国专利第6,495,862号所揭示一种表面凸化的氮化镓系列的发光二极管装置结构以减少发光层所发出的光被半穿透金属层与封装用的树脂封盖的接口反射进而增加其外部量子效率,但为了制作此种表面圆柱形或半圆形凸化纹路亦需增加其制作的复杂度相对地亦增加其成本。Furthermore, U.S. Patent No. 6,495,862 discloses a structure of a gallium nitride series light-emitting diode device with a convex surface to reduce the light emitted by the light-emitting layer from being reflected by the interface between the semi-penetrating metal layer and the resin cover for packaging. It increases its external quantum efficiency, but in order to make such surface cylindrical or semicircular embossed lines, it also needs to increase the complexity of its production and relatively increase its cost.
又,美国专利第6,531,719号所揭示一种中断光导效应并降低因应力所产生的磊芯片弯曲变形的方法,其方法为利用外延成长的条件成长一拥有织状条纹结构的氮化铝的内层,此织状条纹结构的氮化铝的内层介于发光层及蓝宝石基板之间以中断光导效应以增加其外部量子效率,而此一结构更可进一步在此氮化铝内层之上形成一金属反射层用以反射从发光层射向蓝宝石基板方向的光以增加其外部量子效率。此专利所揭示当使用MOCVD成长此一氮化铝内层时,通入氨气(NH3)及三甲基铝(TMA)于反应腔中并控制氨气的流量而达到控制织状条纹的形状,接着成长其它多层外延结构,根据论文(APL 71,(9),sep.1(1997),p.1204)揭示此一方法易造成六面形的坑洞(Hexagonal shapedpits),若此种坑洞极容易从氮化铝内层经由发光层延伸至表面P型的欧姆接触层而造成接续的半穿透金属层或金属电极制作时导致其金属原子经由此坑洞而扩散进入发光层进而破坏发光二极管的元件特性并缩短元件的工作寿命。In addition, U.S. Patent No. 6,531,719 discloses a method for interrupting the photoconductive effect and reducing the bending deformation of the epitaxial chip caused by stress. The method is to use the conditions of epitaxial growth to grow an inner layer of aluminum nitride with a woven stripe structure , the inner layer of aluminum nitride with a weave-like stripe structure is interposed between the light-emitting layer and the sapphire substrate to interrupt the photoconductive effect to increase its external quantum efficiency, and this structure can be further formed on the inner layer of aluminum nitride A metal reflective layer is used to reflect light emitted from the light-emitting layer to the direction of the sapphire substrate to increase its external quantum efficiency. This patent discloses that when MOCVD is used to grow the aluminum nitride inner layer, ammonia gas (NH3) and trimethylaluminum (TMA) are introduced into the reaction chamber and the flow rate of ammonia gas is controlled to control the shape of the weave stripes , and then grow other multilayer epitaxial structures, according to the paper (APL 71, (9), sep.1 (1997), p.1204) reveals that this method is easy to cause hexagonal shaped pits (Hexagonal shaped pits), if such The pits are very easy to extend from the inner layer of aluminum nitride through the light-emitting layer to the surface P-type ohmic contact layer, causing the metal atoms to diffuse into the light-emitting layer through the pits when the subsequent semi-penetrating metal layer or metal electrode is fabricated. Destroy the element characteristics of light-emitting diodes and shorten the working life of the elements.
而依据论文J.L.RouViere et al (Journal ofNitride-Semiconductor-Research,Vol.1,(1996)Art.33)所教导当利用MOCVD外延技术于蓝宝石基板上成长氮化镓薄膜时,依据不同的外延成长条件,表面所显现的型态大致上可分为六角锥型粗糙面、平坦面、颗粒状粗糙面三种。而实验证明,表面所显现的型态是由于表面原子层的极化方向及表面原子迁移速率所决定的,当表面成长机制主要由氮原子极化(N-polarity)控制时,其表面状态为粗糙面,当表面成长机制主要由镓原子极化(Ga-polarity)控制时,其表面状态为平坦面,而当氮化镓薄膜的表面为平坦面时表示六面形的坑洞(Hexagonalshaped pits)的发生几率降低甚至消除。According to the teaching of the paper J.L.RouViere et al (Journal of Nitride-Semiconductor-Research, Vol.1, (1996) Art.33), when using MOCVD epitaxy technology to grow GaN thin films on sapphire substrates, according to different epitaxial growth conditions , The appearance of the surface can be roughly divided into three types: hexagonal cone rough surface, flat surface, and granular rough surface. Experiments have proved that the appearance of the surface is determined by the polarization direction of the surface atomic layer and the migration rate of the surface atoms. When the surface growth mechanism is mainly controlled by the nitrogen atom polarization (N-polarity), the surface state is Rough surface, when the surface growth mechanism is mainly controlled by gallium atom polarization (Ga-polarity), its surface state is a flat surface, and when the surface of the gallium nitride film is a flat surface, it represents hexagonal shaped pits ) is reduced or even eliminated.
因此,如何针对上述问题而提出一种新颖高发光效率的氮化镓系列发光二极管及其制造方法,不仅可改善传统需额外加工(例如:机械抛光或化学蚀刻)才可达中断光导效应的缺点,长久以来一直是使用者殷切盼望及本发明人所追求的目标,而本发明人基于多年从事于发光二极管相关产品的研究、开发、及销售实务经验,乃思及改良的意念,穷其个人的专业知识,经多方研究设计、专题探讨,终于研究出一种高发光效率的氮化镓系列发光二极管及其制造方法改良,可解决上述的问题。Therefore, how to propose a novel gallium nitride series light-emitting diode with high luminous efficiency and its manufacturing method for the above-mentioned problems can not only improve the traditional shortcomings of requiring additional processing (such as: mechanical polishing or chemical etching) to interrupt the photoconductive effect For a long time, it has been the ardent expectation of users and the goal pursued by the inventor, and the inventor has been engaged in the research, development, and sales of light-emitting diode related products for many years. Based on practical experience in sales, it is thought and improved ideas, which are impoverished by the individual. After many researches and designs and special discussions, finally a gallium nitride series light-emitting diode with high luminous efficiency and its manufacturing method improvement can solve the above-mentioned problems.
发明内容 Contents of the invention
本发明的主要目的,在于提供一种高发光效率的氮化镓系列发光二极管及其制造方法,透过于外延生长P型披覆层时及形成一P型过渡层于该披覆层之上,控制此两层的应变量,再形成一P型欧姆接触层于此P型过渡层之上,使得P型半导体层的表面具有纹路结构,透过该纹路结构可中断光导效应,以增加其外部的量子效率。The main purpose of the present invention is to provide a gallium nitride series light-emitting diode with high luminous efficiency and its manufacturing method. By growing a P-type cladding layer epitaxially and forming a P-type transition layer on the cladding layer, Control the strain of these two layers, and then form a P-type ohmic contact layer on the P-type transition layer, so that the surface of the P-type semiconductor layer has a textured structure, through which the light-guiding effect can be interrupted to increase its external quantum efficiency.
本发明的次要目的,在于提供一种高发光效率的氮化镓系列发光二极管及其制造方法,该P型半导体层的生成方式,可减少发光二极管中六面形坑洞的发生几率以增加其工作寿命。The secondary purpose of the present invention is to provide a gallium nitride series light-emitting diode with high luminous efficiency and its manufacturing method. its working life.
一种高发光效率的氮化镓系列发光二极管,其主要结构包括:A gallium nitride series light-emitting diode with high luminous efficiency, its main structure includes:
一基板,该基板位于该发光二极管元件的底端;a substrate, the substrate is located at the bottom of the light emitting diode element;
一半导体层,该半导体层是接于该基板上部,具有一N型半导体层、一发光层及一P型半导体层,其中,该发光层介于该N型半导体层与该P型半导体层之间;A semiconductor layer, the semiconductor layer is connected to the upper part of the substrate, has an N-type semiconductor layer, a light-emitting layer and a P-type semiconductor layer, wherein the light-emitting layer is interposed between the N-type semiconductor layer and the P-type semiconductor layer between;
其中,该P型半导体层表面具有在一外延制程中所产生的纹路。Wherein, the surface of the P-type semiconductor layer has lines produced in an epitaxial process.
所述的P型半导体层表面所具有的纹路可中断光导效应。The textures on the surface of the P-type semiconductor layer can interrupt the photoconductive effect.
所述的P型半导体层所具有的表面纹路是由控制P型半导体外延层中的应变量而成。The surface texture of the P-type semiconductor layer is formed by controlling the strain in the P-type semiconductor epitaxial layer.
所述的P型半导体层可进一步包含一P型披覆层及一P型过渡层于该P型披覆层之上以及形成一P型欧姆接触层于该P型过渡层之上。The P-type semiconductor layer may further include a P-type cladding layer and a P-type transition layer on the P-type cladding layer, and a P-type ohmic contact layer is formed on the P-type transition layer.
所述的高发光效率的氮化镓系列发光二极管,其中可进一步包含一反射层于该发光层之下。Said gallium nitride series light emitting diode with high luminous efficiency may further include a reflective layer under the light emitting layer.
所述的基板是选自于蓝宝石、碳化硅、氧化锌、二硼化锆、砷化镓、或硅材料的其中之一。The substrate is selected from one of sapphire, silicon carbide, zinc oxide, zirconium diboride, gallium arsenide, or silicon.
所述的N型半导体层可为N-BxAlyInzGa1-x-y-zNpAsq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1),或为N-BxAlynzGa1-x-y-zNpPq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1)。The N-type semiconductor layer can be NB x Al y In z Ga 1-xyz NpAs q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q ≦1 and x+y+z=1 and p+q=1), or NB x Al y n z Ga 1-xyz N p P q layer (0≦x≦1, 0≦y≦1, 0≦ z≦1, 0≦p≦1, 0≦q≦1 and x+y+z=1 and p+q=1).
所述的P型半导体层可为P-BxAlyInzGa1-x-y-zNpAsq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1,p+q=1),或为P-BxAlyInzGa1-x-y-zNpPq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1)。The P-type semiconductor layer can be a PB x Al y In z Ga 1-xyz N p As q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0 ≦q≦1 and x+y+z=1, p+q=1), or PB x Al y In z Ga 1-xyz N p P q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q≦1 and x+y+z=1 and p+q=1).
所述的发光层可为BxAlyInzGa1-x-y-zNpAsq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1,p+q=1)或BxAlyInzGa1-x-y-zNpPq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1)单一所组成,或此两层所组合而成的量子井结构。The light-emitting layer can be a B x Al y In z Ga 1-xyz N p As q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q ≦1 and x+y+z=1, p+q=1) or B x Al y In z Ga 1-xyz N p P q layer (0≦x≦1, 0≦y≦1, 0≦z≦ 1, 0≦p≦1, 0≦q≦1 and x+y+z=1 and p+q=1) a single quantum well structure, or a combination of these two layers.
所述的P型披覆层是一改变延伸应变量(tension strain)的披覆层。The P-type cladding layer is a cladding layer that changes the extension strain.
所述的P型过渡层可为一半导体层所组成的超晶格结构。The P-type transition layer can be a superlattice structure composed of a semiconductor layer.
所述的P型欧姆接触层可为一半导体层所组成的超晶格结构。The P-type ohmic contact layer can be a superlattice structure composed of a semiconductor layer.
所述的P型披覆层包含镁原子浓度介于5×1019~5×1020cm-3之间。The P-type cladding layer contains magnesium atomic concentration between 5×10 19 and 5×10 20 cm −3 .
所述的P型过渡层包含镁原子浓度介于5×1017~5×1019cm-3之间。The P-type transition layer contains magnesium atoms with a concentration between 5×10 17 and 5×10 19 cm −3 .
所述的P型欧姆接触层所包含镁原子浓度是介于该P型披覆层与该P型过渡层之间。The concentration of magnesium atoms contained in the P-type ohmic contact layer is between the P-type cladding layer and the P-type transition layer.
所述的超晶格结构可由不同组成、不同厚度及不同杂质掺杂浓度的半导体层交互堆叠而成。The superlattice structure can be formed by stacking semiconductor layers with different compositions, different thicknesses and different impurity doping concentrations.
所述的反射层可为由半导体层交互堆叠而成的分布式布拉格反射层(Distributed Bragg Reflector)。The reflective layer may be a Distributed Bragg Reflector formed by stacking semiconductor layers alternately.
一种高发光效率的氮化镓系列发光二极管的制造方法,其主要步骤是包含有:A method for manufacturing a gallium nitride series light-emitting diode with high luminous efficiency, the main steps of which include:
提供一基板;以及providing a substrate; and
形成一半导体层在该基板上而成一发光元件,其中该半导体层至少包含一发光层、一P型半导体层及一N型半导体层,该发光层介于该N型半导体层与该P型半导体层之间;Forming a semiconductor layer on the substrate to form a light-emitting element, wherein the semiconductor layer at least includes a light-emitting layer, a P-type semiconductor layer and an N-type semiconductor layer, and the light-emitting layer is between the N-type semiconductor layer and the P-type semiconductor between layers;
其中该P型半导体层形成的主要步骤是包含有:Wherein the main steps of forming the P-type semiconductor layer include:
形成一P型披覆层于该发光层之上,其中该披覆层可增加与各层之间的应变量;forming a P-type cladding layer on the light-emitting layer, wherein the cladding layer can increase the amount of strain between each layer;
形成一P型过渡层于该P型披覆层之上;以及forming a p-type transition layer on the p-type cladding layer; and
形成一P型欧姆接触层于该P型过渡层之上。A P-type ohmic contact layer is formed on the P-type transition layer.
所述的P型披覆层是掺杂镁原子以提高与各层之间的应变量。The P-type cladding layer is doped with magnesium atoms to increase the amount of strain between each layer.
所述的P型披覆层的形成方法是掺杂镁原子以增加与各层之间的应变量,接着中断外延层的成长并控制中断时间以改变外延层的应变量。The formation method of the P-type cladding layer is to dope magnesium atoms to increase the amount of strain between each layer, then interrupt the growth of the epitaxial layer and control the interruption time to change the strain amount of the epitaxial layer.
所述的P型披覆层的形成方法是掺杂镁原子以增加外延层之间的应变量,接着中断外延层的成长并且利用温度变化以改变外延层的应变量。The method for forming the P-type cladding layer is to dope magnesium atoms to increase the strain between the epitaxial layers, then interrupt the growth of the epitaxial layers and use temperature changes to change the strain of the epitaxial layers.
所述的P型披覆层的形成方法是掺杂镁原子以增加与各层之间的应变量,接着中断外延层的成长并于p型披覆层的表面形成数个镓原子,铟原子或铝原子的单原子层(Monolayer)以改变外延层的应变量。The method for forming the p-type cladding layer is to dope magnesium atoms to increase the amount of strain between each layer, and then interrupt the growth of the epitaxial layer and form several gallium atoms, indium atoms, etc. on the surface of the p-type cladding layer. Or a single atomic layer (Monolayer) of aluminum atoms to change the strain of the epitaxial layer.
所述的该P型披覆层的形成方法是增加p型披覆层中铝的组成以增加外延层之间的应变量,接着中断外延层成长并控制中断时间以改变外延层的应变量。The method for forming the p-type cladding layer is to increase the composition of aluminum in the p-type cladding layer to increase the strain between the epitaxial layers, then interrupt the growth of the epitaxial layer and control the interruption time to change the strain of the epitaxial layer.
所述的P型披覆层的形成方法是增加p型披覆层中铝的组成以增加外延层之间的应变量,接着中断外延层的成长并且利用温度变化以改变外延层的应变量。The method for forming the p-type cladding layer is to increase the composition of aluminum in the p-type cladding layer to increase the strain between the epitaxial layers, then interrupt the growth of the epitaxial layer and change the strain of the epitaxial layer by changing the temperature.
所述的P型披覆层的形成方法是增加p型披覆层中铝的组成以增加外延层之间的应变量,接着中断外延层的成长并于p型披覆层的表面形成数个镓原子,铟原子或铝原子的单原子层(Monolayer)以改变外延层的应变量。The method for forming the p-type cladding layer is to increase the composition of aluminum in the p-type cladding layer to increase the amount of strain between the epitaxial layers, then interrupt the growth of the epitaxial layer and form several layers on the surface of the p-type cladding layer. Monolayers of gallium atoms, indium atoms or aluminum atoms can be used to change the strain of the epitaxial layer.
所述的P型过渡层的形成方法是控制外延层中铝的组成或镁原子的掺杂量以减少与P型披覆层之间的应变量。The method for forming the P-type transition layer is to control the composition of aluminum or the doping amount of magnesium atoms in the epitaxial layer to reduce the amount of strain between the P-type cladding layer.
所述的P型过渡层的形成方法是减少外延层与P型披覆层之间的应变量,接着中断外延层的成长并控制中断时间以改变外延层的应变量。The method for forming the P-type transition layer is to reduce the strain between the epitaxial layer and the P-type cladding layer, then interrupt the growth of the epitaxial layer and control the interruption time to change the strain of the epitaxial layer.
所述的P型过渡层的形成方法是减少外延层与P型披覆层之间的应变量,接着中断外延层的成长并且利用温度变化以改变外延层的应变量。The method for forming the P-type transition layer is to reduce the strain between the epitaxial layer and the P-type cladding layer, then interrupt the growth of the epitaxial layer and use temperature changes to change the strain of the epitaxial layer.
所述的P型过渡层的形成方法是减少外延层与P型披覆层之间的应变量,接着中断外延层的成长并于p型过渡层的表面形成数个镓原子,铟原子或铝原子的单原子层(Monolayer)以改变外延层的应变量。The formation method of the P-type transition layer is to reduce the amount of strain between the epitaxial layer and the P-type cladding layer, then interrupt the growth of the epitaxial layer and form several gallium atoms, indium atoms or aluminum atoms on the surface of the p-type transition layer Atom monolayer (Monolayer) to change the amount of strain of the epitaxial layer.
所述的中断时间介于1秒至2分钟之间。The said interruption time is between 1 second and 2 minutes.
所述的温度变化介于5℃至300℃之间。The temperature change is between 5°C and 300°C.
所述的单原子层介于1至5个之间。The number of monoatomic layers is between 1 and 5.
所述的P型欧姆接触层的形成方法是利用外延成长时增加双环戊二烯镁(Cp2Mg)流量或降低温度以增加镁原子的掺杂浓度。The method for forming the P-type ohmic contact layer is to increase the flow rate of dicyclopentadiene magnesium (Cp 2 Mg) or reduce the temperature to increase the doping concentration of magnesium atoms during epitaxial growth.
为达到发明目的,本发明提供了一种高发光效率的氮化镓系列发光二极管及其制造方法。本发明所揭示的是一种生成具有表面纹路结构的一P型半导体层的方法及其结构,透过该纹路结构的生成,可以中断光导效应与减少六面形坑洞的产生,而于本发明所揭示的方法,是于外延生长P型披覆层时及形成一P型过渡层于该披覆层之上,控制此两层的应变量,再形成一P型欧姆接触层于此P型过渡层之上,透过此种方法与结构,即可使该P型半导体层具有表面纹路结构,以达增加外部的量子效率并增加其工作寿命。In order to achieve the purpose of the invention, the invention provides a gallium nitride series light-emitting diode with high luminous efficiency and a manufacturing method thereof. What the present invention discloses is a method and its structure for producing a P-type semiconductor layer with a surface texture structure. Through the formation of the texture structure, the photoconductive effect can be interrupted and the generation of hexahedral pits can be reduced. The method disclosed in the invention is to form a P-type transition layer on the cladding layer during epitaxial growth of the P-type cladding layer, control the strain of the two layers, and then form a P-type ohmic contact layer on the P-type cladding layer. On the P-type transition layer, through this method and structure, the P-type semiconductor layer can have a surface texture structure, so as to increase the external quantum efficiency and increase its working life.
附图说明 Description of drawings
图1为习知技术的发光二极管的示意图;Fig. 1 is the schematic diagram of the light-emitting diode of prior art;
图2为本发明的一较佳实施例的发光二极管的制造流程图;Fig. 2 is the manufacturing flowchart of the light-emitting diode of a preferred embodiment of the present invention;
图3为本发明的一较佳实施例的发光二极管的示意图;Fig. 3 is the schematic diagram of the LED of a preferred embodiment of the present invention;
图4A至图4E所示为本发明的一较佳实施例的P型半导体层的纹路的SEM图。4A to 4E are SEM images of the texture of the P-type semiconductor layer according to a preferred embodiment of the present invention.
图号说明Description of figure number
1 蓝宝石基板1 Sapphire substrate
2 氮化镓缓冲层2 GaN buffer layer
3 N-型氮化镓欧姆缓冲层3 N-type gallium nitride ohmic buffer layer
4 氮化铟镓的发光层4 Light-emitting layer of InGaN
5 P-型氮化铝镓披覆层5 P-type aluminum gallium nitride cladding layer
6 P-型氮化镓欧姆接触层6 P-type gallium nitride ohmic contact layer
7 P-型透光金属导电层7 P-type transparent metal conductive layer
8 正电极衬垫8 Positive electrode pad
9 负电极衬垫9 Negative electrode pad
10 基板10 Substrate
20 半导体层20 semiconductor layer
22 N型半导体层22 N-type semiconductor layer
24 发光层24 luminous layer
26 P型半导体层26 P-type semiconductor layer
260 P型披覆层260 P type cladding layer
262 P型过渡层262 P-type transition layer
264 P型欧姆接触层264 P-type ohmic contact layer
具体实施方式 Detailed ways
本发明所提供的一种高发光效率的氮化镓系列发光二极管及其制造方法,其是揭示一P型半导体层的表面纹路结构生成的制程及其结构,透过该纹路结构可以中断光导效应并减少六面形坑洞缺陷的产生几率,而本发明所揭示的方法,是在生成一P型披覆层及一P型过渡层时,控制其延伸(tension)及压缩(cormpression)的应变量,再形成一P型欧姆接触层于该P型过渡层之上,透过此种外延成长过程中的控制方法与其结构,即可使该P型半导体层表面具有纹路结构,以达增加外部的量子效率并增加其工作寿命。The present invention provides a gallium nitride series light-emitting diode with high luminous efficiency and its manufacturing method, which discloses the process and structure of the surface texture structure of a P-type semiconductor layer, through which the photoconductive effect can be interrupted And reduce the generation probability of hexahedral pit defects, and the method disclosed by the present invention is to control the application of extension (tension) and compression (compression) when generating a P-type cladding layer and a P-type transition layer Variable, and then form a P-type ohmic contact layer on the P-type transition layer, through the control method and structure of this epitaxial growth process, the surface of the P-type semiconductor layer can have a textured structure, so as to increase the external quantum efficiency and increase its working life.
为使审查员对本发明的结构特征及所达成的功效有更进一步的了解与认识,谨佐以较佳的实施例及配合详细的说明,说明如后:In order to enable the examiner to have a further understanding and understanding of the structural features and the achieved effects of the present invention, a preferred embodiment and a detailed description are provided, as follows:
本发明的目的是提供一种中断光导效应的方法及其结构,可解决在习知技术中皆须应用后制程的问题,例如:机械抛光或化学蚀刻,以生成纹路,且其生产良率不易控制,或利用MOCVD外延技术以生成条纹,然其易造成六面形的坑洞,以造成元件寿命的缩短;本发明所揭示的制程其及结构,皆不需后处理加工,且不会产生六面形的坑洞,实为一创新的技术。The purpose of the present invention is to provide a method and its structure for interrupting the photoconductive effect, which can solve the problem that the post-process must be applied in the prior art, such as: mechanical polishing or chemical etching, to generate lines, and its production yield is not easy Control, or use MOCVD epitaxy technology to generate stripes, but it is easy to cause hexahedral pits, resulting in shortened device life; the process and structure disclosed in the present invention do not require post-processing, and will not produce The hexagonal pothole is actually an innovative technology.
首先,请参阅图2,其是本发明的一较佳实施例的发光二极管的制造流程图;如图所示,本发明是一种高发光效率的氮化镓系列发光二极管的制造方法,其主要步骤是包含有:First, please refer to Fig. 2, which is a manufacturing flow chart of a light-emitting diode in a preferred embodiment of the present invention; The main steps include:
步骤S11,提供一基板;Step S11, providing a substrate;
步骤S12,形成一N型半导体层在该基板上;Step S12, forming an N-type semiconductor layer on the substrate;
步骤S13,形成一发光层于该N型半导体层上;Step S13, forming a light-emitting layer on the N-type semiconductor layer;
步骤S14,形成一P型披覆层于该发光层之上,其中该披覆层是具有增加与各层之间的应变量的作用;Step S14, forming a P-type cladding layer on the light-emitting layer, wherein the cladding layer has the function of increasing the amount of strain between each layer;
步骤S15,形成一P型过渡层于该P型披覆层之上;以及Step S15, forming a P-type transition layer on the P-type cladding layer; and
步骤S16,形成一P型欧姆接触层于该P型过渡层之上。Step S16, forming a P-type ohmic contact layer on the P-type transition layer.
其中,于步骤S14至步骤S16中,披覆层的增加应变量与形成具有纹路的P型半导体层的方法,包含下列几种方法:Wherein, in step S14 to step S16, the method of increasing the amount of strain of the cladding layer and forming the P-type semiconductor layer with texture includes the following methods:
1.于P型披覆层中掺杂高浓度的镁原子以增加外延层之间的应变量,接着中断外延层的成长并控制中断时间以改变外延层的应变量,其中该中断时间介于1秒至2分钟之间,后续成长一镁原子掺杂低浓度的P型过渡层,最后再成长一镁原子掺杂浓度适中的欧姆接触层。1. Doping high-concentration magnesium atoms in the P-type cladding layer to increase the amount of strain between the epitaxial layers, then interrupting the growth of the epitaxial layer and controlling the interruption time to change the strain amount of the epitaxial layer, wherein the interruption time is between Between 1 second and 2 minutes, a P-type transition layer doped with a low concentration of magnesium atoms is subsequently grown, and finally an ohmic contact layer with a moderate concentration of magnesium atoms is grown.
2.于P型披覆层中掺杂高浓度的镁原子以增加外延层之间的应变量,接着中断外延层的成长并且利用温度变化以改变外延层的应变量,其中该温度变化介于5℃至300℃之间,后续成长一镁原子掺杂低浓度的P型过渡层,最后再成长一镁原子掺杂浓度适中的欧姆接触层。2. Doping a high concentration of magnesium atoms in the P-type cladding layer to increase the amount of strain between the epitaxial layers, then interrupting the growth of the epitaxial layer and using temperature changes to change the amount of strain of the epitaxial layers, wherein the temperature change is between Between 5°C and 300°C, a P-type transition layer doped with a low concentration of magnesium atoms is subsequently grown, and finally an ohmic contact layer with a moderate concentration of magnesium atoms is grown.
3.于P型披覆层中掺杂高浓度的镁原子以增加外延层之间的应变量,接着中断外延层的成长并于P型披覆层的表面形成数个镓原子,铟原子或铝原子的单原子层(Monolayer)以改变外延层的应变量,其中该单原子层介于1~5个之间,后续成长一镁原子掺杂低浓度的P型过渡层,最后再成长一镁原子掺杂浓度适中的欧姆接触层。3. Doping high-concentration magnesium atoms in the P-type cladding layer to increase the strain between the epitaxial layers, then interrupting the growth of the epitaxial layer and forming several gallium atoms, indium atoms or A single atomic layer (Monolayer) of aluminum atoms is used to change the strain of the epitaxial layer, wherein the single atomic layer is between 1 and 5, followed by the growth of a P-type transition layer doped with low concentration of magnesium atoms, and finally another growth layer An ohmic contact layer with a moderate doping concentration of magnesium atoms.
4.于增加P型披覆层中铝的组成以增加外延层之间的应变量,接着中断外延层成长并控制中断时间以改变外延层的应变量,其中该中断时间介于1秒至2分钟之间,后续成长一镁原子掺杂低浓度的P型过渡层,最后再成长一镁原子掺杂浓度适中的欧姆接触层。4. Increase the composition of aluminum in the P-type cladding layer to increase the amount of strain between the epitaxial layers, then interrupt the growth of the epitaxial layer and control the interruption time to change the amount of strain in the epitaxial layer, wherein the interruption time is between 1 second and 2 seconds Within minutes, a P-type transition layer doped with a low concentration of magnesium atoms is subsequently grown, and finally an ohmic contact layer with a moderate concentration of magnesium atoms is grown.
5.增加P型氮化铝镓披覆层中铝的组成以增加外延层之间的应变量,接着中断外延层的成长并且利用温度变化以改变外延层的应变量,其中该温度变化介于5℃至300℃之间,后续成长一镁原子掺杂低浓度的P型过渡层,最后再成长一镁原子掺杂浓度适中的欧姆接触层。5. Increase the composition of aluminum in the P-type AlGaN cladding layer to increase the amount of strain between the epitaxial layers, then interrupt the growth of the epitaxial layer and use the temperature change to change the amount of strain of the epitaxial layer, wherein the temperature change is between Between 5°C and 300°C, a P-type transition layer doped with a low concentration of magnesium atoms is subsequently grown, and finally an ohmic contact layer with a moderate concentration of magnesium atoms is grown.
6.增加P型披覆层中铝的组成以增加外延层之间的应变量,接着中断外延层的成长并于P型披覆层的表面形成数个镓原子,铟原子或铝原子的单原子层(Monolayer)以改变外延层的应变量,其中该单原子层介于1~5个之间,后续成长一镁原子掺杂低浓度的P型过渡层,最后再成长一镁原子掺杂浓度适中的欧姆接触层。6. Increase the composition of aluminum in the P-type cladding layer to increase the amount of strain between the epitaxial layers, then interrupt the growth of the epitaxial layer and form several gallium atoms, indium atoms or aluminum atoms on the surface of the P-type cladding layer. Atomic layer (Monolayer) to change the strain of the epitaxial layer, wherein the monoatomic layer is between 1 and 5, followed by growing a magnesium atom-doped low-concentration P-type transition layer, and finally growing a magnesium atom-doped Moderately concentrated ohmic contact layer.
又,该P型过渡层所形成的方法,如下所述:Also, the method for forming the P-type transition layer is as follows:
1.控制外延层中铝的组成或镁原子的掺杂量以减少与P型披覆层之间的应变量。1. Control the composition of aluminum in the epitaxial layer or the doping amount of magnesium atoms to reduce the amount of strain between the P-type cladding layer.
2.减少外延层与P型披覆层之间的应变量,接着中断外延层的成长并控制中断时间以改变外延层的应变量其中该中断时间介于1秒至2分钟之间。2. Reduce the amount of strain between the epitaxial layer and the P-type cladding layer, then interrupt the growth of the epitaxial layer and control the interruption time to change the strain amount of the epitaxial layer, wherein the interruption time is between 1 second and 2 minutes.
3.减少外延层与P型披覆层之间的应变量,接着中断外延层的成长并且利用温度变化以改变外延层的应变量,其中该温度变化介于5℃至300℃之间。3. Reduce the strain between the epitaxial layer and the P-type cladding layer, then stop the growth of the epitaxial layer and change the strain of the epitaxial layer by changing the temperature, wherein the temperature change is between 5°C and 300°C.
4.减少外延层与P型披覆层之间的应变量,接着中断外延层的成长并于p型过渡层的表面形成数个镓原子,铟原子或铝原子的单原子层(Monolayer),该单原子层介于1~5个之间,以改变外延层的应变量。4. Reduce the amount of strain between the epitaxial layer and the P-type cladding layer, then interrupt the growth of the epitaxial layer and form several monolayers of gallium atoms, indium atoms or aluminum atoms on the surface of the p-type transition layer, The single atomic layer is between 1 and 5, so as to change the strain amount of the epitaxial layer.
该P型欧姆接触层的形成方法是利用外延成长时增加双环戊二烯镁(Cp2Mg)流量或降低温度以增加镁原子的掺杂浓度。The method for forming the P-type ohmic contact layer is to increase the flow rate of dicyclopentadiene magnesium (Cp 2 Mg) or reduce the temperature to increase the doping concentration of magnesium atoms during epitaxial growth.
再者,请参阅图3,其是本发明的一较佳实施例的发光二极管的示意图;如图所示,本发明是揭示一种高发光效率的氮化镓系列发光二极管,其主要结构是包括:一基板10,该基板位于该发光二极管元件的底端;一半导体层20,该半导体层是接于该基板10上部,具有一N型半导体层22、一发光层24及一P型半导体层26,其中,该发光层24介于该N型半导体层22与该P型半导体层26之间;其中,该P型半导体层26是包含一P型披覆层260、一P型过渡层262与一P型欧姆接触层264,依序成长于该发光层24之上,且该P型披覆层260是一增加应变量的披覆层;且可进一步包含一反射层于该发光层24之下,其结构为半导体层其所交互堆叠而成为一分布式布拉格反射层(Distributed Bragg Reflector)。Furthermore, please refer to FIG. 3 , which is a schematic diagram of a light-emitting diode of a preferred embodiment of the present invention; as shown in the figure, the present invention discloses a gallium nitride series light-emitting diode with high luminous efficiency, and its main structure is It includes: a
该基板10是选自于蓝宝石、碳化硅、氧化锌、二硼化锆、砷化镓、或硅材料的其中之一;而该N型半导体层22可为N-BxAlyInzGa1-x-y-zNpAsq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1),或为N-BxAlyInzGa1-x-y-zNpPq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1);该P型半导体层26可为P-BxAlyInzGa1-x-y-zNpAsq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1,p+q=1),或为P-BxAlyInzGa1-x-y-zNpPq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1);该发光层24可为BxAlyInzGa1-x-y-zNpAsq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1,p+q=1)或BXAlyInzGa1-x-y-zNpPq层(0≦x≦1,0≦y≦1,0≦z≦1,0≦p≦1,0≦q≦1且x+y+z=1及p+q=1)单一所组成,或此两层所组合而成的量子井结构。The substrate 10 is selected from one of sapphire, silicon carbide, zinc oxide, zirconium diboride, gallium arsenide, or silicon; and the N-type semiconductor layer 22 can be NB x Aly In z Ga 1- xyz N p As q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q≦1 and x+y+z=1 and p+q=1 ), or NB x Al y In z Ga 1-xyz N p P q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q≦1 and x+y+z=1 and p+q=1); the P-type semiconductor layer 26 can be a PB x Al y In z Ga 1-xyz N p As q layer (0≦x≦1, 0≦y≦1 , 0≦z≦1, 0≦p≦1, 0≦q≦1 and x+y+z=1, p+q=1), or PB x Al y In z Ga 1-xyz N p P q Layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q≦1 and x+y+z=1 and p+q=1); the light-emitting layer 24 can be B x Al y In z Ga 1-xyz N p As q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦p≦1, 0≦q≦1 and x +y+z=1, p+q=1) or B X Al y In z Ga 1-xyz N p P q layer (0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦ p≦1, 0≦q≦1 and x+y+z=1 and p+q=1) a single quantum well structure, or a combination of these two layers.
其中,所述的P型披覆层是一改变延伸应变量(tension strain)的披覆层。Wherein, the P-type cladding layer is a cladding layer that changes the extension strain.
又,该P型过渡层262以及该P型欧姆接触层264是一半导体层所组成的超晶格结构,而该超晶格结构可由不同组成、不同厚度以及不同杂质掺杂浓度的半导体层交互堆叠而成。In addition, the P-
该P型半导体层26是具有一纹路,该纹路可中断光导效应;而该P型披覆层包含镁原子5×1019~5×1020cm-3,该P型过渡层包含镁原子5×1017~5×1019cm-3,该P型欧姆接触层所包含镁原子的含量是介于该P型披覆层与该P型过渡层之间;其中,该P型半导层的纹路如图4A至图4E所示,其是本发The P-
明的一较佳实施例的P型半导体层的纹路的SEM图;如图所示,该纹路的产生是于一外延制程中所产生,并非如习知技术是使用一后加工制程,所以透过本发明的方法,可以于外延制程中一并产生该纹路以达中断光导效应的目的。An SEM image of the texture of the P-type semiconductor layer in a preferred embodiment of the invention; as shown in the figure, the texture is produced in an epitaxial process, not a post-processing process as in the conventional technology, so transparent Through the method of the present invention, the texture can be produced together in the epitaxial process to achieve the purpose of interrupting the light guiding effect.
本发明所提供的高发光效率的氮化镓系列发光二极管及其制造方法,是利用控制外延成长过程中的外延层的应变量以形成一具有表面纹路结构的一P型半导体层,以达中断光导效应的功效。The gallium nitride series light-emitting diode with high luminous efficiency and its manufacturing method provided by the present invention are to form a P-type semiconductor layer with a surface texture structure by controlling the strain of the epitaxial layer during the epitaxial growth process, so as to achieve the interrupted Efficacy of light guiding effect.
本发明不需后处理加工,直接于制程中控制生成纹路,于P型半导体层生成纹路以作为光散射的功用以中断由基板及封装用的树脂封盖材料所构成的光导效应,而达到增加其外部的量子效率,并且以此法可减少发光二极管结构中六面形坑洞产生的几率,可增加其元件的工作寿命。The invention does not require post-processing, and directly controls the generation of textures in the manufacturing process, and generates textures on the P-type semiconductor layer as a function of light scattering to interrupt the light-guiding effect formed by the substrate and the resin capping material used for packaging, so as to increase Its external quantum efficiency can reduce the probability of hexahedral pits in the light-emitting diode structure and increase the working life of its components.
以上所述,仅为本发明的一较佳实施例而已,并非用来限定本发明的范围,举凡依本发明权利要求书范围所述的形状、构造、特征及精神所为的均等变化与修饰,均应包括于本发明的权利要求书范围内。The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. For example, all equivalent changes and modifications are made in accordance with the shape, structure, characteristics and spirit described in the scope of the claims of the present invention. , should be included in the scope of the claims of the present invention.
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101170001A CN100483752C (en) | 2003-12-05 | 2003-12-05 | Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101170001A CN100483752C (en) | 2003-12-05 | 2003-12-05 | Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1624939A CN1624939A (en) | 2005-06-08 |
CN100483752C true CN100483752C (en) | 2009-04-29 |
Family
ID=34760844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003101170001A Expired - Fee Related CN100483752C (en) | 2003-12-05 | 2003-12-05 | Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100483752C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105977358B (en) * | 2016-05-17 | 2018-06-26 | 华灿光电(苏州)有限公司 | A kind of LED epitaxial slice and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6266355B1 (en) * | 1997-09-12 | 2001-07-24 | Sdl, Inc. | Group III-V nitride laser devices with cladding layers to suppress defects such as cracking |
CN1345468A (en) * | 1999-03-29 | 2002-04-17 | 日亚化学工业株式会社 | Nitride semiconductor device |
US6441403B1 (en) * | 2000-06-23 | 2002-08-27 | United Epitaxy Company, Ltd. | Semiconductor device with roughened surface increasing external quantum efficiency |
CN1426603A (en) * | 2000-04-26 | 2003-06-25 | 奥斯兰姆奥普托半导体有限责任公司 | Radiation-emitting semiconductor element and method for producing same |
US6643304B1 (en) * | 2000-07-26 | 2003-11-04 | Axt, Inc. | Transparent substrate light emitting diode |
-
2003
- 2003-12-05 CN CNB2003101170001A patent/CN100483752C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6266355B1 (en) * | 1997-09-12 | 2001-07-24 | Sdl, Inc. | Group III-V nitride laser devices with cladding layers to suppress defects such as cracking |
CN1345468A (en) * | 1999-03-29 | 2002-04-17 | 日亚化学工业株式会社 | Nitride semiconductor device |
CN1426603A (en) * | 2000-04-26 | 2003-06-25 | 奥斯兰姆奥普托半导体有限责任公司 | Radiation-emitting semiconductor element and method for producing same |
US6441403B1 (en) * | 2000-06-23 | 2002-08-27 | United Epitaxy Company, Ltd. | Semiconductor device with roughened surface increasing external quantum efficiency |
US6643304B1 (en) * | 2000-07-26 | 2003-11-04 | Axt, Inc. | Transparent substrate light emitting diode |
Also Published As
Publication number | Publication date |
---|---|
CN1624939A (en) | 2005-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11251330B2 (en) | Pseudomorphic electronic and optoelectronic devices having planar contacts | |
US7772607B2 (en) | GaN-series light emitting diode with high light efficiency | |
US20080217646A1 (en) | Nitride semiconductor light emitting device | |
US20080135829A1 (en) | Nitride Semiconductor Light Emitting Device and Fabrication Method Thereof | |
CN115377259A (en) | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode | |
CN116093226B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
US8138494B2 (en) | GaN series light-emitting diode structure | |
CN112397621B (en) | Epitaxial wafer of ultraviolet light emitting diode and preparation method thereof | |
CN107068822A (en) | A kind of smooth extraction efficiency high LED epitaxial structure and its growing method | |
CN116314501A (en) | LED epitaxial structure and preparation method thereof | |
US20050110031A1 (en) | High light efficiency of GaN-series of light emitting diode and its manufacturing method thereof | |
US20060273342A1 (en) | GaN-series of light emitting diode with high light extraction efficiency | |
WO2024002094A1 (en) | Light-emitting diode and epitaxial structure thereof | |
CN116960247A (en) | LED epitaxial wafer with high light extraction efficiency and preparation method thereof | |
CN116454186A (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
CN108878608A (en) | A kind of InGaN quantum dot LED epitaxial structure reducing structure with strain | |
CN108550669A (en) | Nitride semiconductor structure and semiconductor light emitting element | |
CN109671817B (en) | A kind of light-emitting diode epitaxial wafer and preparation method thereof | |
CN115274948A (en) | Deep ultraviolet LED with modulation-doped multiple quantum well structure and preparation method thereof | |
CN117810332B (en) | Gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof | |
CN117525232B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
CN109473521B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN100483752C (en) | Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof | |
CN116072784B (en) | Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, LED | |
CN117153967A (en) | Deep ultraviolet light-emitting diode with mixed potential well structure and its epitaxial growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: XUMING PHOTOELECTRICITY INC. Free format text: FORMER OWNER: JUXIN SCI-TECH CO., LTD. Effective date: 20121207 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20121207 Address after: Miaoli County, Taiwan, China Patentee after: Xuming Photoelectricity Inc. Address before: China Taiwan Taoyuan County Patentee before: Juxin Sci-Tech Co., Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090429 Termination date: 20181205 |
|
CF01 | Termination of patent right due to non-payment of annual fee |