[go: up one dir, main page]

CN100478766C - Pixel structure - Google Patents

Pixel structure Download PDF

Info

Publication number
CN100478766C
CN100478766C CNB2005100920635A CN200510092063A CN100478766C CN 100478766 C CN100478766 C CN 100478766C CN B2005100920635 A CNB2005100920635 A CN B2005100920635A CN 200510092063 A CN200510092063 A CN 200510092063A CN 100478766 C CN100478766 C CN 100478766C
Authority
CN
China
Prior art keywords
electrode
pixel structure
reflective
dielectric layer
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100920635A
Other languages
Chinese (zh)
Other versions
CN1731256A (en
Inventor
胡至仁
张志明
吴明洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CNB2005100920635A priority Critical patent/CN100478766C/en
Publication of CN1731256A publication Critical patent/CN1731256A/en
Application granted granted Critical
Publication of CN100478766C publication Critical patent/CN100478766C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

A transflective pixel structure includes an active device, a storage capacitor, a transparent electrode, and a first reflective electrode. The storage capacitor includes a lower electrode, a floating electrode, and an upper electrode. The upper electrode is configured above the lower electrode and the floating electrode and is electrically connected with the active device. The transparent electrode is electrically connected with the upper electrode. The first reflective electrode is electrically connected with the floating electrode and electrically insulated from the transparent electrode. Based on the above, the transflective pixel structure provided by the invention can improve the display quality of the single-unit-pitch transflective liquid crystal display panel.

Description

像素结构 pixel structure

技术领域 technical field

本发明涉及一种像素结构,特别是涉及一种半穿透半反射像素结构。The present invention relates to a pixel structure, in particular to a semi-transmissive and semi-reflective pixel structure.

背景技术 Background technique

针对多媒体社会的急速进步,多半受惠于半导体组件或人机显示装置的飞跃性进步。就显示器而言,阴极射线管(cathode ray tube,CRT)因具有优异的显示品质与其经济性,一直独占近年来的显示器市场。然而,对于个人在桌上操作多数终端机/显示器装置的环境,或是以环保的观点切入,若以节省能源的潮流加以预测,阴极射线管因空间利用以及能源消耗上仍存在很多问题,而对于轻、薄、短、小以及低耗电功率的需求无法有效提供解决之道。因此,具有高画质、空间利用效率佳、低耗电功率、低辐射等优越特性的薄膜晶体管液晶显示器(TFT-LCD)已逐渐成为市场的主流。The rapid progress of the multimedia society is mostly due to the rapid progress of semiconductor components or man-machine display devices. As far as displays are concerned, cathode ray tubes (cathode ray tubes, CRTs) have been monopolizing the display market in recent years because of their excellent display quality and economical efficiency. However, for the environment where individuals operate most terminals/display devices on the table, or from the perspective of environmental protection, if the trend of energy saving is predicted, cathode ray tubes still have many problems in terms of space utilization and energy consumption, and There is no effective solution to the demands of lightness, thinness, shortness, smallness and low power consumption. Therefore, thin film transistor liquid crystal displays (TFT-LCDs) with superior characteristics such as high image quality, good space utilization efficiency, low power consumption, and low radiation have gradually become the mainstream of the market.

一般液晶显示器可分为穿透式、反射式,以及半穿透半反射式三大类,其分类的依据在于光源的利用以及阵列基板(array)的差异。其中,穿透式液晶显示器主要是以背光源(back light)作为光源,其阵列基板上的像素电极为透明电极以利背光源穿透;反射式液晶显示器主要是以前光源(front light)或是外界光源作为光源,其阵列基板上的像素电极为金属或其它具有良好反射特性材质的反射电极,适于将前光源或是外界光源反射;而半穿透半反射式液晶显示器可同时利用背光源以及外界光源进行显示,其上的像素可区分为透射区与反射区,透射区上具有透明电极以利背光源穿透,而反射区上具有适于将外界光源反射的反射电极。Generally, liquid crystal displays can be classified into three categories: transmissive, reflective, and transflective. The classification is based on the utilization of light sources and differences in array substrates (arrays). Among them, the transmissive liquid crystal display mainly uses the back light as the light source, and the pixel electrodes on the array substrate are transparent electrodes to facilitate the penetration of the back light; the reflective liquid crystal display mainly uses the front light or the front light. The external light source is used as the light source, and the pixel electrodes on the array substrate are metal or other reflective electrodes with good reflective properties, which are suitable for reflecting the front light source or external light source; while the semi-transmissive and semi-reflective LCD can use the backlight source at the same time And external light source for display, the pixels on it can be divided into transmissive area and reflective area, the transmissive area has a transparent electrode to facilitate backlight penetration, and the reflective area has a reflective electrode suitable for reflecting the external light source.

图1示出了现有的一种双单元间距式(dual cell gap)的液晶显示单元的结构图。请参照图1,液晶显示单元100具有两个区域,分别为透射区T与反射区R,且包括一第一基板110、一薄膜晶体管120、一介电层130、一透明电极140、一反射电极150、一液晶层160、一间隔物170、一彩色滤光薄膜180以及一第二基板190。FIG. 1 shows a structure diagram of a conventional dual cell gap liquid crystal display unit. Please refer to FIG. 1, the liquid crystal display unit 100 has two regions, which are respectively the transmissive region T and the reflective region R, and includes a first substrate 110, a thin film transistor 120, a dielectric layer 130, a transparent electrode 140, and a reflective region. The electrode 150 , a liquid crystal layer 160 , a spacer 170 , a color filter film 180 and a second substrate 190 .

其中,薄膜晶体管120配置于第一基板110之上;介电层130配置于薄膜晶体管120与第一基板110之上;透明电极140与反射电极150皆配置于介电层130之上,且分别位于透射区T与反射区R之中;彩色滤光薄膜180配置于第二基板190之下;液晶层160配置于透明电极140、反射电极150以及彩色滤光薄膜180之间;间隔物170则配置于透明电极140或反射电极150上,用以维持固定的单元间距。Wherein, the thin film transistor 120 is disposed on the first substrate 110; the dielectric layer 130 is disposed on the thin film transistor 120 and the first substrate 110; the transparent electrode 140 and the reflective electrode 150 are disposed on the dielectric layer 130, and respectively Located in the transmissive area T and the reflective area R; the color filter film 180 is disposed under the second substrate 190; the liquid crystal layer 160 is disposed between the transparent electrode 140, the reflective electrode 150 and the color filter film 180; the spacer 170 is It is disposed on the transparent electrode 140 or the reflective electrode 150 to maintain a constant cell pitch.

值得注意的是,透射区T的单元间距约为反射区R的单元间距的两倍。光线在反射区R进入液晶显示单元100至反射出液晶显示单元100的期间中,其所行经液晶层160的距离会相同于光线在透射区T穿过液晶显示单元100的期间所行经液晶层160的距离,因此反射区R的透射率与透射区T的透射率几乎相同。It should be noted that the cell pitch of the transmissive region T is approximately twice the cell pitch of the reflective region R. During the period when the light enters the liquid crystal display unit 100 in the reflective region R and is reflected from the liquid crystal display unit 100, the distance it travels through the liquid crystal layer 160 will be the same as the distance that the light travels through the liquid crystal layer 160 during the period when the light passes through the liquid crystal display unit 100 in the transmissive region T. Therefore, the transmittance of the reflective region R is almost the same as that of the transmissive region T.

图2示出了此种双单元间距式的液晶显示单元的透射率仿真图。请参照图2,由图2可以看出在不同外加电压条件下,反射区R与透射区T的透射率几乎相同。换言之,双单元间距式半穿透半反射液晶显示面板的显示品质较佳。然而,由于透射区T的单元间距与反射区R的单元间距不同,故透明电极140与反射电极150的交界处的高度差将导致局部区域的液晶配向不一致或是造成电场不均匀,进而造成双单元间距式半穿透半反射液晶显示面板漏光的问题。另外,透明电极140与反射电极150的交界处会造成双单元间距式半穿透半反射液晶显示面板的开口率(aperture ratio)降低。FIG. 2 shows a simulated diagram of the transmittance of such a liquid crystal display unit with a double cell pitch. Referring to FIG. 2 , it can be seen from FIG. 2 that under different applied voltage conditions, the transmittances of the reflective region R and the transmissive region T are almost the same. In other words, the display quality of the double cell pitch transflective liquid crystal display panel is better. However, since the cell pitch of the transmissive region T is different from that of the reflective region R, the height difference at the junction of the transparent electrode 140 and the reflective electrode 150 will lead to inconsistent alignment of the liquid crystal in a local area or an uneven electric field, resulting in double The problem of light leakage in the cell pitch semi-transmissive semi-reflective liquid crystal display panel. In addition, the junction of the transparent electrode 140 and the reflective electrode 150 will reduce the aperture ratio of the transflective liquid crystal display panel with double cell spacing.

图3示出了现有的一种单单元间距式(single cell gap)的液晶显示单元的结构图。请参照图3,液晶显示单元200与液晶显示单元100类似,不同之处在于:在液晶显示单元200中,透射区T的单元间距与反射区R的单元间距相同。由于透明电极240与反射电极250之间没有高度差,单单元间距式半穿透半反射液晶显示面板虽不会产生漏光或是开口率降低的问题,但是在同一驱动电压下,由于反射区R的透射率与透射区T的透射率不同,将造成单单元间距式半穿透半反射液晶显示面板的显示品质不佳。FIG. 3 shows a structure diagram of a conventional single cell gap liquid crystal display unit. Referring to FIG. 3 , the liquid crystal display unit 200 is similar to the liquid crystal display unit 100 except that in the liquid crystal display unit 200 , the cell pitch of the transmissive region T is the same as that of the reflective region R. Since there is no height difference between the transparent electrodes 240 and the reflective electrodes 250, although the single-unit-pitch transflective liquid crystal display panel does not have the problem of light leakage or reduced aperture ratio, under the same driving voltage, due to the reflective region R The transmittance of the transmissive area T is different from that of the transmissive region T, which will result in poor display quality of the single-cell-pitch transflective liquid crystal display panel.

图4示出了此种单单元间距式的液晶显示单元的透射率仿真图。请参照图4,由图4可以看出在相同外加电压条件下,反射区R与透射区T的透射率相差甚多。由图3与图4可知,此种单单元间距式的液晶显示单元并无法充分兼顾反射区R的透射率以及透射区T的透射率。FIG. 4 shows a simulation diagram of the transmittance of such a liquid crystal display unit with a single cell pitch. Please refer to FIG. 4 . It can be seen from FIG. 4 that under the same applied voltage condition, the transmittances of the reflective region R and the transmissive region T are quite different. It can be seen from FIG. 3 and FIG. 4 that the liquid crystal display unit of the single cell pitch type cannot fully take into account the transmittance of the reflective region R and the transmittance of the transmissive region T. Referring to FIG.

发明内容Contents of the invention

有鉴于此,本发明的目的是提供一种能改善显示品质的半穿透半反射像素结构。In view of this, the purpose of the present invention is to provide a transflective pixel structure which can improve the display quality.

基于上述目的或其它目的,本发明提出一种半穿透半反射像素结构,包括一有源器件、一储存电容器、一透明电极以及一第一反射电极。其中,储存电容器包括一下电极、一浮置电极以及一上电极。上电极配置于下电极与浮置电极上方,且与有源器件电性连接。透明电极与储存电容器的上电极电性连接。第一反射电极配置于该储存电容器上方并与储存电容器的浮置电极电性连接,第一反射电极与该透明电极位于同一平面并且与透明电极电性绝缘,其中调整上电极与浮置电极的重叠面积的大小,使反射区的透射率与透射区的透射率相近。Based on the above purpose or other purposes, the present invention proposes a transflective pixel structure, which includes an active device, a storage capacitor, a transparent electrode and a first reflective electrode. Wherein, the storage capacitor includes a lower electrode, a floating electrode and an upper electrode. The upper electrode is arranged above the lower electrode and the floating electrode, and is electrically connected with the active device. The transparent electrode is electrically connected with the upper electrode of the storage capacitor. The first reflective electrode is disposed above the storage capacitor and is electrically connected to the floating electrode of the storage capacitor. The first reflective electrode is located on the same plane as the transparent electrode and is electrically insulated from the transparent electrode. The distance between the upper electrode and the floating electrode is adjusted. The size of the overlapping area makes the transmittance of the reflective area similar to that of the transmissive area.

依照本发明较佳实施例所述的半穿透半反射像素结构,其中有源器件例如包括薄膜晶体管。According to the transflective pixel structure described in the preferred embodiment of the present invention, the active device includes, for example, a thin film transistor.

依照本发明较佳实施例所述的半穿透半反射像素结构,其中透明电极与第一反射电极例如位于同一平坦层上。According to the transflective pixel structure described in the preferred embodiment of the present invention, the transparent electrode and the first reflective electrode are located on the same planar layer, for example.

依照本发明较佳实施例所述的半穿透半反射像素结构,其中第一反射电极例如配置于储存电容器上方。According to the transflective pixel structure described in the preferred embodiment of the present invention, the first reflective electrode is disposed above the storage capacitor, for example.

依照本发明较佳实施例所述的半穿透半反射像素结构,例如还包括一共享配线,配置于透明电极与第一反射电极之间。The transflective pixel structure according to the preferred embodiment of the present invention, for example, further includes a shared wiring disposed between the transparent electrode and the first reflective electrode.

依照本发明较佳实施例所述的半穿透半反射像素结构,其中下电极与共享配线电性连接。According to the transflective pixel structure described in the preferred embodiment of the present invention, the lower electrode is electrically connected to the shared wiring.

依照本发明较佳实施例所述的半穿透半反射像素结构,其中上电极是由第一反射电极下方延伸至共享配线上方。According to the transflective pixel structure described in the preferred embodiment of the present invention, the upper electrode extends from below the first reflective electrode to above the shared wiring.

依照本发明较佳实施例所述的半穿透半反射像素结构,例如还包括一第一介电层、一第二介电层以及一平坦层。第一介电层配置于透明电极与第一反射电极下方,以覆盖住下电极与浮置电极。第二介电层配置于第一介电层上,以覆盖住上电极。平坦层配置于第二介电层上,其中第一介电层、第二介电层与平坦层具有一第一接触窗,该透明电极与该第一反射电极位于该平坦层上,且透明电极以及第一反射电极通过第一接触窗分别与上电极以及浮置电极电性连接。The transflective pixel structure according to the preferred embodiment of the present invention, for example, further includes a first dielectric layer, a second dielectric layer and a flat layer. The first dielectric layer is disposed under the transparent electrode and the first reflective electrode to cover the lower electrode and the floating electrode. The second dielectric layer is disposed on the first dielectric layer to cover the upper electrode. The planar layer is disposed on the second dielectric layer, wherein the first dielectric layer, the second dielectric layer and the planar layer have a first contact window, the transparent electrode and the first reflective electrode are located on the planar layer, and are transparent The electrode and the first reflective electrode are respectively electrically connected to the upper electrode and the floating electrode through the first contact window.

依照本发明较佳实施例所述的半穿透半反射像素结构,例如还包括一第二反射电极,与上电极电性连接。The transflective pixel structure according to the preferred embodiment of the present invention, for example, further includes a second reflective electrode electrically connected to the upper electrode.

依照本发明较佳实施例所述的半穿透半反射像素结构,例如还包括一第一介电层、一第二介电层以及一平坦层。第一介电层配置于透明电极、第一反射电极与第二反射电极下方,以覆盖住下电极与浮置电极。第二介电层配置于第一介电层上,以覆盖住上电极。平坦层配置于第二介电层上,其中第一介电层、第二介电层与平坦层具有一第一接触窗与一第二接触窗,该透明电极、该第一反射电极与该第二反射电极位于该平坦层上,且透明电极以及第一反射电极通过第一接触窗分别与上电极以及浮置电极电性连接,且第二反射电极通过第二接触窗与上电极电性连接。The transflective pixel structure according to the preferred embodiment of the present invention, for example, further includes a first dielectric layer, a second dielectric layer and a flat layer. The first dielectric layer is disposed under the transparent electrode, the first reflective electrode and the second reflective electrode to cover the lower electrode and the floating electrode. The second dielectric layer is disposed on the first dielectric layer to cover the upper electrode. The flat layer is disposed on the second dielectric layer, wherein the first dielectric layer, the second dielectric layer and the flat layer have a first contact window and a second contact window, the transparent electrode, the first reflective electrode and the The second reflective electrode is located on the flat layer, and the transparent electrode and the first reflective electrode are respectively electrically connected to the upper electrode and the floating electrode through the first contact window, and the second reflective electrode is electrically connected to the upper electrode through the second contact window connect.

依照本发明较佳实施例述的半穿透半反射像素结构,其中第二反射电极与第一反射电极的面积比值例如介于0.05至0.4之间。According to the transflective pixel structure described in the preferred embodiment of the present invention, the area ratio of the second reflective electrode to the first reflective electrode is, for example, between 0.05 and 0.4.

本发明的半穿透半反射像素结构藉由调整上电极与浮置电极的重叠面积的大小,使反射区的透射率与透射区的透射率相近,因此可改善单单元间距式半穿透半反射液晶显示面板的显示品质。The semi-transmissive and semi-reflective pixel structure of the present invention adjusts the size of the overlapping area of the upper electrode and the floating electrode, so that the transmittance of the reflective area is similar to that of the transmissive area, so that the single-unit-pitch semi-transparent semi-reflective pixel structure can be improved. Display quality of reflective LCD panels.

为使本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并结合附图详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are specifically cited below and described in detail with reference to the accompanying drawings.

附图说明 Description of drawings

图1示出了一种双单元间距式的液晶显示单元的结构图。FIG. 1 shows a structural diagram of a liquid crystal display unit of a double-cell spacing type.

图2示出了一种双单元间距式的液晶显示单元的透射率仿真图。FIG. 2 shows a simulated diagram of the transmittance of a liquid crystal display unit with a double cell pitch.

图3示出了一种单单元间距式的液晶显示单元的结构图。FIG. 3 shows a structure diagram of a liquid crystal display unit of a single-cell pitch type.

图4示出了一种单单元间距式的液晶显示单元的透射率仿真图。FIG. 4 shows a simulated diagram of the transmittance of a liquid crystal display unit with a single cell pitch.

图5A示出了本发明第一实施例的半穿透半反射像素结构的结构示意图。FIG. 5A shows a schematic structural diagram of the semi-transmissive and semi-reflective pixel structure according to the first embodiment of the present invention.

图5B、5C分别示出了图5A的半穿透半反射像素结构沿A-A’、B-B’剖面线的剖面图。5B and 5C respectively show the cross-sectional views of the transflective and semi-reflective pixel structure in Fig. 5A along the section lines A-A' and B-B'.

图5D示出了图5A的半穿透半反射像素结构所形成的液晶显示单元沿C-C’剖面线的剖面图。FIG. 5D shows a cross-sectional view of the liquid crystal display unit formed by the transflective and semi-reflective pixel structure in FIG. 5A along the section line C-C'.

图5E示出了本发明第一实施例的半穿透半反射像素结构所构成的液晶显示单元的等效电路图。FIG. 5E shows an equivalent circuit diagram of a liquid crystal display unit composed of a semi-transmissive and semi-reflective pixel structure according to the first embodiment of the present invention.

图5F示出了以本发明第一实施例的半穿透半反射像素结构所构成的液晶显示单元的透射率仿真图。FIG. 5F is a simulated diagram of the transmittance of the liquid crystal display unit composed of the semi-transmissive semi-reflective pixel structure according to the first embodiment of the present invention.

图6A示出了本发明第二实施例的半穿透半反射像素结构的结构示意图。FIG. 6A shows a schematic structural diagram of a semi-transmissive and semi-reflective pixel structure according to a second embodiment of the present invention.

图6B、6C分别示出了图6A的半穿透半反射像素结构沿A-A’、B-B’剖面线的剖面图。6B and 6C respectively show cross-sectional views of the transflective semi-reflective pixel structure in Fig. 6A along the section lines A-A' and B-B'.

图6D示出了图6A的半穿透半反射像素结构所形成的液晶显示单元沿C-C’剖面线的剖面图。FIG. 6D shows a cross-sectional view of the liquid crystal display unit formed by the transflective and semi-reflective pixel structure in FIG. 6A along the section line C-C'.

图6E示出了本发明第二实施例的半穿透半反射像素结构所构成的液晶显示单元的等效电路图。FIG. 6E shows an equivalent circuit diagram of a liquid crystal display unit formed by a semi-transmissive and semi-reflective pixel structure according to the second embodiment of the present invention.

图6F示出了以本发明第二实施例的半穿透半反射像素结构所构成的液晶显示单元的透射率仿真图。FIG. 6F is a simulated diagram of the transmittance of the liquid crystal display unit composed of the semi-transmissive semi-reflective pixel structure according to the second embodiment of the present invention.

附图符号说明Description of reference symbols

100、200、400、600:液晶显示单元100, 200, 400, 600: LCD display unit

110、190、210、290:基板110, 190, 210, 290: substrate

120、220:薄膜晶体管120, 220: thin film transistor

130、230、360、370、460、470:介电层130, 230, 360, 370, 460, 470: dielectric layer

140、240、330、430:透明电极140, 240, 330, 430: transparent electrodes

150、250、340、540a、540b:反射电极150, 250, 340, 540a, 540b: reflective electrodes

160、260、410、610:液晶层160, 260, 410, 610: liquid crystal layer

170、270:间隔物170, 270: Spacers

180、280、430、630:彩色滤光薄膜180, 280, 430, 630: color filter film

300、500:半穿透半反射像素结构300, 500: semi-transparent and semi-reflective pixel structure

310、510:有源器件310, 510: active devices

320、520:储存电容320, 520: storage capacitor

322、522:下电极322, 522: lower electrode

324、524:浮置电极324, 524: floating electrodes

326、526:上电极326, 526: upper electrode

350、550:共享配线350, 550: shared wiring

380、580:平坦层380, 580: flat layer

390、590a、590b:接触窗390, 590a, 590b: contact windows

420、620:共享电极420, 620: shared electrodes

T:透射区T: Transmissive area

R:反射区R: reflective area

具体实施方式 Detailed ways

第一实施例first embodiment

图5A示出了本发明第一实施例的半穿透半反射像素结构的结构示意图,其中的图(a)为半穿透半反射像素结构的俯视图,图(b)为图(a)的下一层结构的俯视图,图(c)为图(b)的下一层结构的俯视图。另外,图5B、5C分别示出了图5A的半穿透半反射像素结构沿A-A’、B-B’剖面线的剖面图。请同时参照图5A至5C。本发明第一实施例的半穿透半反射像素结构300位于一第一基板110之上,其具有两个区域,分别为透射区T与反射区R,且包括一有源器件310、一储存电容器320、一透明电极330、以及一第一反射电极340。储存电容器320又包括一下电极322、一浮置电极324以及上电极326。Fig. 5A shows a schematic structural diagram of the transflective pixel structure of the first embodiment of the present invention, in which figure (a) is a top view of the transflective pixel structure, and figure (b) is the top view of figure (a). The top view of the next layer of structure, Figure (c) is the top view of the next layer of structure in Figure (b). In addition, FIGS. 5B and 5C respectively show cross-sectional views of the transflective and semi-reflective pixel structure in FIG. 5A along the section lines A-A' and B-B'. Please refer to FIGS. 5A to 5C at the same time. The semi-transmissive and semi-reflective pixel structure 300 of the first embodiment of the present invention is located on a first substrate 110, which has two regions, respectively a transmission region T and a reflection region R, and includes an active device 310, a storage The capacitor 320 , a transparent electrode 330 , and a first reflective electrode 340 . The storage capacitor 320 further includes a lower electrode 322 , a floating electrode 324 and an upper electrode 326 .

有源器件310可作为透明电极330与第一反射电极340充电或放电的开关,其例如包括薄膜晶体管。上电极326配置于下电极322与浮置电极324的上方,且与有源器件310电性连接,其材料例如为金属或其它适当的导电材料。而透明电极330与上电极326电性连接,因此透明电极330可经由上电极326与有源器件310电性连接,其材料例如为铟锡氧化物或其它可透光的导电材料。第一反射电极340配置于储存电容器320的上方,与透明电极330位于同一平面上,且与储存电容器320的浮置电极324电性连接,但与透明电极330电性绝缘,其材料例如为金属或其它适当的可反光的导电材料。The active device 310 can serve as a switch for charging or discharging the transparent electrode 330 and the first reflective electrode 340 , and it includes, for example, a thin film transistor. The upper electrode 326 is disposed above the lower electrode 322 and the floating electrode 324 , and is electrically connected to the active device 310 , and its material is, for example, metal or other suitable conductive materials. The transparent electrode 330 is electrically connected to the upper electrode 326 , so the transparent electrode 330 can be electrically connected to the active device 310 via the upper electrode 326 , and its material is, for example, indium tin oxide or other light-transmitting conductive materials. The first reflective electrode 340 is disposed above the storage capacitor 320, is located on the same plane as the transparent electrode 330, and is electrically connected to the floating electrode 324 of the storage capacitor 320, but is electrically insulated from the transparent electrode 330, and its material is, for example, metal. Or other suitable reflective conductive material.

另外,一共享配线350配置于透明电极330与第一反射电极340之间,并与下电极322电性连接。上电极326则由第一反射电极340下方延伸至共享配线350上方。In addition, a shared wiring 350 is disposed between the transparent electrode 330 and the first reflective electrode 340 , and is electrically connected to the lower electrode 322 . The upper electrode 326 extends from below the first reflective electrode 340 to above the shared wiring 350 .

一般而言,电容器中通常配置有介电层。在本实施例的半穿透半反射像素结构300中,储存电容器320的中间配置有一第一介电层360。此第一介电层360配置于透明电极330与第一反射电极340下方,以覆盖下电极322与浮置电极324。第一反射电极340与上电极326所构成的电容器中则配置有一第二介电层370与一平坦层380。此第二介电层370配置于第一介电层360上,以覆盖住上电极326,平坦层380配置于第二介电层370上,以使第一反射电极340与透明电极330位于同一平面。第一介电层360、第二介电层370、平坦层380具有第一接触窗390,使透明电极330、第一反射电极340可通过第一接触窗390分别与上电极326、浮置电极324电性连接。In general, a dielectric layer is usually disposed in a capacitor. In the transflective pixel structure 300 of this embodiment, a first dielectric layer 360 is disposed in the middle of the storage capacitor 320 . The first dielectric layer 360 is disposed under the transparent electrode 330 and the first reflective electrode 340 to cover the lower electrode 322 and the floating electrode 324 . A second dielectric layer 370 and a flat layer 380 are disposed in the capacitor formed by the first reflective electrode 340 and the upper electrode 326 . The second dielectric layer 370 is disposed on the first dielectric layer 360 to cover the upper electrode 326, and the flat layer 380 is disposed on the second dielectric layer 370 so that the first reflective electrode 340 and the transparent electrode 330 are located at the same flat. The first dielectric layer 360, the second dielectric layer 370, and the planar layer 380 have a first contact window 390, so that the transparent electrode 330 and the first reflective electrode 340 can communicate with the upper electrode 326 and the floating electrode through the first contact window 390, respectively. 324 are electrically connected.

由于平坦层380的配置,使得第一反射电极340与透明电极330位于同一平面,因此本实施例的半穿透半反射像素结构300不会有局部区域的液晶配向不一致或是电场不均匀的问题,因此可改善单单元间距式半穿透半反式液晶面显示面板发生漏光的现象。Due to the configuration of the flat layer 380, the first reflective electrode 340 and the transparent electrode 330 are located on the same plane, so the transflective pixel structure 300 of this embodiment will not have the problem of inconsistent liquid crystal alignment or uneven electric field in a local area Therefore, the phenomenon of light leakage in the single-unit-pitch transflective liquid crystal display panel can be improved.

图5D示出了图5A的半穿透半反射像素结构所形成的液晶显示单元沿C-C’剖面线的剖面图。请参照图5D,此液晶显示单元400包括一半穿透半反射像素结构300、一液晶层410、一共享电极420、一彩色滤光薄膜430以及一第二基板190。其中液晶层410配置于半穿透半反射像素结构300与共享电极420之间,而共享电极420配置于彩色滤光薄膜430之下,彩色滤光薄膜430则配置于第二基板190之下。FIG. 5D shows a cross-sectional view of the liquid crystal display unit formed by the transflective and semi-reflective pixel structure in FIG. 5A along the section line C-C'. Referring to FIG. 5D , the liquid crystal display unit 400 includes a half-transmissive half-reflective pixel structure 300 , a liquid crystal layer 410 , a common electrode 420 , a color filter film 430 and a second substrate 190 . The liquid crystal layer 410 is disposed between the transflective pixel structure 300 and the shared electrode 420 , and the shared electrode 420 is disposed under the color filter film 430 , and the color filter film 430 is disposed under the second substrate 190 .

图5E示出了本发明第一实施例的半穿透半反射像素结构所构成的液晶显示单元的等效电路图。请同时参照图5D与图5E,在图5D中的上电极326(或透明电极330)、下电极322分别构成图5E中的电容器Cst(T)的第一电极板(图5E中的Cst(T)下方的电极板)、第二电极板(图5E中的Cst(T)上方的电极板);图5D中的透明电极330(或上电极326)、共享电极420分别构成图5E中的电容器Clc(T)的第一电极板(图5E中的Clc(T)下方的电极板)、第二电极板(图5E中的Clc(T)上方的电极板);图5D中的上电极326、第一反射电极340(或浮置电极324)分别构成图5E中的电容器Cst(R)的第一电极板(图5E中的Cst(R)下方的电极板)、第二电极板(图5E中的Cst(R)上方的电极板);图5D中的第一反射电极340(或浮置电极324)、共享电极420分别构成图5E中的电容器Clc(R)的第一电极板(图5E中的Clc(R)下方的电极板)、第二电极板(图5E中的Clc(R)上方的电极板)。FIG. 5E shows an equivalent circuit diagram of a liquid crystal display unit composed of a semi-transmissive and semi-reflective pixel structure according to the first embodiment of the present invention. Please refer to FIG. 5D and FIG. 5E at the same time. The upper electrode 326 (or transparent electrode 330) and the lower electrode 322 in FIG. 5D respectively constitute the first electrode plate of the capacitor C st (T) in FIG. 5E (C in FIG. st (T) below the electrode plate), the second electrode plate (the electrode plate above C st (T) in FIG. 5E); the transparent electrode 330 (or upper electrode 326) and the shared electrode 420 in FIG. The first electrode plate (the electrode plate below Clc (T) in FIG. 5E ), the second electrode plate (the electrode plate above Clc (T) in FIG. 5E ) of capacitor Clc(T) in 5E; The upper electrode 326 and the first reflective electrode 340 (or floating electrode 324) in FIG. 5D respectively constitute the first electrode plate of the capacitor C st (R) in FIG. 5E (the electrode below C st (R) in FIG. 5E plate), the second electrode plate (the electrode plate above C st (R) in FIG. 5E ); the first reflective electrode 340 (or floating electrode 324 ) in FIG. 5D , and the shared electrode 420 respectively constitute the capacitor in FIG. 5E The first electrode plate of Clc (R) (the electrode plate below Clc (R) in FIG. 5E ), the second electrode plate (the electrode plate above Clc (R) in FIG. 5E ).

请继续续参照图5E,当有源器件310处于开启状态,一外加电压Va会施加于上电极326,以使电容器Cst(T)的第一电极板(即上电极326或透明电极330)、电容器Clc(T)的第一电极板(即透明电极330)以及电容器Cst(R)的第一电极板(即上电极326)的电压皆为Va。由于电容器Cst(R)与电容器Clc(R)串连,因此电压差(Va-Vcom)需分配于这两个电容器Cst(R)、Clc(R)。如此,电容器Clc(R)的第一电极板(即浮置电极324或第一反射电极340)的电压值Vf将会不同于外加电压Va。若改变上电极326与浮置电极324的重叠面积的大小,可以调整Cst(R)的值,亦即电容器Clc(R)的第一电极板(即浮置电极324或第一反射电极340)的电压值Vf也会因此被调整。如上所述,藉由改变电压值Vf,可使反射区R的透射率接近透射区T的透射率。图5F示出了以本发明第一实施例的半穿透半反射像素结构所构成的液晶显示单元的透射率仿真图。请参照图5F,从图5F中,可以看出在相同的外加电压条件下,反射区R的透射率与透射区T的透射率相近。因此以本发明的半穿透半反射像素结构300所构成的单单元间距式半穿透半反射液晶显示面板的显示品质较佳。Please continue to refer to FIG. 5E, when the active device 310 is in the on state, an external voltage Va will be applied to the upper electrode 326, so that the first electrode plate of the capacitor C st (T) (that is, the upper electrode 326 or the transparent electrode 330) The voltages of the first electrode plate (ie, the transparent electrode 330 ) of the capacitor Clc (T) and the first electrode plate (ie, the upper electrode 326 ) of the capacitor C st (R) are both Va. Since the capacitor C st(R) is connected in series with the capacitor C lc(R) , the voltage difference (Va-Vcom) needs to be distributed between the two capacitors C st(R) and C lc(R) . Thus, the voltage value Vf of the first electrode plate of the capacitor Clc(R) (ie, the floating electrode 324 or the first reflective electrode 340 ) will be different from the applied voltage Va. If the size of the overlapping area of the upper electrode 326 and the floating electrode 324 is changed, the value of Cst (R) can be adjusted, that is, the first electrode plate of the capacitor Clc (R) (ie, the floating electrode 324 or the first reflective electrode 340) the voltage value Vf will also be adjusted accordingly. As mentioned above, the transmittance of the reflective region R can be made close to the transmittance of the transmissive region T by changing the voltage value Vf. FIG. 5F is a simulated diagram of the transmittance of the liquid crystal display unit composed of the semi-transmissive semi-reflective pixel structure according to the first embodiment of the present invention. Please refer to FIG. 5F . From FIG. 5F , it can be seen that the transmittance of the reflective region R is similar to that of the transmissive region T under the same applied voltage condition. Therefore, the display quality of the single-unit-pitch transflective liquid crystal display panel formed by the transflective pixel structure 300 of the present invention is better.

第二实施例second embodiment

图6A示出了本发明第二实施例的半穿透半反射像素结构的结构示意图,其中的图(a)为半穿透半反射像素结构的俯视图,图(b)为图(a)的下一层结构的俯视图,图(c)为图(b)的下一层结构的俯视图。另外,图6B、6C分别示出了图6A的半穿透半反射像素结构沿A-A’、B-B’剖面线的剖面图。请同时参考图6A至6C。本实施例的半穿透半反射像素结构500类似于第一实施例的半穿透半反射像素结构300,不同之处在于:半穿透半反射像素结构500包括一第二反射电极540b,其与上电极526电性连接、与第一反射电极540a电性绝缘,而第二反射电极540b与第一反射电极540a的面积比值例如介于0.05至0.4之间。Fig. 6A shows a schematic structural diagram of the transflective pixel structure of the second embodiment of the present invention, in which figure (a) is a top view of the transflective pixel structure, and figure (b) is the top view of the transflective pixel structure in figure (a). The top view of the next layer of structure, Figure (c) is the top view of the next layer of structure in Figure (b). In addition, FIGS. 6B and 6C respectively show the cross-sectional views of the transflective and semi-reflective pixel structure in FIG. 6A along the section lines A-A' and B-B'. Please refer to FIGS. 6A to 6C at the same time. The transflective pixel structure 500 of this embodiment is similar to the transflective pixel structure 300 of the first embodiment, the difference is that: the transflective pixel structure 500 includes a second reflective electrode 540b, which It is electrically connected to the upper electrode 526 and electrically insulated from the first reflective electrode 540a, and the area ratio of the second reflective electrode 540b to the first reflective electrode 540a is, for example, between 0.05 and 0.4.

在本实施例的半穿透半反射像素结构500中,储存电容器520的中间配置有一第一介电层560,此第一介电层560配置于透明电极530、第一反射电极540a以及第二反射电极540b下方,以覆盖下电极522与浮置电极524。第一反射电极540a、第二反射电极540b与上电极526所构成的电容器中间则配置有一第二介电层570与一平坦层580,此第二介电层570配置于第一介电层560上,以覆盖住上电极526,平坦层580配置于第二介电层570上,以使第一反射电极540a、第二反射电极540b以及透明电极530位于同一平面。第一介电层560、第二介电层570、平坦层580具有第一第一接触窗590a与一第二接触窗590b,使透明电极530、第一反射电极540a通过第一接触590a各别与上电极526、浮置电极524电性连接,而第二反射电极540b可通过第二接触窗590b与上电极526电性连接。In the transflective pixel structure 500 of this embodiment, a first dielectric layer 560 is disposed in the middle of the storage capacitor 520, and the first dielectric layer 560 is disposed on the transparent electrode 530, the first reflective electrode 540a and the second Below the reflective electrode 540 b to cover the lower electrode 522 and the floating electrode 524 . A second dielectric layer 570 and a flat layer 580 are arranged in the middle of the capacitor formed by the first reflective electrode 540a, the second reflective electrode 540b and the upper electrode 526, and the second dielectric layer 570 is arranged on the first dielectric layer 560. To cover the upper electrode 526, the flat layer 580 is disposed on the second dielectric layer 570, so that the first reflective electrode 540a, the second reflective electrode 540b and the transparent electrode 530 are located on the same plane. The first dielectric layer 560, the second dielectric layer 570, and the flat layer 580 have a first contact window 590a and a second contact window 590b, so that the transparent electrode 530 and the first reflective electrode 540a pass through the first contact 590a respectively. It is electrically connected with the upper electrode 526 and the floating electrode 524 , and the second reflective electrode 540 b can be electrically connected with the upper electrode 526 through the second contact window 590 b.

图6D示出了图6A的半穿透半反射像素结构所形成的液晶显示单元沿C-C’剖面线的剖面图。请参照图6D,此液晶显示单元600类似于第一实施例所述的液晶显示单元400。图6E示出了本发明第二实施例的半穿透半反射像素结构所构成的液晶显示单元的等效电路图。请同时参考图6D与图6E,在图6D中的上电极526(或透明电极530)、下电极522分别构成图6E中的电容器Cst(T)的第一电极板、第二电极板;图6D中的透明电极530(或上电极526)、共享电极620分别构成图6E中的电容器Clc(T)的第一电极板、第二电极板;图6D中的上电极526、第一反射电极540a(或浮置电极524)分别构成图5E中的电容器Cst(R)的第一电极板、第二电极板;图6D中的第一反射电极540a(或浮置电极524)、共享电极620分别构成图6E中的电容器Clc(R)的第一电极板、第二电极板;图6D中的下电极522、第二反射电极540b(或上电极526)分别构成图5E中的电容器C’st(R)的第一电极板、第二电极板。FIG. 6D shows a cross-sectional view of the liquid crystal display unit formed by the transflective and semi-reflective pixel structure in FIG. 6A along the section line CC'. Please refer to FIG. 6D , the liquid crystal display unit 600 is similar to the liquid crystal display unit 400 described in the first embodiment. FIG. 6E shows an equivalent circuit diagram of a liquid crystal display unit formed by a semi-transmissive and semi-reflective pixel structure according to the second embodiment of the present invention. Please refer to FIG. 6D and FIG. 6E at the same time. The upper electrode 526 (or transparent electrode 530) and the lower electrode 522 in FIG. 6D respectively constitute the first electrode plate and the second electrode plate of the capacitor C st(T) in FIG. 6E; The transparent electrode 530 (or upper electrode 526) and the shared electrode 620 in Fig. 6D constitute the first electrode plate and the second electrode plate of the capacitor Clc (T) in Fig. 6E respectively; The reflective electrode 540a (or floating electrode 524) constitutes the first electrode plate and the second electrode plate of the capacitor Cst (R) in FIG. 5E respectively; the first reflective electrode 540a (or floating electrode 524) and The shared electrode 620 respectively constitutes the first electrode plate and the second electrode plate of the capacitor Clc(R) in FIG. 6E; the lower electrode 522 and the second reflective electrode 540b (or upper electrode 526) in FIG. 6D respectively constitute the The first electrode plate and the second electrode plate of the capacitor C' st(R) .

与第一实施例相同地,若改变上电极526与浮置电极524的重叠面积的大小,可以调整Cst(R)的值,电容器Clc(R)的第一电极板(即浮置电极524或第一反射电极540a)的电压值Vf也会因此被调整。藉由改变电压值Vf,可使反射区R的透射率接近透射区T的透射率。另外,由于第二反射电极540b的配置,可以使反射区R的透射率更接近透射区T的透射率。图6F示出了以本发明第二实施例的半穿透半反射像素结构所构成的液晶显示单元的透射率仿真图。请参照图6F,从图6F可以看出,在相同的外加电压条件下,反射区R的透射率与透光区T的透射率更为相近。因此以本发明第二实施例的半穿透半反射像素制作的单单元间距式半穿透半反射液晶显示面板的显示品质更佳。Same as the first embodiment, if the size of the overlapping area of the upper electrode 526 and the floating electrode 524 is changed, the value of Cst (R) can be adjusted, and the first electrode plate of the capacitor Clc (R) (ie, the floating electrode) 524 or the voltage value Vf of the first reflective electrode 540a) will also be adjusted accordingly. By changing the voltage value Vf, the transmittance of the reflective region R can be made close to the transmittance of the transmissive region T. In addition, due to the configuration of the second reflective electrode 540b, the transmittance of the reflective region R can be made closer to the transmittance of the transmissive region T. FIG. 6F is a simulated diagram of the transmittance of the liquid crystal display unit composed of the semi-transmissive semi-reflective pixel structure according to the second embodiment of the present invention. Please refer to FIG. 6F . It can be seen from FIG. 6F that under the same applied voltage condition, the transmittance of the reflective region R is closer to that of the transparent region T. Therefore, the display quality of the single-unit-pitch transflective liquid crystal display panel made with the transflective pixels of the second embodiment of the present invention is better.

综上所述,本发明的半穿透半反射像素结构至少具有以下优点:In summary, the semi-transmissive and semi-reflective pixel structure of the present invention has at least the following advantages:

一、本发明的半穿透半反射像素结的第一反射电极、第二反射电极与透明电极位于同一平面,不会有局部区域的液晶配向不一致或是电场不均匀的问题,可改善单单元间距式半穿透半反液晶面显示面板发生漏光的现象。1. The first reflective electrode, the second reflective electrode and the transparent electrode of the semi-transparent semi-reflective pixel junction of the present invention are located on the same plane, so there will be no problem of inconsistent liquid crystal alignment or uneven electric field in a local area, which can improve the single-unit The phenomenon of light leakage occurs in the pitch-type transflective liquid crystal display panel.

二、本发明的半穿透半反射像素结构藉由调整上电极与浮置电极的重叠面积的大小,使反射区的透射率与透射区的透射率相近,可改善单单元间距式半穿透半反射液晶显示面板的显示品质。2. The semi-transmissive and semi-reflective pixel structure of the present invention can improve the single-unit-pitch semi-transmissive pixel structure by adjusting the overlapping area of the upper electrode and the floating electrode so that the transmittance of the reflective area is similar to that of the transmissive area. The display quality of a semi-reflective LCD panel.

虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围的前提下可作若干的更动与润饰,因此本发明的保护范围以本发明的权利要求的保护范围为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection is subject to the scope of protection of the claims of the present invention.

Claims (9)

1. transflective pixel structure comprises:
Active device;
Reservior capacitor includes bottom electrode; Floating electrode; And top electrode, be disposed at this bottom electrode and this floating electrode top, and electrically connect with this active device;
Transparency electrode is with the top electrode electric connection of this reservior capacitor; And
First reflecting electrode is disposed at this reservior capacitor top and electrically connects with the floating electrode of this reservior capacitor, and wherein this first reflecting electrode and this transparency electrode are positioned at same plane and are electrically insulated with this transparency electrode,
Wherein, adjust the size of the overlapping area of top electrode and floating electrode, make the transmissivity of the transmissivity of echo area and transmission area close.
2. transflective pixel structure as claimed in claim 1, wherein this active device comprises thin film transistor (TFT).
3. transflective pixel structure as claimed in claim 1 also comprises shared wiring, is disposed between this transparency electrode and this first reflecting electrode.
4. transflective pixel structure as claimed in claim 3, wherein this bottom electrode and this shared wiring electrically connect.
5. transflective pixel structure as claimed in claim 3, wherein this top electrode extends to this shared wiring top by this first reflecting electrode below.
6. transflective pixel structure as claimed in claim 1 also comprises:
First dielectric layer is disposed at this transparency electrode and this first reflecting electrode below, to cover this bottom electrode and this floating electrode;
Second dielectric layer is disposed on this first dielectric layer, to cover this top electrode; And
Flatness layer, be disposed on this second dielectric layer, wherein this first dielectric layer, this second dielectric layer and this flatness layer have first contact hole, this transparency electrode and this first reflecting electrode are positioned on this flatness layer, and this transparency electrode and this first reflecting electrode electrically connect with this top electrode and this floating electrode respectively by this first contact hole.
7. transflective pixel structure as claimed in claim 1 also comprises second reflecting electrode, is positioned at same plane with the top electrode electric connection of this reservior capacitor and with this first reflecting electrode.
8. transflective pixel structure as claimed in claim 7 also comprises:
First dielectric layer is disposed at this transparency electrode, this first reflecting electrode and this second reflecting electrode below, to cover this bottom electrode and this floating electrode;
Second dielectric layer is disposed on this first dielectric layer, to cover this top electrode; And
Flatness layer, be disposed on this second dielectric layer, wherein this first dielectric layer and this flatness layer, this second dielectric layer and this flatness layer have first contact hole and second contact hole respectively, this transparency electrode, this first reflecting electrode and this second reflecting electrode are positioned on this flatness layer, and this transparency electrode and this first reflecting electrode electrically connect with this top electrode and this floating electrode respectively by this first contact hole, and this second reflecting electrode electrically connects by this second contact hole and this top electrode.
9. transflective pixel structure as claimed in claim 7, wherein the area ratio of this second reflecting electrode and this first reflecting electrode is between 0.05 to 0.4.
CNB2005100920635A 2005-08-16 2005-08-16 Pixel structure Expired - Fee Related CN100478766C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100920635A CN100478766C (en) 2005-08-16 2005-08-16 Pixel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100920635A CN100478766C (en) 2005-08-16 2005-08-16 Pixel structure

Publications (2)

Publication Number Publication Date
CN1731256A CN1731256A (en) 2006-02-08
CN100478766C true CN100478766C (en) 2009-04-15

Family

ID=35963639

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100920635A Expired - Fee Related CN100478766C (en) 2005-08-16 2005-08-16 Pixel structure

Country Status (1)

Country Link
CN (1) CN100478766C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355552B (en) 2007-10-17 2012-01-01 Au Optronics Corp Pixel structure
CN100462828C (en) * 2007-11-09 2009-02-18 友达光电股份有限公司 Active element array substrate, pixel structure thereof and driving method thereof
CN102253546A (en) * 2007-11-13 2011-11-23 友达光电股份有限公司 Pixel structure
TWI408474B (en) * 2009-04-24 2013-09-11 Innolux Corp Subpixel structure and liquid crystal display panel
US8823624B2 (en) * 2010-08-13 2014-09-02 Au Optronics Corporation Display device having memory in pixels
TWI446531B (en) * 2011-05-17 2014-07-21 Au Optronics Corp Pixel structure and electrical bridging structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202682A (en) * 1997-06-05 1998-12-23 精工爱普生株式会社 Liquid crystal panel subbstrate, liquid crystal panel and electronic apparatus using the same
US20020018152A1 (en) * 2000-06-02 2002-02-14 Tetsuya Nagata Liquid crystal display device
JP2003287764A (en) * 2003-02-10 2003-10-10 Seiko Epson Corp Liquid crystal panel, substrate for liquid crystal panel, and projection display device
US6867822B2 (en) * 2000-10-20 2005-03-15 Lg.Philips Lcd Co., Ltd. Reflective and transflective liquid crystal display device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202682A (en) * 1997-06-05 1998-12-23 精工爱普生株式会社 Liquid crystal panel subbstrate, liquid crystal panel and electronic apparatus using the same
US20020018152A1 (en) * 2000-06-02 2002-02-14 Tetsuya Nagata Liquid crystal display device
US6867822B2 (en) * 2000-10-20 2005-03-15 Lg.Philips Lcd Co., Ltd. Reflective and transflective liquid crystal display device and its manufacturing method
JP2003287764A (en) * 2003-02-10 2003-10-10 Seiko Epson Corp Liquid crystal panel, substrate for liquid crystal panel, and projection display device

Also Published As

Publication number Publication date
CN1731256A (en) 2006-02-08

Similar Documents

Publication Publication Date Title
US20070268434A1 (en) Pixel structure and liquid crystal display panel
CN113359344B (en) Array substrate, liquid crystal display panel and liquid crystal display device
CN101995723A (en) In-plane switching mode transflective type liquid crystal display device
US7426004B2 (en) Transflective pixel structure having particular floating electrode in a storage capacitor
JP2007004156A (en) Substrate assembly and display device having the same
US7414685B2 (en) Transflective fringe field switching liquid crystal display
US20050128390A1 (en) Transflective fringe field switching liquid crystal display
KR20060100872A (en) Transflective liquid crystal display panel and its manufacturing method
JP2006171731A (en) Thin film transistor display panel and liquid crystal display including same
CN100478766C (en) Pixel structure
US20100014041A1 (en) Liquid Crystal Display
US20070121027A1 (en) Liquid crystal display
CN101576681A (en) Semi-transmission and semi-reflection display unit and driving method thereof
US20200004072A1 (en) Touch panel and method for manufacturing the same
CN114664867B (en) Array substrate, liquid crystal display panel and display device
EP4443508A1 (en) Display substrate, display panel and display device
US7929095B2 (en) Liquid crystal display panel
US7872713B2 (en) Pixel structure having particular patterned dielectric layer with micro-bumps
KR102522531B1 (en) Mirror display panel
CN111240076B (en) Transparent display device
KR20180077940A (en) Borderless display device
CN101276114A (en) Liquid crystal display panel and its pixel structure
US8665400B2 (en) Display device
CN101290441B (en) Transflective liquid crystal display panel and manufacturing method thereof
CN105319782A (en) Display panel and display device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090415

CF01 Termination of patent right due to non-payment of annual fee