CN100466340C - Non-aqueous electrolyte rechargeable battery - Google Patents
Non-aqueous electrolyte rechargeable battery Download PDFInfo
- Publication number
- CN100466340C CN100466340C CNB2006100937471A CN200610093747A CN100466340C CN 100466340 C CN100466340 C CN 100466340C CN B2006100937471 A CNB2006100937471 A CN B2006100937471A CN 200610093747 A CN200610093747 A CN 200610093747A CN 100466340 C CN100466340 C CN 100466340C
- Authority
- CN
- China
- Prior art keywords
- negative electrode
- battery
- negative
- active material
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 65
- 239000002253 acid Substances 0.000 claims abstract description 31
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims abstract description 18
- 239000003115 supporting electrolyte Substances 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- 229910000676 Si alloy Inorganic materials 0.000 claims description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N oxalic acid Substances OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011258 core-shell material Substances 0.000 claims 3
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000003795 desorption Methods 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 239000007773 negative electrode material Substances 0.000 abstract description 38
- 238000006243 chemical reaction Methods 0.000 abstract description 28
- 238000003860 storage Methods 0.000 abstract description 19
- 238000004090 dissolution Methods 0.000 abstract description 13
- 238000001556 precipitation Methods 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 description 35
- 239000000203 mixture Substances 0.000 description 35
- 239000010408 film Substances 0.000 description 33
- 229910045601 alloy Inorganic materials 0.000 description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 238000000151 deposition Methods 0.000 description 17
- 230000008021 deposition Effects 0.000 description 17
- 239000012071 phase Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000007740 vapor deposition Methods 0.000 description 13
- 230000014759 maintenance of location Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- 239000011888 foil Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910013188 LiBOB Inorganic materials 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 239000011149 active material Substances 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229920002125 Sokalan® Polymers 0.000 description 6
- 229910008484 TiSi Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000002427 irreversible effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004584 polyacrylic acid Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000007770 graphite material Substances 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910004339 Ti-Si Inorganic materials 0.000 description 2
- 229910010978 Ti—Si Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000006183 anode active material Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 150000003623 transition metal compounds Chemical class 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 239000011887 silicon containing negative electrode material Substances 0.000 description 1
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域 technical field
本发明涉及非水电解质二次电池,并且尤其是涉及一种包括优选的负极和非水电解质的非水电解质二次电池。The present invention relates to a nonaqueous electrolyte secondary battery, and particularly to a nonaqueous electrolyte secondary battery including a preferred negative electrode and a nonaqueous electrolyte.
背景技术 Background technique
锂金属可以实现高电压和高能量密度,使用锂金属作为非水电解质二次电池的负极已得到了广泛的研究和开发。这一研发导致了在负极中使用石墨材料的锂离子电池的商业化,石墨材料可以可逆地吸收和解吸锂,并且具有出色的循环寿命和安全性。Lithium metal can achieve high voltage and high energy density, and the use of lithium metal as the negative electrode of nonaqueous electrolyte secondary batteries has been extensively researched and developed. This development has led to the commercialization of lithium-ion batteries using graphite materials in the negative electrode, which can reversibly absorb and desorb lithium, and have excellent cycle life and safety.
然而,使用基于石墨材料负极的电池有效容量约为350mAh/g,该值已非常接近于石墨材料的理论容量(372mAh/g)。因此,只要在负极中使用石墨材料,就不大可能大幅度提高容量。同时,便携式装置的功能正变得越来越复杂,作为这类设备能量来源的非水电解质二次电池的容量也要求相应地提高。因此,为了获得更高的容量,必须要有容量比石墨还要高的负极材料。However, the effective capacity of the battery using the negative electrode based on graphite material is about 350mAh/g, which is very close to the theoretical capacity (372mAh/g) of graphite material. Therefore, as long as graphite material is used in the negative electrode, it is unlikely that the capacity will be greatly improved. At the same time, the functions of portable devices are becoming more and more complex, and the capacity of nonaqueous electrolyte secondary batteries, which are energy sources for such devices, is also required to increase accordingly. Therefore, in order to obtain a higher capacity, it is necessary to have an anode material with a capacity higher than that of graphite.
作为可提供高容量的材料,含有硅(Si)的合金材料和含有锡的合金材料最近获得了人们的关注。这些金属元素可以电化学地吸收和解吸锂离子,可以以比石墨高许多的容量进行充电/放电。例如,已知硅的理论放电容量为4199mAh/g,这为石墨的理论放电容量的11倍。As materials that can provide a high capacity, alloy materials containing silicon (Si) and alloy materials containing tin have recently attracted attention. These metal elements can electrochemically absorb and desorb lithium ions, and can be charged/discharged at a much higher capacity than graphite. For example, it is known that the theoretical discharge capacity of silicon is 4199 mAh/g, which is 11 times that of graphite.
因此,现正在研究使用含硅的负极活性材料、同时配合使用常规锂二次电池元件的电池,这些常规锂二次电池元件如钴酸锂正极、以及由1mol/L六氟磷酸锂和碳酸亚乙酯与碳酸甲乙酯的混合溶液组成的非水电解质。然而,如果这类电池在高温中储藏,尤其是在已放电状态下,它们非常容易退化。因此,这类电池存在储藏后电池功能失效的问题。Therefore, the use of silicon-containing negative electrode active materials is being studied in conjunction with batteries using conventional lithium secondary battery components, such as lithium cobalt oxide positive electrodes, and lithium hexafluorophosphate and ethylene carbonate. A non-aqueous electrolyte composed of a mixed solution of methyl ethyl carbonate. However, if such batteries are stored at high temperatures, especially in a discharged state, they are very susceptible to degradation. Therefore, this type of battery has a problem of failure of the battery function after storage.
为了避免这一问题,优选将负极放电电势最小化。例如,日本公开专利出版号Hei 11-233155(专利文献1)建议通过使用SiO作为负极活性材料并且将相对于Li电极的负极的放电终止电势控制在0.6V或更低,从而将因充电/放电循环引起的容量损失降至最低。To avoid this problem, it is preferable to minimize the negative electrode discharge potential. For example, Japanese Laid-Open Patent Publication No. Hei 11-233155 (Patent Document 1) suggests that by using SiO as the negative electrode active material and controlling the discharge termination potential of the negative electrode with respect to the Li electrode at 0.6 V or lower, the resulting charge/discharge Capacity loss due to cycling is minimized.
然而,如果如专利文献1来限制放电电势,由于SiO相对于Li电极的平均放电电势为0.4V~0.5V,只能利用SiO固有容量的大约一半,因此,牺牲掉了SiO固有的高容量特性。However, if the discharge potential is limited as in Patent Document 1, since the average discharge potential of SiO relative to the Li electrode is 0.4V to 0.5V, only about half of the intrinsic capacity of SiO can be utilized, thus sacrificing the inherent high capacity characteristics of SiO .
发明内容 Contents of the invention
本发明的目的是提供一种非水电解质二次电池,该非水电解质二次电池可以充分利用基于Si的负极材料所固有的高容量,且不会引起储藏特性和充电/放电循环特性的降低。An object of the present invention is to provide a nonaqueous electrolyte secondary battery that can make full use of the high capacity inherent in Si-based negative electrode materials without causing deterioration in storage characteristics and charge/discharge cycle characteristics .
本发明涉及一种非水电解质二次电池,该电池包括:能够电化学地吸收和解吸Li的正极、包括至少含有Si的负极活性材料的负极和非水电解质。The present invention relates to a nonaqueous electrolyte secondary battery comprising: a positive electrode capable of electrochemically absorbing and desorbing Li, a negative electrode including a negative electrode active material containing at least Si, and a nonaqueous electrolyte.
非水电解质包括为主支持电解质的作为锂盐的六氟磷酸锂,该非水电解质的酸含量不低于50ppm且不高于200ppm。在电池放电终止电压下所述负极相对于Li电极的电势不低于0.6V且不高于1.5V。The nonaqueous electrolyte includes lithium hexafluorophosphate as a lithium salt as a main supporting electrolyte, and the acid content of the nonaqueous electrolyte is not less than 50 ppm and not more than 200 ppm. The potential of the negative electrode relative to the Li electrode is not lower than 0.6V and not higher than 1.5V at the end-of-discharge voltage of the battery.
本发明以以下研究为基础得以完成。The present invention was accomplished based on the following studies.
拆开有上述问题的常规电池,测量负极相对于Li电极(Li/Li+)的电势。结果发现相对于Li/Li+的电势为1.8V。同时,计算溶解于电解质的Si含量,发现负极所含的Si约有1/100溶解在非水电解质中。此外,分析与非水电解质发生副反应在负极活性材料表面所形成的涂层膜,测量到大量的含Si化合物,同时还有含Li的有机和无机化合物。A conventional battery with the above problems was disassembled and the potential of the negative electrode relative to the Li electrode (Li/Li + ) was measured. As a result, the potential was found to be 1.8 V with respect to Li/Li + . At the same time, by calculating the Si content dissolved in the electrolyte, it was found that about 1/100 of the Si contained in the negative electrode was dissolved in the non-aqueous electrolyte. In addition, analyzing the coating film formed on the surface of the negative electrode active material due to the side reaction with the nonaqueous electrolyte, a large number of Si-containing compounds were measured, along with Li-containing organic and inorganic compounds.
对该反应进行仔细研究,推测当负极活性材料中所含的Si溶解于电解质时发生了以下反应:The reaction was carefully studied, and it was speculated that the following reaction occurred when Si contained in the negative electrode active material was dissolved in the electrolyte:
Si+2HF+nh+=>SiF2+2H++(n-1)e- (1)Si+2HF+nh + =>SiF 2 +2H + +(n-1)e - (1)
(h+表示空穴)(h + means hole)
当电池处于已放电状态(即当电子离开负极时)且非水电解质中存在有HF时,Si通过反应式(1)所示的反应形成了SiF2,并且溶解在非水电解质中。SiF2作为Si的化合物通过以下化学反应沉淀在负极表面或电池的其它位置。When the battery is in a discharged state (ie, when electrons leave the negative electrode) and HF exists in the non-aqueous electrolyte, Si forms SiF 2 through the reaction shown in equation (1), and dissolves in the non-aqueous electrolyte. SiF 2 , as a compound of Si, precipitates on the surface of the negative electrode or other positions of the battery through the following chemical reactions.
SiF2+4HF=>H2SiF6+H2 (2)SiF 2 +4HF=>H 2 SiF 6 +H 2 (2)
当负极活性材料中所含的Si溶解于非水电解质、且以Si化合物的形式发生沉淀时,相信发生了这些反应。为了抑制充电期间负极活性材料中所含的Si溶解于非水电解质、以及Si以Si化合物的形式沉淀在负极的表面,本发明人发现以下条件有效:These reactions are believed to occur when Si contained in the negative electrode active material is dissolved in the non-aqueous electrolyte and precipitated as a Si compound. In order to suppress the dissolution of Si contained in the negative electrode active material in the non-aqueous electrolyte and the precipitation of Si in the form of Si compounds on the surface of the negative electrode during charging, the present inventors found that the following conditions are effective:
(1)非水电解质包含六氟磷酸锂,以其为主锂盐。(1) The non-aqueous electrolyte contains lithium hexafluorophosphate as a main lithium salt.
(2)非水电解质的酸含量不低于50ppm且不高于200ppm。(2) The acid content of the nonaqueous electrolyte is not less than 50 ppm and not more than 200 ppm.
(3)在电池放电终止电压下,即当电池电压处于放电终止电压时或当电池已放电至放电终止电压时,负极相对于Li电极的电势不低于0.6V且不高于1.5V。(3) At the end-of-discharge voltage of the battery, that is, when the battery voltage is at the end-of-discharge voltage or when the battery has been discharged to the end-of-discharge voltage, the potential of the negative electrode relative to the Li electrode is not lower than 0.6V and not higher than 1.5V.
负极活性材料优选Si、Si合金或Si化合物。The negative electrode active material is preferably Si, Si alloy or Si compound.
Si化合物优选可用SiOx表示的氧化物,其中0<x<2。Si合金中包含的Fe、Ni、Co、Cu和Cr的总含量优选1000ppm或更低。The Si compound is preferably an oxide represented by SiOx , where 0<x<2. The total content of Fe, Ni, Co, Cu and Cr contained in the Si alloy is preferably 1000 ppm or less.
负极优选包括负极集电器和沉积在负极集电器上的负极活性材料薄膜。The negative electrode preferably includes a negative electrode current collector and a negative electrode active material thin film deposited on the negative electrode current collector.
非水电解质优选含有不高于5重量%的双[1,2-草酸(2-)-O,O’]硼酸根离子。The nonaqueous electrolyte preferably contains not more than 5% by weight of bis[1,2-oxalate(2-)-O,O']borate ions.
本发明可以充分利用基于Si的负极材料所固有的高容量。同时,本发明可以解决上述问题,即可以控制Si在已放电状态下发生溶解反应、以及因溶解的Si所引起的形成薄膜的反应。因此,可以提供一种具有出色的储藏特性和出色的充电/放电特性的非水电解质二次电池。The present invention can take full advantage of the inherently high capacity of Si-based anode materials. At the same time, the present invention can solve the above-mentioned problems, that is, it can control the dissolution reaction of Si in the discharged state and the film-forming reaction caused by the dissolved Si. Therefore, it is possible to provide a nonaqueous electrolyte secondary battery having excellent storage characteristics and excellent charge/discharge characteristics.
虽然在所附的权利要求书中特别提出了本发明的新特征,但从以下结合附图所作的详细描述中可以更好地,无论是从组织上还是从内容上,理解和认识本发明及其相关的其它目的和特征。While the novel features of the present invention are set forth with particularity in the appended claims, a better understanding and appreciation of the present invention, both in organization and in content, can be better understood and appreciated from the following detailed description taken in conjunction with the accompanying drawings. Other objects and features related thereto.
附图说明 Description of drawings
图1为本发明实施例中所使用的圆柱状锂离子二次电池的纵向剖面示意图。FIG. 1 is a schematic longitudinal sectional view of a cylindrical lithium-ion secondary battery used in an embodiment of the present invention.
发明详述Detailed description of the invention
根据本发明可以电化学地吸收和解吸Li的负极活性材料包括Si。更明确地,负极活性材料为Si、Si合金或Si化合物。Anode active materials that can electrochemically absorb and desorb Li according to the present invention include Si. More specifically, the negative electrode active material is Si, Si alloy or Si compound.
Si合金优选有大于50重量%的Si含量。特别优选的Si合金有75重量%或以上的Si含量。这类合金可以提供高的容量。The Si alloy preferably has a Si content of greater than 50% by weight. Particularly preferred Si alloys have a Si content of 75% by weight or more. Such alloys can provide high capacity.
Si合金、Si或Si化合物中所包含的杂质元素优选为Ti、Zr或Sn。进一步,还优选包括P或Sb。此外,其中若包含就会产生不利影响的元素有Fe、Ni、Co、Cu或Cr,理想地Fe、Ni、Co、Cu和Cr的总含量为1000ppm或更低。The impurity element contained in Si alloy, Si or Si compound is preferably Ti, Zr or Sn. Further, P or Sb is also preferably included. In addition, elements that would have an adverse effect if contained therein are Fe, Ni, Co, Cu, or Cr, and the total content of Fe, Ni, Co, Cu, and Cr is desirably 1000 ppm or less.
其原因如下:Ti、Zr、Sn、P或Sb,正好与Si一样,具有4价或更高的化合价。因此,当Ti、Zr、Sn、P或Sb与Si形成合金时,不太可能形成空穴,但会产生自由电子(载流子),从而这些元素会产生增加导电性的有利的效果。另一方面,Fe、Ni、Co、Cu或Cr与Si结合时为3价或2价。因此,在与Si形成合金时,合金中会形成空穴,从而在充电期间会促使Si溶解。The reason for this is as follows: Ti, Zr, Sn, P, or Sb, just like Si, has a valence of 4 or higher. Therefore, when Ti, Zr, Sn, P, or Sb is alloyed with Si, holes are less likely to be formed, but free electrons (carriers) are generated, so that these elements have a favorable effect of increasing electrical conductivity. On the other hand, Fe, Ni, Co, Cu, or Cr is trivalent or divalent when combined with Si. Therefore, when alloyed with Si, voids are formed in the alloy, which promotes the dissolution of Si during charging.
Si化合物优选为SiOx,其中0<x<2。尤其是当0<x≤1时,可得到容量高、寿命长的负极。x值表示氧与全部负极活性材料之比,例如,可以根据燃烧法通过对氧进行量化来予以测定。该化合物SiOx可以局部地有多种组成,或者可以有完全均匀的组成。前一种情况的化合物实例是SiO0.8,其中最外层是SiO0.3,中间层是SiO0.7,最底下一层是SiO0.9。The Si compound is preferably SiO x , where 0<x<2. Especially when 0<x≤1, a negative electrode with high capacity and long life can be obtained. The x value represents the ratio of oxygen to the entire negative electrode active material, and can be measured, for example, by quantifying oxygen according to a combustion method. The compound SiOx can locally have various compositions, or can have a completely homogeneous composition. An example of a compound in the former case is SiO 0.8 , where the outermost layer is SiO 0.3 , the middle layer is SiO 0.7 , and the bottommost layer is SiO 0.9 .
如上所述,基于Si的负极活性材料优选为无定形的或低结晶的。在此使用的“低结晶的”是指晶粒大小为50nm或以下。通过舒勒(Scherrer)方程,从X射线衍射花样中最强的峰的半宽可以计算出晶粒大小。As described above, the Si-based negative active material is preferably amorphous or low-crystalline. "Low crystalline" as used herein means a crystal grain size of 50 nm or less. The grain size can be calculated from the half-width of the most intense peak in the X-ray diffraction pattern by the Scherrer equation.
同时,在此使用的“无定形的”是指X射线衍射花样中在2θ=15~40°的范围内具有宽的峰。对于结晶的负极活性材料,当其因插入Li发生膨胀时,负极活性材料的粒子或薄膜会破裂或损坏。其结果是,负极活性材料的反应面积增大,因此与非水电解质所含的氢氟酸有了更多的接触机会。因此,促进了Si的溶解反应和Si化合物的沉淀反应。另一方面,对于无定形或低结晶的负极活性材料,插入Li时它会发生膨胀,但由于它被微小的晶界(大约从几个纳米到50nm)所分割,膨胀应力被相应晶界分散和减弱。其结果是,不大可能发生活性材料粒子或薄膜的破裂或破损。Meanwhile, "amorphous" as used herein means that the X-ray diffraction pattern has a broad peak in the range of 2θ=15 to 40°. For a crystalline negative active material, when it expands due to intercalation of Li, the particles or films of the negative active material are broken or damaged. As a result, the reaction area of the negative electrode active material increases, and thus there are more chances of contact with the hydrofluoric acid contained in the non-aqueous electrolyte. Therefore, the dissolution reaction of Si and the precipitation reaction of Si compounds are promoted. On the other hand, for an amorphous or low-crystalline negative active material, it expands when Li is inserted, but since it is divided by tiny grain boundaries (approximately from a few nanometers to 50 nm), the expansion stress is dispersed by the corresponding grain boundaries. and weakened. As a result, cracking or breakage of active material particles or thin films is less likely to occur.
在包括基于Si的负极活性材料的负极的一个优选方式中,在负极集电器上有电极混合物层及粘合剂,该电极混合物层至少含有负极活性材料粒子。在另一个优选方式中,在负极集电器上以通过物理或化学方法形成的沉积膜或烧结膜的形式提供负极活性材料。在一个特别优选方式中,负极活性材料的沉积膜通过物理方法形成在负极集电器上。In a preferred mode of the negative electrode including the Si-based negative electrode active material, an electrode mixture layer and a binder are provided on the negative electrode current collector, and the electrode mixture layer contains at least particles of the negative electrode active material. In another preferred mode, the negative electrode active material is provided on the negative electrode current collector in the form of a deposited film or a sintered film formed by a physical or chemical method. In a particularly preferred manner, the deposited film of the negative electrode active material is physically formed on the negative electrode current collector.
电极混合物层中使用的负极活性材料粒子的大小优选为不小于0.1μm且不大于50μm。粘合剂可以是任何材料,只要它可以粘结负极集电器和负极活性材料,并且在电池运行电势范围内在电化学上不活泼。合适的示范粘合剂包括苯乙烯-丁烯共聚橡胶、聚丙烯酸、聚乙烯、聚氨酯、聚甲基丙烯酸甲酯、聚偏二氟乙烯、聚四氟乙烯、羧甲基纤维素和甲基纤维素等。它们可以单独使用,也可组合使用。对于粘合剂的量,就保持电极混合物层的结构而言量越多越好,但就提高电池容量、改善放电特性而言量越少越好。电极混合物层进一步优选含有主要由碳如石墨、炭黑或碳纳米管组成的导电剂。这些导电剂优选与负极活性材料接触。The size of the negative electrode active material particles used in the electrode mixture layer is preferably not less than 0.1 μm and not more than 50 μm. The binder may be any material as long as it can bind the negative electrode current collector and the negative electrode active material, and is electrochemically inactive within the battery operating potential range. Suitable exemplary binders include styrene-butylene copolymer rubber, polyacrylic acid, polyethylene, polyurethane, polymethylmethacrylate, polyvinylidene fluoride, polytetrafluoroethylene, carboxymethylcellulose, and methylcellulose Su and so on. These can be used alone or in combination. As for the amount of the binder, the larger the better in terms of maintaining the structure of the electrode mixture layer, but the smaller the better in terms of increasing the battery capacity and improving the discharge characteristics. The electrode mixture layer further preferably contains a conductive agent mainly composed of carbon such as graphite, carbon black or carbon nanotubes. These conductive agents are preferably in contact with the negative electrode active material.
形成沉积膜的优选物理方法为溅射、气相淀积、热喷雾及喷丸处理,优选的化学方法为CVD和电镀。在这些形成沉积膜的方法中,特别优选气相淀积,因为气相淀积可以高速形成薄膜,并且适合于形成不小于几个微米且不大于50μm的沉积膜。沉积膜不一定是平的或光滑的膜,沉积的活性材料可以是柱状或岛状。烧结膜理想地通过形成含有负极活性材料的电极混合物层,并且通过加热或等离子的方法对其进行烧结处理来提供。Preferred physical methods for forming deposited films are sputtering, vapor deposition, thermal spray and shot peening, and preferred chemical methods are CVD and electroplating. Among these methods of forming a deposited film, vapor deposition is particularly preferable because vapor deposition can form a film at high speed and is suitable for forming a deposited film of not less than several micrometers and not more than 50 μm. The deposited film does not have to be a flat or smooth film, and the deposited active material can be columnar or island-shaped. The sintered film is desirably provided by forming an electrode mixture layer containing an anode active material, and subjecting it to sintering treatment by heating or plasma.
当负极活性材料的沉积膜或烧结膜仅由Si组成时,优选的厚度为不小于1μm且不大于20μm。当膜薄于1μm时,集电器相对于电池的体积大,以此难以产生容量大的电池。另一方面,如果膜厚于20μm,因活性材料膨胀产生的应力会明显作用在整个集电器或负极上,由此会折皱电极或者导致电极最终被毁。因此,大于20μm的厚度并不合适。当负极活性材料的沉积膜或烧结膜由Si合金或Si化合物组成时,由于与以上所描述的相同原因,膜的厚度优选不小于3μm且不大于50μm。When the deposited film or sintered film of the negative electrode active material is composed of Si only, the preferred thickness is not less than 1 μm and not more than 20 μm. When the film is thinner than 1 μm, the volume of the current collector relative to the battery is large, thereby making it difficult to produce a battery with a large capacity. On the other hand, if the film is thicker than 20 [mu]m, the stress due to the expansion of the active material will act significantly on the entire current collector or negative electrode, thereby wrinkling the electrode or causing the electrode to eventually be destroyed. Therefore, a thickness greater than 20 μm is not suitable. When the deposited film or sintered film of the negative electrode active material is composed of Si alloy or Si compound, the thickness of the film is preferably not less than 3 μm and not more than 50 μm for the same reason as described above.
以上所提及的各膜厚度都是指插入锂之前的厚度,与已放电状态(放电至放电终止电压时的电池状态)下的膜厚度几乎相等。Each film thickness mentioned above refers to the thickness before lithium is inserted, and is almost equal to the film thickness in the discharged state (battery state when discharged to the end-of-discharge voltage).
含有负极活性材料的电极混合物层厚度优选不小于10μm且不大于100μm。如果电极混合物层厚于100μm,非水电解质难以穿透到集电器附近,这样负极活性材料就不能被充分利用。同时,当它薄于10μm时,相对于电极的集电器体积太大。其结果是,电池容量变差,而这是不希望的。The thickness of the electrode mixture layer containing the negative electrode active material is preferably not less than 10 μm and not more than 100 μm. If the electrode mixture layer is thicker than 100 μm, it is difficult for the non-aqueous electrolyte to penetrate to the vicinity of the current collector, so that the negative active material cannot be fully utilized. Meanwhile, when it is thinner than 10 μm, the volume of the current collector relative to the electrode is too large. As a result, battery capacity deteriorates, which is not desirable.
非水电解质包括非水溶剂及溶于该非水溶剂的作为主支持电解质的六氟磷酸锂。只要将非水溶剂用作非水电解质二次电池的电解质,任何非水溶剂都可以使用没有特别限定。通常使用的实例有环状碳酸酯和链状碳酸酯的溶剂混合物,该环状碳酸酯如碳酸亚乙酯或碳酸异丙烯酯,该链状碳酸酯如碳酸甲酯、碳酸乙酯或碳酸甲乙酯。此外,还可以将γ-丁内酯和二甲氧基乙烷等混合成非水溶剂。六氟磷酸锂的浓度理想地不低于0.5mol/L且不高于2mol/L。与使用其它锂盐相比,使用六氟磷酸锂作为主支持电解质的非水电解质可提供良好的电池特性。此外,除了六氟磷酸锂,还可以加入少量的其它锂盐,例如,四氟硼酸锂或亚氨基锂盐。The nonaqueous electrolyte includes a nonaqueous solvent and lithium hexafluorophosphate as a main supporting electrolyte dissolved in the nonaqueous solvent. Any nonaqueous solvent can be used without particular limitation as long as it is used as the electrolyte of the nonaqueous electrolyte secondary battery. Commonly used examples are solvent mixtures of cyclic carbonates such as ethylene carbonate or propylene carbonate and chain carbonates such as methyl carbonate, ethyl carbonate or methyl carbonate. ethyl ester. In addition, γ-butyrolactone, dimethoxyethane, etc. can also be mixed into a non-aqueous solvent. The concentration of lithium hexafluorophosphate is desirably not lower than 0.5 mol/L and not higher than 2 mol/L. The non-aqueous electrolyte using lithium hexafluorophosphate as the main supporting electrolyte can provide good battery characteristics compared to using other lithium salts. Furthermore, in addition to lithium hexafluorophosphate, small amounts of other lithium salts, for example, lithium tetrafluoroborate or lithium imide salts, can also be added.
非水电解质的总酸含量不低于50ppm且不高于200ppm。如上所述,放电期间存在HF时负极会引起Si的溶解反应。在本发明中,通过控制酸含量及负极电势,负极活性材料的部分表面可以调整使充电/放电反应容易进行。The total acid content of the nonaqueous electrolyte is not less than 50 ppm and not more than 200 ppm. As mentioned above, the presence of HF during discharge can cause a dissolution reaction of Si at the negative electrode. In the present invention, by controlling the acid content and the potential of the negative electrode, part of the surface of the negative electrode active material can be adjusted to facilitate the charging/discharging reaction.
基于Si的负极活性材料的最外层表面通常覆盖有SiO2。由于该SiO2在电化学上对于Li不活泼且不导电,因此它会干扰充电/放电反应。因此,通过溶解SiO2层及部分附近的Si(在此Si指的是Si元素、Si合金中的Si相或SiOx(0<x<2)相)可增加负极活性材料的反应面积,可以促进电化学反应。如果非水电解质的酸含量低于50ppm,SiO2层不能充分溶解,活性材料表面破坏得不充分,这样就不会有效。另一方面,如果酸含量高于200ppm,则负极活性材料Si会过度溶解,这样也不合适。The outermost surface of the Si-based negative active material is usually covered with SiO 2 . Since this SiO2 is electrochemically inactive for Li and does not conduct electricity, it interferes with the charge/discharge reaction. Therefore, by dissolving the SiO2 layer and some nearby Si (Si here refers to the Si phase or SiOx (0<x<2) phase in the Si element, Si alloy) can increase the reaction area of the negative electrode active material, which can Promote electrochemical reactions. If the acid content of the non-aqueous electrolyte is less than 50 ppm, the SiO2 layer cannot be sufficiently dissolved, and the surface of the active material is not sufficiently damaged, so that it will not be effective. On the other hand, if the acid content is higher than 200 ppm, Si, the negative electrode active material, is excessively dissolved, which is also unsuitable.
非水电解质所含的主酸为氢氟酸,但只要总酸含量在上述范围之内也可含有其它酸。通过降低非水电解质初始(生产时)所含的水含量,可以降低非水电解质的酸含量。此外,通过降低正极、负极、隔离膜及其它电池组件中的水含量也可有效降低酸含量。The main acid contained in the non-aqueous electrolyte is hydrofluoric acid, but other acids may be contained as long as the total acid content is within the above range. The acid content of the non-aqueous electrolyte can be reduced by reducing the water content initially (at the time of production) contained in the non-aqueous electrolyte. In addition, the acid content can also be effectively reduced by reducing the water content in the positive electrode, negative electrode, separator, and other battery components.
此外,非水电解质所含的双[1,2-草酸(2-)-O,O’]硼酸根(此后称作BOB)离子优选不高于5重量%。BOB离子为一种具有以下结构式的阴离子,能对电解质中所含的酸起中和作用。因此,BOB离子可明显削弱电解质中的活性酸,以此来避免Si的过度溶解反应及溶解的Si的沉淀反应。In addition, the nonaqueous electrolyte preferably contains bis[1,2-oxalate(2-)-O,O']borate (hereinafter referred to as BOB) ions not higher than 5% by weight. The BOB ion is an anion having the following structural formula and can neutralize the acid contained in the electrolyte. Therefore, BOB ions can significantly weaken the active acid in the electrolyte, thereby avoiding the excessive dissolution reaction of Si and the precipitation reaction of dissolved Si.
在本发明中,在电池放电终止电压时,负极电势相对于Li/Li+为0.6~1.5V。如果放电在高于此范围的电势下结束,即使上述条件得到满足也有可能发生Si溶解。在电池放电终止电压时,负极电势相对于Li/Li+特别优选为0.6~0.9V。在此使用的“放电终止电压”指可安全放电的最低放电电压。在本发明中,放电终止电压设定的范围为不低于1.5V且不高于3.0V,优选的范围为2.0V~2.5V。此外,即使至少在该电压范围内,还应优选在电池完全放电至充电/放电循环结束后,既存在可逆的Li(能起电化学作用的Li)也存在不可逆的Li(由于副反应等的原因没有电势的Li,如Li的氧化物)。在此情况下,如果发生过度放电,可逆的Li可以放电,因此可以保证电池的安全。对于可逆Li的含量,少量就会有效果,但理想地不低于相对于Li/Li+为0~3.0V范围内的放电容量(总放电容量)的3%且不高于30%。如果可逆Li的含量低于3%,Li在过度放电时容易耗尽,因此难以保证安全。另一方面,如果含量超过30%,用于电池工作电压范围的Li的容量小,因此难以获得高容量。In the present invention, the potential of the negative electrode relative to Li/Li + is 0.6-1.5V at the end-of-discharge voltage of the battery. If the discharge ends at a potential higher than this range, Si dissolution may occur even if the above conditions are satisfied. The negative electrode potential is particularly preferably 0.6 to 0.9 V with respect to Li/Li + at the end-of-discharge voltage of the battery. As used herein, "discharge cut-off voltage" refers to the lowest discharge voltage that can be safely discharged. In the present invention, the range of the end-of-discharge voltage is not lower than 1.5V and not higher than 3.0V, and the preferred range is 2.0V-2.5V. Furthermore, even at least in this voltage range, it should be preferred that after the battery is fully discharged to the end of the charge/discharge cycle, both reversible Li (Li electrochemically active) and irreversible Li (Li due to side reactions etc. The reason is Li without potential, such as Li oxide). In this case, the reversible Li can be discharged if over-discharge occurs, thus ensuring the safety of the battery. As for the reversible Li content, a small amount is effective, but ideally not less than 3% and not more than 30% of the discharge capacity (total discharge capacity) in the range of 0 to 3.0 V vs. Li/Li + . If the content of reversible Li is less than 3%, Li is easily depleted during excessive discharge, so it is difficult to ensure safety. On the other hand, if the content exceeds 30%, the capacity of Li for the battery operating voltage range is small, so it is difficult to obtain a high capacity.
此外,对负极放电电势进行这样控制,可对抑制Si溶解产生明显的效果,尤其是在使用特别是薄膜形式Si的氧化物时。原因大概如下。首先,Si的氧化物特别具有一个SiO2层。其次,以薄膜形式的Si的氧化物的反应面积小,因此每单位反应面积具有比微粒状的Si的氧化物明显高的容量,因此,更容易引起副反应。Furthermore, such control of the negative electrode discharge potential can have a significant effect on inhibiting Si dissolution, especially when using oxides of Si, especially in thin film form. The reasons are probably as follows. Firstly, the oxide of Si has in particular a SiO2 layer. Second, Si oxide in the form of a thin film has a small reaction area and therefore has a significantly higher capacity per unit reaction area than particulate Si oxide, and thus is more likely to cause side reactions.
为了使负极放电终止电势在上述范围之内且提供高的容量,优选加入Li以提供适当的负极不可逆容量。加入Li的方法包括一种在负极表面贴上Li金属箔的方法和一种通过气相淀积等方法在负极表面形成Li薄膜的方法。加入到表面的Li的量可以依照负极自身的不可逆容量酌情考虑。In order to make the end-of-discharge potential of the negative electrode within the above range and provide a high capacity, it is preferable to add Li to provide an appropriate irreversible capacity of the negative electrode. The method of adding Li includes a method of sticking Li metal foil on the surface of the negative electrode and a method of forming a Li thin film on the surface of the negative electrode by vapor deposition and other methods. The amount of Li added to the surface can be considered as appropriate according to the irreversible capacity of the negative electrode itself.
当本发明的负极包括金属箔制成的集电器及集电器每一侧所带的负极混合物层时,集电器理想地为铜箔或铜合金箔。铜合金箔优选具有90重量%或更高的铜含量。就改善集电器的强度和柔性而言,含有诸如P、Ag或Cr元素的铜箔或铜合金箔是有效的。When the negative electrode of the present invention includes a current collector made of metal foil and a negative electrode mixture layer on each side of the current collector, the current collector is desirably a copper foil or a copper alloy foil. The copper alloy foil preferably has a copper content of 90% by weight or higher. Copper foil or copper alloy foil containing an element such as P, Ag or Cr is effective in terms of improving the strength and flexibility of the current collector.
集电器的厚度优选不小于6μm且不大于40μm。如果集电器薄于6μm会难以处理。此外,集电器也不可能具有要求的强度,从而会因电极混合物层膨胀和收缩而破裂或起皱。另一方面,如果集电器厚于40μm,则集电器与电池的体积比大,因此依据电池的种类不利于容量。此外,如果集电器厚也会难以处理,如难以弯曲。The thickness of the current collector is preferably not less than 6 μm and not more than 40 μm. It is difficult to handle if the current collector is thinner than 6 μm. In addition, it is impossible for the current collector to have the required strength to crack or wrinkle due to the expansion and contraction of the electrode mixture layer. On the other hand, if the current collector is thicker than 40 μm, the volume ratio of the current collector to the battery is large, thus detrimental to capacity depending on the kind of battery. In addition, if the current collector is thick, it is also difficult to handle, such as difficult to bend.
本发明的非水电解质二次电池包括上述负极、能电化学地吸收和解吸Li的正极和非水电解质。The nonaqueous electrolyte secondary battery of the present invention includes the above-mentioned negative electrode, a positive electrode capable of electrochemically absorbing and desorbing Li, and a nonaqueous electrolyte.
正极可以是非水电解质二次电池中用作正极的任何电极,没有特定的限制。正极可以用常规方法生产。例如,可以在液相中混合正极活性材料、诸如炭黑的导电剂和诸如聚偏二氟乙烯的粘结剂形成浆剂,将此浆剂涂于如用Al制造的正极集电器,对其进行干燥、卷绕,由此可获得正极。The positive electrode may be any electrode used as a positive electrode in a nonaqueous electrolyte secondary battery without particular limitation. The positive electrode can be produced by conventional methods. For example, a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride can be mixed in a liquid phase to form a slurry, and this slurry is applied to a positive electrode current collector such as made of Al, and its Drying and winding are performed to obtain a positive electrode.
正极活性材料可以是非水电解质二次电池中用作正极活性材料的任何材料,没有特定的限制。然而,优选含锂的过渡金属化合物。含锂的过渡金属化合物的示例包括但不限于LiCoO2、LiNiO2、LiMn2O4和LiMnO2。其过渡金属元素被其它元素取代的这类化合物也可优选使用。这类示例包括LiCo1-xMgxO2、LiNi1-yCoyO2、LiNi1-y-zCoyMnzO2,其中0<x<1,0<y<1,z为整数。The positive electrode active material may be any material used as a positive electrode active material in a non-aqueous electrolyte secondary battery without particular limitation. However, lithium-containing transition metal compounds are preferred. Examples of lithium-containing transition metal compounds include, but are not limited to, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 . Such compounds in which transition metal elements are substituted by other elements can also be preferably used. Such examples include LiCo 1-x Mg x O 2 , LiNi 1-y Co y O 2 , LiNi 1-yz Co y Mn z O 2 , where 0<x<1, 0<y<1, and z is an integer.
为了防止正极和负极间内部短路,在两个电极之间提供了一个隔离膜。隔离膜材料可以是任何材料,只要该材料可以使非水电解质合理通过,并且可以使正极和负极之间避免接触。聚乙烯、聚丙烯等制造的微孔膜常用于非水电解质二次电池,其厚度一般不小于10μm且不大于30μm。In order to prevent internal short circuit between positive and negative electrodes, a separator is provided between the two electrodes. The separator material can be any material, as long as the material can pass the non-aqueous electrolyte reasonably, and can avoid contact between the positive electrode and the negative electrode. Microporous membranes made of polyethylene, polypropylene, etc. are often used in non-aqueous electrolyte secondary batteries, and their thickness is generally not less than 10 μm and not more than 30 μm.
本发明适用于各种形状的非水电解质二次电池,如圆柱状、扁平状、硬币状和棱柱状等,对电池的形状没有特别的限制。本发明适用于各种封装形式的电池,包括诸如电极和电解质等发电组件封装于金属电池盒或层合薄膜盒中的电池,对电池的封装形式没有特别限制。The present invention is applicable to non-aqueous electrolyte secondary batteries of various shapes, such as cylinder, flat, coin and prism, and there is no special limitation on the shape of the battery. The present invention is applicable to batteries in various packaging forms, including batteries in which power generation components such as electrodes and electrolytes are packaged in metal battery boxes or laminated film boxes, and the packaging form of the batteries is not particularly limited.
此后通过实施例和比较例的方式对本发明进行更详细的描述。然而,以下实施例仅为对本发明优选方式的说明,不应理解为对本发明的任何限制。Hereinafter, the present invention will be described in more detail by way of Examples and Comparative Examples. However, the following examples are only illustrations of preferred modes of the present invention, and should not be construed as any limitation to the present invention.
具体实施方式 Detailed ways
实施例1Example 1
在本实施例中,以以下方式生产出负极和圆柱状电池,并对其循环寿命和放电容量进行评价。In this example, negative electrodes and cylindrical batteries were produced in the following manner, and their cycle life and discharge capacity were evaluated.
(1)负极的生产(1) Production of negative electrodes
负极(i)Negative pole (i)
将其中放有Si金属(纯度99.999%,Furuuchi Chemical Corporation,锭)的石墨坩埚和电子枪放在气相淀积装置中。将用作集电器片材的电解铜箔(厚度20μm,可从Furukawa Circuit Foil Co.,Ltd.得到)从辊上以恒定的速度(5cm/min)送入到气相淀积装置,以便使Si沉积在铜箔的表面。沉积条件设定为加速电压为-8kV、电流为150mA。进行以下气相淀积时装置中的真空度设定为3x10-5Torr,除非另有规定。A graphite crucible and an electron gun in which Si metal (purity 99.999%, Furuuchi Chemical Corporation, ingot) were placed were placed in a vapor deposition apparatus. An electrolytic copper foil (20 μm thick, available from Furukawa Circuit Foil Co., Ltd.) used as a current collector sheet was fed from a roll to a vapor deposition apparatus at a constant speed (5 cm/min) so that Si deposited on the copper foil surface. The deposition conditions were set at an accelerating voltage of -8 kV and a current of 150 mA. The vacuum in the apparatus was set to 3x10 -5 Torr when the following vapor deposition was performed, unless otherwise specified.
完成集电器片材一侧的沉积后,以同样的方式进行另一侧(未沉积侧)的气相淀积,以便在每侧都形成活性材料薄膜。这些薄膜经X射线衍射分析,发现2θ=15~40°时有一个被认为是无定形Si引起的宽峰。此结果表明活性材料Si是无定形的。负极的总厚度约为30~36μm,集电器每一侧的薄膜厚度约为5μm。After completion of deposition on one side of the current collector sheet, vapor deposition on the other side (non-deposited side) was performed in the same manner to form an active material film on each side. These films were analyzed by X-ray diffraction, and it was found that there was a broad peak at 2θ=15-40° which was considered to be caused by amorphous Si. This result indicates that the active material Si is amorphous. The total thickness of the negative electrode is about 30-36 μm, and the film thickness on each side of the current collector is about 5 μm.
将负极片材再次送入到气相淀积装置,通过电阻加热方法从目标金属Li(可从Honjo Chemical Corporation得到)将Li沉积在负极的两侧。通过改变从辊将负极片材送入到气相淀积装置的输送速度可以调节沉积的量。这样就可将指定量的Li加入到负极片材的表面。例如,在后面所述的电池1所使用的负极(i)中,负极片材的输送速度为5cm/min,沉积的Li的厚度约为5μm。通过改变Li的加入量,可以补充负极的不可逆容量以在放电终止时对负极电势进行控制。同样地,下面所述的负极(ii)、负极(iii)、和负极(iv)也补充有Li。The negative electrode sheet was sent again to the vapor deposition apparatus, and Li was deposited on both sides of the negative electrode from target metal Li (available from Honjo Chemical Corporation) by a resistance heating method. The amount of deposition can be adjusted by changing the conveying speed of the negative electrode sheet from the rollers to the vapor deposition device. In this way, a specified amount of Li can be added to the surface of the negative electrode sheet. For example, in the negative electrode (i) used in battery 1 described later, the conveying speed of the negative electrode sheet was 5 cm/min, and the thickness of deposited Li was about 5 μm. By changing the amount of Li added, the irreversible capacity of the anode can be replenished to control the anode potential at the end of discharge. Likewise, negative electrode (ii), negative electrode (iii), and negative electrode (iv) described below were also supplemented with Li.
形成Si薄膜后,将负极(i)在110℃下真空干燥15小时,然后在露点为-60℃或更低的干燥气氛中室温保存。另外,在补充Li后,将负极(i)也在露点为-60℃或更低的干燥气氛中室温保存以除去并控制电极中的水含量。After forming the Si thin film, the negative electrode (i) was vacuum-dried at 110°C for 15 hours, and then stored at room temperature in a dry atmosphere having a dew point of -60°C or lower. In addition, after replenishing Li, the negative electrode (i) was also stored at room temperature in a dry atmosphere with a dew point of −60° C. or lower to remove and control the water content in the electrode.
负极(ii)Negative pole (ii)
对Ti金属(纯度99.9%,100~150μm,可从Japan Pure ChemicalCo.,Ltd.得到)和Si金属(纯度99.99%,100~150μm,可从KantoChemical Co.,Inc.得到)进行称重,然后以Ti:Si=9.2:90.8的重量比进行共混。Ti metal (purity 99.9%, 100-150 μm, available from Japan Pure Chemical Co., Ltd.) and Si metal (purity 99.99%, 100-150 μm, available from Kanto Chemical Co., Inc.) were weighed, and then Blending was performed at a weight ratio of Ti:Si=9.2:90.8.
将3.5kg该粉末混合物放入振动磨(FV-20,可从Chuo KakohkiIndustries,Ltd.得到)中,将不锈钢金属球(直径2cm)放入其中,使金属球占磨内部体积的70%。容器抽空后,向其注入Ar(纯度99.999%,可从Nippon Sanso Corporation得到)提供1大气压。磨的频率设定为720Hz。在此条件下,进行80小时的机械法制造合金。3.5 kg of this powder mixture was put into a vibration mill (FV-20, available from Chuo Kakohki Industries, Ltd.), and stainless steel metal balls (2 cm in diameter) were placed therein so that the metal balls accounted for 70% of the inner volume of the mill. After the vessel was evacuated, it was filled with Ar (99.999% pure, available from Nippon Sanso Corporation) to provide 1 atmosphere of pressure. The frequency of the mill was set at 720 Hz. Under these conditions, the alloy was produced mechanically for 80 hours.
将从上述操作中得到的Ti-Si合金收集起来,测量其粒径分布。结果发现其具有0.5μm~80μm的宽粒径分布。用筛子(10μm以下)对该Ti-Si合金进行筛分,得到最大粒径为8μm、平均粒径为5μm的合金材料(以下称为合金“a”)。The Ti-Si alloys obtained from the above operations were collected and their particle size distributions were measured. As a result, it was found to have a wide particle size distribution of 0.5 μm to 80 μm. This Ti—Si alloy was sieved with a sieve (10 μm or less) to obtain an alloy material having a maximum particle size of 8 μm and an average particle size of 5 μm (hereinafter referred to as alloy “a”).
用ICP光谱仪测定该合金“a”的不纯度,发现Fe含量为500ppm,Ni为30ppm,Cr为60ppm。其它过渡金属元素的含量都低于测量的下限。这些元素的总含量为590ppm。The impurity of this alloy "a" was measured by an ICP spectrometer, and it was found that the content of Fe was 500 ppm, that of Ni was 30 ppm, and that of Cr was 60 ppm. The contents of other transition metal elements are all lower than the lower limit of measurement. The total content of these elements was 590 ppm.
合金“a”经X射线衍射分析,结果表明该合金为微晶状。同时,通过舒勒方程从最强峰的半宽度计算出晶粒(微晶)的大小,发现晶粒大小为18nm。进一步,从X射线衍射花样的峰及通过电子透射显微镜的观察,推测合金“a”具有Si单相(A相)和TiSi2相(B相)。假定合金“a”只有这两个相,对Si单相和TiSi2相的比例进行计算,发现Si:TiSi2=80:20(重量比)。Alloy "a" was analyzed by X-ray diffraction, which showed that the alloy was microcrystalline. Meanwhile, the size of crystal grains (crystallites) was calculated from the half-width of the strongest peak by the Schuler equation, and it was found that the crystal grain size was 18 nm. Further, from the peaks of the X-ray diffraction pattern and observation by a transmission electron microscope, it is estimated that the alloy "a" has a Si single phase (A phase) and a TiSi 2 phase (B phase). Assuming that the alloy "a" has only these two phases, the ratio of the Si single phase and the TiSi 2 phase is calculated, and it is found that Si:TiSi 2 =80:20 (weight ratio).
用电子透射显微镜(TEM)对合金“a”进行观察。发现合金“a”有一个无定形区域,包括大小约为10nm的晶粒(微晶)的Si单相、以及包括大小约为15~20nm的晶粒(微晶)的TiSi2相。Alloy "a" was observed with a transmission electron microscope (TEM). Alloy "a" was found to have an amorphous region, a Si single phase comprising grains (crystallites) of about 10 nm in size, and a TiSi 2 phase comprising grains (crystallites) of about 15-20 nm in size.
合金“a”与石墨以25:75的重量比进行共混。再将100重量份的该混合物与2重量份的乙炔黑和8重量份的聚丙烯酸进行混合,其中乙炔黑(商标名DENKA BLACK,可从Denki Kagaku Kogyo K.K.得到)用作导电剂,聚丙烯酸(分子量约为150000,可从Wako PureChemical Industries,Ltd.得到)用作粘接剂。一边加入纯水一边对该混合物进行充分捏和,得到负极混合物浆剂。使用的石墨为平均粒径为20μm的片状石墨(KS-44),可从Timcal Ltd.得到。Alloy "a" was blended with graphite in a weight ratio of 25:75. Then 100 parts by weight of this mixture was mixed with 2 parts by weight of acetylene black and 8 parts by weight of polyacrylic acid, wherein acetylene black (trade name DENKA BLACK, available from Denki Kagaku Kogyo K.K.) was used as a conductive agent, and polyacrylic acid ( Molecular weight of about 150000, available from Wako Pure Chemical Industries, Ltd.) was used as a binder. The mixture was sufficiently kneaded while adding pure water to obtain a negative electrode mixture slurry. The graphite used was flake graphite (KS-44) with an average particle size of 20 μm, available from Timcal Ltd.
将该负极混合物浆剂涂于集电器的两侧,对其进行干燥、卷绕,其中所述集电器由10μm厚的电解铜箔(可从Furukawa Circuit FoilCo.,Ltd.得到)制成。结果得到了负极片材,该片材包括集电器及其每个面所带的负极混合物层。负极混合物层的密度为1.3g/cm3,负极混合物层的孔隙率为40%。将负极片材在190℃下真空干燥12小时,然后在露点为-60℃或更低的干燥气氛中保存。This negative electrode mixture slurry was applied to both sides of a current collector made of a 10 μm thick electrolytic copper foil (available from Furukawa Circuit Foil Co., Ltd.), dried, and wound. The result was a negative electrode sheet comprising a current collector and a negative electrode mixture layer carried on each side thereof. The density of the negative electrode mixture layer was 1.3 g/cm 3 , and the porosity of the negative electrode mixture layer was 40%. The negative electrode sheet was vacuum-dried at 190°C for 12 hours, and then stored in a dry atmosphere with a dew point of -60°C or lower.
接下来,将指定尺寸的Li金属箔(厚度为50μm,可从HonjoChemical Corporation得到)贴在负极片材的表面,以适量的Li来补充不可逆容量。例如,在以后所述的电池7所使用的负极(ii)中,所贴的Li覆盖了大约1/4的负极区域。Next, a Li metal foil of a specified size (50 μm thick, available from Honjo Chemical Corporation) was pasted on the surface of the negative electrode sheet to supplement the irreversible capacity with an appropriate amount of Li. For example, in the negative electrode (ii) used in the battery 7 described later, the attached Li covers about 1/4 of the negative electrode area.
在补充Li后,将负极片材同样地在露点为-60℃或更低的干燥气氛中保存,以除去并控制电极中的水含量。After Li supplementation, the negative electrode sheet was likewise stored in a dry atmosphere with a dew point of -60°C or lower to remove and control the water content in the electrode.
负极(iii)Negative pole (iii)
使用SiO(纯度99.9%,平均粒径20μm,最大粒径45μm,可从Sumitomo Titanium Corporation得到)作为负极活性材料。将SiO与石墨和乙炔黑以SiO:石墨:乙炔黑=45:52:3(重量比)的比例进行混合,以补偿SiO的低导电性。将该混合物与5重量份的聚偏二氟乙烯(可从Kureha Chemical Industry Co.,Ltd.得到)混合,然后与N-甲基-2-吡咯烷酮进行充分捏和,得到负极混合物浆剂。使用的石墨为平均粒径为3μm的石墨(KS4),可从Timcal Ltd.得到。SiO (purity 99.9%,
以与负极(ii)中相同的方法,将该负极混合物浆剂涂于集电器的两侧,对其进行干燥、卷绕,其中所述集电器由10μm厚的电解铜箔(可从Furukawa Circuit Foil Co.,Ltd.得到)制成。结果得到了负极片材,该片材包括集电器及其每侧所带的负极混合物层。负极混合物层的密度为1.0g/cm3,负极混合物层的孔隙率为55%。In the same method as in the negative electrode (ii), the negative electrode mixture slurry was coated on both sides of the current collector, dried and wound, wherein the current collector was made of 10 μm thick electrolytic copper foil (available from Furukawa Circuit Foil Co., Ltd. obtained). The result was a negative electrode sheet comprising the current collector and the negative electrode mixture layer carried on each side thereof. The density of the negative electrode mixture layer was 1.0 g/cm 3 , and the porosity of the negative electrode mixture layer was 55%.
将负极片材在80℃下真空干燥24小时,然后在露点为-60℃或更低的干燥气氛中保存。The negative electrode sheet was vacuum-dried at 80°C for 24 hours, and then stored in a dry atmosphere with a dew point of -60°C or lower.
以与负极(ii)中相同的方法,将指定尺寸的Li金属箔(厚度为50μm,可从Honjo Chemical Corporation得到)贴在该负极上,以补充适量的Li。例如,在以后所述的电池13所使用的负极(iii)中,所贴的Li覆盖了大约1/2的负极区域。In the same way as in the negative electrode (ii), a Li metal foil (50 μm thick, available from Honjo Chemical Corporation) of a specified size was pasted on this negative electrode to supplement an appropriate amount of Li. For example, in the negative electrode (iii) used in the
将补充了Li的负极片材在露点为-60℃或更低的干燥气氛中室温保存,以除去并控制电极中的水含量。The Li-supplemented negative electrode sheet was stored at room temperature in a dry atmosphere with a dew point of -60°C or lower to remove and control the water content in the electrode.
负极(iv)Negative pole (iv)
以与负极(i)中相同的方法,将包括电解铜箔的集电器片材送入到气相淀积装置中,该淀积装置配有其中放有Si金属的石墨坩埚及电子枪,Si沉积在片材的表面。然而,在本实施例中,向淀积装置中的集电器片材表面供给纯度为99.7%的氧气(得自Nippon SansoCorporation)。以80sccm的流速从氧气瓶中通过质量流量控制器及气体管线提供氧气,气体管线在进入气相淀积装置的一头配有喷嘴。沉积条件设定为加速电压为-8kV、电流为150mA、真空度为1.5x10-3Torr。In the same method as in negative electrode (i), the current collector sheet comprising electrolytic copper foil is sent into a vapor deposition device equipped with a graphite crucible and an electron gun in which Si metal is placed, and Si is deposited on the surface of the sheet. However, in this example, oxygen gas (available from Nippon Sanso Corporation) with a purity of 99.7% was supplied to the surface of the current collector sheet in the deposition apparatus. Oxygen is supplied from an oxygen cylinder at a flow rate of 80 sccm through a mass flow controller and a gas pipeline, and the gas pipeline is equipped with a nozzle at one end entering the vapor deposition device. The deposition conditions were set as acceleration voltage of -8kV, current of 150mA, and vacuum degree of 1.5x10 -3 Torr.
这样,活性材料薄膜形成在集电器片材的每一侧。负极的总厚度即集电器片材及其两侧上的薄膜的总厚度约为42~45μm,每侧薄膜厚度约为10~12μm。薄膜中的氧含量通过燃烧法来测定,发现为SiO0.4。此外,薄膜还进行X射线衍射分析。结果观察到一个被认为是集电器片材中Cu引起的结晶峰,薄膜在2θ=15~40°时有一个宽峰。此结果表明活性材料是无定形的。In this way, a thin film of active material is formed on each side of the current collector sheet. The total thickness of the negative electrode, that is, the total thickness of the current collector sheet and the films on both sides is about 42-45 μm, and the thickness of the film on each side is about 10-12 μm. The oxygen content in the film was measured by a combustion method and found to be SiO 0.4 . In addition, the films were subjected to X-ray diffraction analysis. As a result, a crystallization peak believed to be caused by Cu in the current collector sheet was observed, and the film had a broad peak at 2θ = 15-40°. This result indicates that the active material is amorphous.
将这样生产的负极片材再次送入到气相淀积装置中,通过对目标金属Li进行加热将Li沉积在负极的两侧上。例如,将负极的输送速度设为3cm/min时,沉积在每一侧的Li厚度约为8μm。The negative electrode sheet thus produced was fed again into a vapor deposition apparatus, and Li was deposited on both sides of the negative electrode by heating the target metal Li. For example, when the conveying speed of the negative electrode is set to 3 cm/min, the thickness of Li deposited on each side is about 8 μm.
(2)正极的制备(2) Preparation of positive electrode
将Li2CO3和CoCO3以预先确定的摩尔比共混,该混合物在950℃下加热合成作为正极活性材料的LiCoO2。该正极活性材料筛分到45μm或以下。将100重量份的该正极活性材料与5重量份用作导电剂的乙炔黑、4重量份用作粘接剂的聚偏二氟乙烯和适量的用作分散介质的N-甲基-2-吡咯烷酮进行混合,对该混合物进行充分捏和形成正极混合物浆剂。Li 2 CO 3 and CoCO 3 were blended at a predetermined molar ratio, and the mixture was heated at 950° C. to synthesize LiCoO 2 as a cathode active material. The cathode active material is sieved to 45 μm or less. 100 parts by weight of this positive electrode active material and 5 parts by weight of acetylene black used as a conductive agent, 4 parts by weight of polyvinylidene fluoride used as a binder and an appropriate amount of N-methyl-2- as a dispersion medium The pyrrolidone is mixed, and the mixture is fully kneaded to form a positive electrode mixture slurry.
将该正极混合物浆剂涂于集电器的两侧,对其进行干燥、卷绕,其中所述集电器包括15μm厚的铝箔(可从Showa Denko K.K.得到)。结果得到了正极片材,该片材包括集电器及其每侧所带的正极混合物层。The positive electrode mixture slurry was applied to both sides of a current collector comprising a 15 μm thick aluminum foil (available from Showa Denko K.K.), dried, and wound. The result was a positive electrode sheet comprising the current collector and the positive electrode mixture layer carried on each side thereof.
将该正极片材在露点为-60℃或更低温度下的干燥气氛中室温保存,在紧临以下所述的电池组装前,在80℃下真空干燥对电极进行脱水。The positive electrode sheet was stored at room temperature in a dry atmosphere having a dew point of -60°C or lower, and the electrode was dehydrated by vacuum drying at 80°C immediately before battery assembly as described below.
(3)圆柱状电池的组装(3) Assembly of cylindrical battery
将正极片材和负极片材切割成预先确定的形状,以生产如图1所示的圆柱状锂离子二次电池。The positive electrode sheet and the negative electrode sheet were cut into predetermined shapes to produce a cylindrical lithium ion secondary battery as shown in FIG. 1 .
铝正极引线14的一端与正极11的集电器相连。镍负极引线15的一端与负极12的集电器相连。正极11、负极12、和对这两个电极进行绝缘的隔离膜13螺旋地缠绕制成电极体。隔离膜13为聚乙烯树脂制成的20μm厚的微孔膜,比正极和负极都要宽。电极体的外面完全被在缠绕侧末尾的隔离膜的末尾部分覆盖。该电极体在-60℃(露点)的干燥气氛中在60℃下真空干燥10小时,以蒸发掉电极体中的水含量。隔离膜13和其它电池组件应预先完全干燥,以便将电池中可能包含的水降至最低。One end of the aluminum
上绝缘环16和下绝缘环17分别固定在电极体的上面和下面,然后再将电极体放置在电池盒18中。随后,将非水电解质注入到电池盒中浸渍电极体。将正极引线14的另一端与和正极接线端20电通的导电组件21焊接,将导电组件21固定在电绝缘树脂制成的密封板19上。将负极引线15的另一端与电池盒18底边内侧焊接。最后,电池盒18的开口处用密封板19封闭。这样就完成了一只圆柱状锂离子二次电池。该电池的直径为18mm、高度为65mm,设计容量为2000mAh。The upper insulating
进一步,在本实施例中电极22,作为测量负极电势的参考电极,安装在电极体的中央。电极22包括Ni金属丝23(丝的直径为0.5mm),金属丝的外面被Li金属箔24(厚度为50μm)包裹。镍丝23穿过导电组件21和正极接线端20,通过覆盖在镍丝表面的绝缘膜25与导电组件21电绝缘。正极接线端20通过衬垫26与镍丝23绝缘。Further, in this embodiment, the
将六氟磷酸锂以1mol/L的浓度溶解在碳酸亚乙酯与碳酸二乙酯的体积比为1:1的非水溶剂混合物中,制备使用的非水电解质。对该非水电解质进行定量和定性分析测定其酸含量及酸的组份。结果发现,其主组份为HF,总含量为18ppm。Dissolve lithium hexafluorophosphate at a concentration of 1 mol/L in a non-aqueous solvent mixture with a volume ratio of ethylene carbonate and diethyl carbonate of 1:1 to prepare the non-aqueous electrolyte used. The non-aqueous electrolyte was quantitatively and qualitatively analyzed to determine its acid content and acid components. As a result, it was found that the main component was HF, and the total content was 18 ppm.
使用其中加入有指定量Li的负极(i)、负极(ii)、负极(iii)和负极(iv),相应地制成电池1~6、电池7~12、电池13~18和电池“a”~“f”。表1给出了加入到相应电池的负极中的Li含量。Using the negative electrode (i), negative electrode (ii), negative electrode (iii) and negative electrode (iv) into which a specified amount of Li was added, Batteries 1 to 6, Batteries 7 to 12,
(4)电池评价(4) Battery evaluation
<i>放电容量<i>Discharge capacity
在温度设定为20℃的恒温炉中,这些电池中的每一个电池都以400mA(0.2C;1C为时速电流(hour-rate current))的恒定电流充电至电池电压达到4.05V,然后在4.05V的恒定电压下充电至电流值降到20mA(0.01C)。此后,每个电池都以0.2C的恒定电流放电至电池电压降到2.0V。表1给出了放电容量。Each of these batteries was charged at a constant current of 400mA (0.2C; 1C is the hour-rate current) until the battery voltage reached 4.05V in a constant temperature oven set at 20°C, and then charged at Charge at a constant voltage of 4.05V until the current value drops to 20mA (0.01C). Thereafter, each cell was discharged at a constant current of 0.2C until the cell voltage dropped to 2.0V. Table 1 shows the discharge capacity.
<ii>放电储存试验<ii>Discharge storage test
测得放电容量后,电池在温度设定为20℃的恒温炉中进行如下操作。首先,每只电池都以0.2C的恒定电流充电至电池电压达到4.05V,然后在4.05V的恒定电压下充电至电流值达到0.01C。接着,电池以0.2C的恒定电流放电至电池电压降到2.0V(放电终止电压)。1小时后,测得负极相对于电极22的电势。在以下各表中该电势表示为“存储期间负极电势”。然后,将每只电池都在85℃的恒温炉中储存3天。储存后,在与以上所述的相同条件下对其进行充电和放电,以获得放电容量。这样,可得到储存后的容量恢复率((储存后的放电容量)×100/(储存前的容量))(%)。After measuring the discharge capacity, the battery was operated as follows in a constant temperature furnace set at 20°C. First, each battery is charged at a constant current of 0.2C until the battery voltage reaches 4.05V, and then charged at a constant voltage of 4.05V until the current value reaches 0.01C. Next, the battery was discharged at a constant current of 0.2C until the battery voltage dropped to 2.0V (end-of-discharge voltage). After 1 hour, the potential of the negative electrode with respect to the
<iii>循环寿命<iii>cycle life
测得放电容量后,在温度设定为20℃的恒温炉中对电池反复进行如下充电和放电操作。首先,每只电池都以1C的恒定电流充电至电池电压达到4.05V,然后在4.05V的恒定电压下充电至电流值达到0.05C。接着,电池以1C的恒定电流放电至电池电压降到2.5V。反复进行这些操作。将第100次循环时的放电容量相对于第2次循环时的放电容量的百分比定义为容量保持率(%)。表1给出了结果。容量保持率越靠近100%,循环寿命越好。After the discharge capacity was measured, the battery was repeatedly charged and discharged in a constant temperature furnace set at 20°C. First, each battery is charged with a constant current of 1C until the battery voltage reaches 4.05V, and then charged at a constant voltage of 4.05V until the current value reaches 0.05C. Next, the battery is discharged at a constant current of 1C until the battery voltage drops to 2.5V. These operations are repeated. The percentage of the discharge capacity at the 100th cycle to the discharge capacity at the 2nd cycle was defined as the capacity retention (%). Table 1 presents the results. The closer the capacity retention rate is to 100%, the better the cycle life is.
[表1] [Table 1]
表1中比较电池19的制造方法与电池6的相同,除了其中使用了按以下方法制备的负极。将100重量份的石墨与6重量份的粘接剂(聚丙烯酸)的混合物和水混合成浆剂,将该浆剂涂于集电器上,进行干燥和卷绕,制成负极。The manufacturing method of
如表1所示,所有使用本实施例负极的电池都比比较电池19表现出更高的容量。然而,电池1、电池7、电池13、电池“a”和电池“f”只比比较电池19表现出稍高的容量,这表明它们并没有充分利用本发明负极的特性。进一步,电池18比比较电池19表现出稍低的容量,因为正极的锂由于负极的不可逆容量被消耗。对电池“f”也是同样的情况。此外,对于放电后的储藏特性,观察到电池6、电池12、电池18和电池“f”具有特别低的恢复率。对这些电池仔细检查后发现,非水电解质含有大量溶解于其中的Si并且在负极的表面形成了含Si的涂层膜。此外,对其它电池检查后发现,放电结束时负极电势(表1中储藏期间负极电势)越低,溶于非水电解质的Si越少并且溶解的量低于测量的下限,特别是当负极电势相对于Li/Li+为0.9V或更低时。As shown in Table 1, all the batteries using the negative electrode of this example showed higher capacity than the
在这些电池中,非水电解质的酸含量为63~91ppm。在使用负极(i)的电池1~6中,酸含量最低,为63~71ppm。在使用负极(ii)的电池7~12中,酸含量较高,为83~91ppm。原因大概如下。在负极(ii)中,使用聚丙烯酸作为粘接剂,聚丙烯酸在电极上形成了水合物。在190℃下干燥期间部分水合物不能蒸发,水合物中所含的水与非水电解质中的LiPF6发生反应形成氢氟酸。在负极(iii)中,酸含量为75~81ppm。表1给出了这些值。In these batteries, the acid content of the nonaqueous electrolyte is 63 to 91 ppm. In Batteries 1 to 6 using the negative electrode (i), the acid content was the lowest at 63 to 71 ppm. In Batteries 7 to 12 using the negative electrode (ii), the acid content was as high as 83 to 91 ppm. The reasons are probably as follows. In the negative electrode (ii), polyacrylic acid was used as a binder, and polyacrylic acid formed a hydrate on the electrode. Part of the hydrate cannot evaporate during drying at 190 °C, and the water contained in the hydrate reacts with LiPF6 in the nonaqueous electrolyte to form hydrofluoric acid. In the negative electrode (iii), the acid content is 75 to 81 ppm. Table 1 gives these values.
此外,对于100次循环后的容量保持率,电池6、电池12和电池18不如其它电池。这可能是因为随着充电/放电循环的增加,反复的放电会导致发生Si的溶解反应及溶解Si的沉淀反应,因此阻碍了充电/放电反应。In addition, Battery 6,
实施例2Example 2
在本实施例中,研究非水电解质的酸含量。使用电池9的负极,以与实施例1相同的方式生产圆柱状锂离子二次电池。更具体地说,如表2所示通过改变负极(ii)的干燥条件(190℃下真空干燥12小时)生产电池20~25。表2给出了测得的电解质酸含量及电池的特性。In this example, the acid content of the non-aqueous electrolyte was investigated. Using the negative electrode of Battery 9, a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1. More specifically,
[表2] [Table 2]
如表2清楚表明,即使当负极终止放电电势相对于Li/Li+为1.5V或更低时,如果非水电解质的酸含量大于200ppm,已放电状态下储藏后的恢复率和容量保持率都低,如电池20的情况。这可能是因为负极附近的大量氢氟酸趋于使反应式(1)的反应向右进行,由此促进了Si的溶解反应及与此相关的薄膜形成反应。As clearly shown in Table 2, even when the termination potential of the negative electrode is 1.5 V or lower relative to Li/Li + , if the acid content of the non-aqueous electrolyte is greater than 200 ppm, the recovery rate and capacity retention rate after storage in the discharged state are both low. Low, as in the case of
电池25在100次循环后表现出比电池22~24低的容量保持率。对电池25的非水电解质的Si含量进行测量时,发现其低于测量的下限。此外,观察负极活性材料表面时,发现表面非常平且光滑。另一方面,对于电池20~24,发现负极活性材料的表面有微小的凹凸,并且这些凹凸随着酸含量的增加而变大。特别是对于电池20~22,有深的凹陷。这表明局部地发生了大量的Si溶解。
电池25的负极活性材料表面经X射线光电光谱仪(XPS)测得有归结于SiO2的结合能。该结果表明,当酸含量少时,最外层表面的SiO2不能被溶解。进一步,由于负极活性材料的反应区域小,因此电化学反应不能顺利进行。可能由于此原因,电池25的循环特性(即:电化学反应重复进行后获得的特性)下降。The surface of the negative electrode active material of the
实施例3Example 3
在本实施例中,研究负极所含杂质的影响。本实施例中所使用的负极活性材料的制备方法与负极(ii)中的相同,除了机械法制造合金中所使用的球用S45C钢(Fe-0.45%C钢)制造,而不是用不锈钢,将操作时间增加至80小时、100小时或150小时。得到的合金具有0.5μm~80μm的宽粒径分布。用筛子(10μm以下)对它们进行筛分,得到最大粒径为8μm、平均粒径为5μm的合金材料。这样得到的合金粉末称为合金“b”、合金“c”和合金“d”。In this example, the influence of impurities contained in the negative electrode was studied. The preparation method of the negative electrode active material used in the present embodiment is the same as that in the negative electrode (ii), except that the balls used in the mechanical manufacturing alloy are made of S45C steel (Fe-0.45%C steel) instead of stainless steel, Increase the operating time to 80 hours, 100 hours or 150 hours. The obtained alloy has a wide particle size distribution of 0.5 μm to 80 μm. These were sieved with a sieve (10 μm or less) to obtain an alloy material having a maximum particle size of 8 μm and an average particle size of 5 μm. The alloy powders thus obtained are referred to as alloy "b", alloy "c" and alloy "d".
用ICP光谱仪测定这些合金“b”~“d”的杂质,发现除Fe以外的过渡金属元素低于测量的下限。Fe含量在合金“b”中为680ppm,在合金“c”中为980ppm,在合金“d”中为1320ppm。The impurities of these alloys "b" to "d" were measured by ICP spectrometer, and it was found that transition metal elements other than Fe were lower than the lower limit of measurement. The Fe content was 680 ppm in alloy "b", 980 ppm in alloy "c", and 1320 ppm in alloy "d".
合金“b”~“d”经X射线衍射分析,它们的XRD分布与合金“a”的类似。所有这些合金都为微晶状,并且通过舒勒方程从最强峰的半宽计算出晶粒(微晶)大小为11~18nm。推测合金“b”~“d”的粒子具有Si单相(A相)和TiSi2相(B相)。此外,用电子透射显微镜(TEM)对这些合金“b”~“d”进行观察,发现它们有一个无定形区域、包括大小约为10nm的晶粒(微晶)的Si单相、以及包括大小约为10~20nm的晶粒(微晶)的TiSi2相。Alloys "b" to "d" were analyzed by X-ray diffraction, and their XRD distributions were similar to those of alloy "a". All these alloys are microcrystalline, and the grain (crystallite) size is calculated from the half-width of the strongest peak by the Schuler equation to be 11-18 nm. The particles of alloys "b" to "d" are presumed to have Si single phase (A phase) and TiSi 2 phase (B phase). In addition, these alloys "b" to "d" were observed with a transmission electron microscope (TEM), and found that they had an amorphous region, a Si single phase including crystal grains (crystallites) with a size of about 10 nm, and a TiSi 2 phase of crystal grains (fine crystals) of about 10 to 20 nm.
使用这些合金,以与负极(ii)相同的方式,在集电器片材的每侧形成负极混合物层,并且将Li箔贴在负极混合物层的表面,以覆盖1/8的负极区域。Using these alloys, a negative electrode mixture layer was formed on each side of the current collector sheet in the same manner as the negative electrode (ii), and Li foil was pasted on the surface of the negative electrode mixture layer to cover 1/8 of the negative electrode area.
使用这些负极,以与电池9相同的方式生产圆柱状锂离子二次电池26~28,以与上述实施例相同的方式进行评价。表3给出了结果及从这些电池测得的酸含量。Using these negative electrodes, cylindrical lithium ion
[表3] [table 3]
这些结果表明,当杂质含量超过了1000ppm时,已放电状态下储藏后的恢复率和容量保持率都变低。These results indicate that when the impurity content exceeds 1000 ppm, both the recovery rate and the capacity retention rate after storage in the discharged state become low.
实施例4Example 4
电池29、30和31的生产方法分别与电池3、9和15的相同,除了所使用的非水电解质含有3重量%的二[1,2-草酸(2-)-O,O’]硼酸锂(此后称作LiBOB)。此外,电池32、33和34也以同样的方法生产,除了所使用的非水电解质含有5重量%的LiBOB。进一步,电池35、36和37也以同样的方法生产,除了所使用的非水电解质含有8重量%的LiBOB。这些电池以与上述实施例相同的方式进行评价。表4给出了结果及从这些电池测得的酸含量。Batteries 29, 30, and 31 were produced in the same manner as
[表4] [Table 4]
这些结果表明,非水电解质中加入浓度不高于5重量%的LiBOB可改善已放电状态下储藏后的恢复率及充电/放电循环后的容量保持率。这可能是因为LiBOB俘获了氢氟酸,抑制了其反应,由此抑制了Si的溶解,使电池特性改善。当LiBOB的加入量超过5重量%,充电/放电循环后的容量保持率趋于下降。这可能是因为过量的LiBOB提高了非水电解质的粘度,由此阻碍了锂离子的移动。这些结果表明,LiBOB量的上限优选为5重量%。These results indicate that the addition of LiBOB at a concentration of not higher than 5% by weight to the non-aqueous electrolyte can improve the recovery rate after storage in the discharged state and the capacity retention rate after charge/discharge cycles. This may be because LiBOB traps hydrofluoric acid and inhibits its reaction, thereby inhibiting the dissolution of Si and improving battery characteristics. When the added amount of LiBOB exceeds 5% by weight, the capacity retention ratio after charge/discharge cycles tends to decrease. This may be because excess LiBOB increases the viscosity of the non-aqueous electrolyte, thereby hindering the movement of lithium ions. These results indicate that the upper limit of the amount of LiBOB is preferably 5% by weight.
根据本发明的非水电解质二次电池的负极可以提供既具有高容量又具有良好充电/放电循环特性的非水电解质二次电池。本发明可应用于各种非水电解质二次电池。例如,本发明不但可应用于如实施例中的圆柱状电池,还可以应用于硬币状、棱柱状和扁平状的电池、电极体结构如卷曲状或层状的电池。根据本发明的非水电解质二次电池可用作移动通讯装置、便携式电子设备等的主电源。The negative electrode of the nonaqueous electrolyte secondary battery according to the present invention can provide a nonaqueous electrolyte secondary battery having both high capacity and good charge/discharge cycle characteristics. The present invention can be applied to various nonaqueous electrolyte secondary batteries. For example, the present invention is applicable not only to a cylindrical battery as in the embodiment, but also to coin-shaped, prismatic, and flat-shaped batteries, and batteries having an electrode body structure such as rolled or layered. The nonaqueous electrolyte secondary battery according to the present invention can be used as a main power source for mobile communication devices, portable electronic equipment, and the like.
尽管本发明已以目前的优选实施方案的形式予以描述,应明白这类公开内容不能被解释为某种限定。阅读完上述公开内容后,各种变体和修饰对于与本发明相关的领域的技术人员无疑是显而易见的。因此,所附的权利要求书应视为覆盖了落入本发明的精神实质和范围的所有的变体和改动。While this invention has been described in terms of presently preferred embodiments, it is to be understood that such disclosure is not to be construed as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art to which the invention pertains after reading the above disclosure. Accordingly, the appended claims should be considered to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP177246/2005 | 2005-06-17 | ||
JP2005177246 | 2005-06-17 | ||
JP074970/2006 | 2006-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1866586A CN1866586A (en) | 2006-11-22 |
CN100466340C true CN100466340C (en) | 2009-03-04 |
Family
ID=37425526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100937471A Active CN100466340C (en) | 2005-06-17 | 2006-06-16 | Non-aqueous electrolyte rechargeable battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100466340C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108432006A (en) * | 2015-12-22 | 2018-08-21 | 3M创新有限公司 | The anode material and its making and use method of lithium-ions battery |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5448295B2 (en) * | 2006-12-19 | 2014-03-19 | 三星エスディアイ株式会社 | Lithium secondary battery and manufacturing method thereof |
JP5448002B2 (en) * | 2009-08-04 | 2014-03-19 | トヨタ自動車株式会社 | Non-aqueous electrolyte type lithium ion secondary battery |
KR101387861B1 (en) * | 2009-08-04 | 2014-04-22 | 도요타지도샤가부시키가이샤 | Lithium ion nonaqueous electrolyte secondary battery |
JP5727352B2 (en) * | 2011-11-15 | 2015-06-03 | 信越化学工業株式会社 | Nonaqueous electrolyte secondary battery |
JP5621868B2 (en) * | 2012-03-27 | 2014-11-12 | Tdk株式会社 | Lithium ion secondary battery |
CN118044037A (en) * | 2022-06-30 | 2024-05-14 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electricity utilization device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10116631A (en) * | 1996-10-15 | 1998-05-06 | Fuji Film Selltec Kk | Nonaqueous electrolyte secondary battery |
CN1322026A (en) * | 2000-04-04 | 2001-11-14 | 索尼株式会社 | Non-aqueous electrolyte secondary cell |
JP2002175835A (en) * | 1992-05-11 | 2002-06-21 | Sony Corp | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
JP2002203600A (en) * | 2000-12-28 | 2002-07-19 | Sony Corp | Non-aqueous electrolytic solution secondary battery |
CN1093323C (en) * | 1996-07-19 | 2002-10-23 | 索尼株式会社 | Negative electrode material and non-aqueous liquid electrolyte secondary cell employing same |
CN1495938A (en) * | 2002-09-06 | 2004-05-12 | ���µ�����ҵ��ʽ���� | Cathode material for nonaqueous electrolyte secondary battery, production method thereof, and nonaqueous electrolyte secondary battery |
-
2006
- 2006-06-16 CN CNB2006100937471A patent/CN100466340C/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175835A (en) * | 1992-05-11 | 2002-06-21 | Sony Corp | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
CN1093323C (en) * | 1996-07-19 | 2002-10-23 | 索尼株式会社 | Negative electrode material and non-aqueous liquid electrolyte secondary cell employing same |
JPH10116631A (en) * | 1996-10-15 | 1998-05-06 | Fuji Film Selltec Kk | Nonaqueous electrolyte secondary battery |
CN1322026A (en) * | 2000-04-04 | 2001-11-14 | 索尼株式会社 | Non-aqueous electrolyte secondary cell |
JP2002203600A (en) * | 2000-12-28 | 2002-07-19 | Sony Corp | Non-aqueous electrolytic solution secondary battery |
CN1495938A (en) * | 2002-09-06 | 2004-05-12 | ���µ�����ҵ��ʽ���� | Cathode material for nonaqueous electrolyte secondary battery, production method thereof, and nonaqueous electrolyte secondary battery |
Non-Patent Citations (2)
Title |
---|
LiBOB as additive in LiPF6-based lithium ion electrolytes. Kang Xu et.al.Electrochemical and solid-state letters,Vol.8 No.7. 2005 |
LiBOB as additive in LiPF6-based lithium ion electrolytes. Kang Xu et.al.Electrochemical and solid-state letters,Vol.8 No.7. 2005 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108432006A (en) * | 2015-12-22 | 2018-08-21 | 3M创新有限公司 | The anode material and its making and use method of lithium-ions battery |
CN108432006B (en) * | 2015-12-22 | 2022-04-26 | 庄信万丰股份有限公司 | Anode material of lithium ion battery and manufacturing and using method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1866586A (en) | 2006-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8003253B2 (en) | Non-aqueous electrolyte secondary battery | |
EP1953850B1 (en) | Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery | |
TWI425703B (en) | Lithium secondary battery with high energy density | |
JP5060010B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5601536B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5260887B2 (en) | Nonaqueous electrolyte secondary battery | |
KR101531451B1 (en) | Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor | |
WO2011132428A1 (en) | Negative electrode for lithium-ion battery, production method therefor, and lithium-ion battery | |
CN1983681A (en) | Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode | |
WO2013002162A1 (en) | Nonaqueous electrolyte secondary cell and method for manufacturing same | |
JP2015179565A (en) | Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack | |
JP2004319469A (en) | Negative electrode active substance and nonaqueous electrolyte secondary cell | |
CN100466340C (en) | Non-aqueous electrolyte rechargeable battery | |
JP2023523875A (en) | Lithium-ion secondary batteries, battery modules, battery packs and electrical devices | |
WO2016185663A1 (en) | Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries | |
WO2014119274A1 (en) | Lithium-ion battery and lithium-ion battery separator | |
CN113964299A (en) | Positive electrode for lithium secondary battery and lithium secondary battery comprising same | |
CN105390736A (en) | Non-aqueous electrolyte secondary battery | |
JP2007184261A (en) | Lithium-ion secondary battery | |
WO2015015883A1 (en) | Lithium secondary battery and electrolyte solution for lithium secondary batteries | |
CN106848179A (en) | Nonaqueous electrolytic solution secondary battery | |
JP7344440B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2009152182A (en) | Nonaqueous electrolyte secondary battery | |
JP5282966B2 (en) | Lithium ion secondary battery | |
JP5119584B2 (en) | Nonaqueous electrolyte secondary battery and method for producing the negative electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |