CN100466298C - Manufacturing method of solar cell absorber layer - Google Patents
Manufacturing method of solar cell absorber layer Download PDFInfo
- Publication number
- CN100466298C CN100466298C CNB2004800213888A CN200480021388A CN100466298C CN 100466298 C CN100466298 C CN 100466298C CN B2004800213888 A CNB2004800213888 A CN B2004800213888A CN 200480021388 A CN200480021388 A CN 200480021388A CN 100466298 C CN100466298 C CN 100466298C
- Authority
- CN
- China
- Prior art keywords
- film
- iii
- vapor deposition
- chemical vapor
- organic chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/126—Active materials comprising only Group I-III-VI chalcopyrite materials, e.g. CuInSe2, CuGaSe2 or CuInGaSe2 [CIGS]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/167—Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明是关于一种制造用作太阳能电池吸收层的CuInSe2和CuIn1-xGaxSe2薄膜的方法,所述薄膜的构成接近于化学当量比(chemicalequivalence ratio)。本发明提供的制造太阳能电池用薄膜的方法包括:使用[Me2In-(μSeMe)]2前体,通过金属有机化学气相沉积法在基材上形成InSe薄膜;使用(hfac)Cu(DMB)前体,通过金属有机化学气相沉积法在InSe薄膜上形成Cu2Se薄膜;并且使用[Me2In-(μSeMe)]2前体,通过金属有机化学气相沉积法在Cu2Se薄膜上形成CuInSe2化合物薄膜。该方法还包括使用[Me2Ga-(μSeMe)]2前体,通过金属有机化学气相沉积法在CuInSe2化合物薄膜上形成CuIn1-xGaxSe2薄膜。The present invention relates to a method of manufacturing CuInSe 2 and CuIn 1-x Ga x Se 2 thin films for use as absorber layers in solar cells, said thin films having a composition close to the chemical equivalence ratio. The method for manufacturing a thin film for a solar cell provided by the invention comprises: using [Me 2 In-(μSeMe)] 2 precursor to form an InSe thin film on a substrate by metal organic chemical vapor deposition; using (hfac)Cu(DMB) Precursor, Cu 2 Se film was formed on InSe film by metal organic chemical vapor deposition; and CuInSe was formed on Cu 2 Se film by metal organic chemical vapor deposition using [Me 2 In-(μSeMe)] 2 precursor 2 compound films. The method also includes using [Me 2 Ga-(μSeMe)] 2 precursor to form a CuIn 1-x Ga x Se 2 film on the CuInSe 2 compound film by metal organic chemical vapor deposition.
Description
技术领域 technical field
本发明是关于一种太阳能电池吸收层的制造方法,更具体地是关于一种使用MOCVD制造CuInSe2和CuIn1-xGaxSe2薄膜的方法,所述薄膜的构成接近于化学当量比(chemical equivalence ratio)。The present invention relates to a method of manufacturing an absorber layer of a solar cell, and more particularly to a method of using MOCVD to manufacture CuInSe2 and CuIn1-xGaxSe2 thin films, the composition of which is close to the stoichiometric ratio ( chemical equivalence ratio).
背景技术 Background technique
CuInSe2(以下称做“CIS”)或CuIn1-xGaxSe2(以下称做“CIGS”)的三重薄膜是近来被积极研究的半导体化合物。A triple thin film of CuInSe 2 (hereinafter referred to as “CIS”) or CuIn 1-x Ga x Se 2 (hereinafter referred to as “CIGS”) is a semiconductor compound that has been actively studied recently.
与传统的使用硅的太阳能电池不同,该CIS基薄膜太阳能电池的厚度可以做成小于10微米,而且即使长时间使用也具有稳定的性能。此外,通过试验已经确定CIS基薄膜太阳能电池的能量转换率高达19%,优于其它太阳能电池,因此将其商业化成为能够取代硅的低价高效的太阳能电池是很有前景的。Unlike conventional solar cells using silicon, the CIS-based thin-film solar cells can be made thinner than 10 micrometers in thickness and have stable performance even after long-term use. In addition, it has been confirmed through experiments that the energy conversion rate of CIS-based thin-film solar cells is as high as 19%, which is superior to other solar cells, so it is very promising to commercialize it as a low-cost and high-efficiency solar cell that can replace silicon.
关于这一点,近来已经报道了各种制造CIS薄膜的方法。例如,US4523051公开了一种方法,该方法在真空气氛下同时气相沉积元素金属。然而,该方法使用昂贵的泻流室(effusion cell),因此对于大规模生产和实现大的面积,该方法是不经济的。US 4,798,660公开了另外一种方法,该方法在含硒的气体气氛如H2Se下加热并硒化(selenize)Cu-In前体。然而,H2Se气体对人体的毒性很高,因此在CIS薄膜的大规模生产中是危险的。还提出了其它的方法如电沉积法、分子束取向附生法(molecular beam epitaxy)等,但是这些方法成本高或者只适合于实验室规模,因此不适于CIS薄膜的大规模生产。In this regard, various methods of producing CIS thin films have been reported recently. For example, US4523051 discloses a method of simultaneously vapor-depositing elemental metals under a vacuum atmosphere. However, this method uses an expensive effusion cell, and thus is not economical for mass production and realizing a large area. US 4,798,660 discloses another method of heating and selenizing a Cu-In precursor under a selenium-containing gas atmosphere such as H2Se . However, H2Se gas is highly toxic to the human body and thus dangerous in the mass production of CIS thin films. Other methods such as electrodeposition and molecular beam epitaxy have also been proposed, but these methods are expensive or only suitable for laboratory scale, so they are not suitable for large-scale production of CIS thin films.
因此,为了实现高质量CIS薄膜的大规模生产,最优选使用广泛用于常规半导体工艺的金属有机化学气相沉积(Metal Organic Chemical VaporDeposition,以下称作“MOCVD”)。Therefore, in order to achieve mass production of high-quality CIS thin films, it is most preferable to use Metal Organic Chemical Vapor Deposition (Metal Organic Chemical Vapor Deposition, hereinafter referred to as "MOCVD"), which is widely used in conventional semiconductor processes.
然而,MOCVD是一种能够在半导体产业中低成本生产高质量薄膜的一般化技术,但是使用常规MOCVD技术生产CIS太阳能电池时遇到与生产成本高和工艺复杂相关的问题,使得难以大规模生产高质量薄膜。However, MOCVD is a generalized technique capable of producing high-quality thin films at low cost in the semiconductor industry, but the production of CIS solar cells using conventional MOCVD techniques encounters problems related to high production costs and complex processes, making mass production difficult High quality film.
为了生成CIS或CIGS薄膜,常规的方法包括溅射要气相沉积到玻璃基材上的钼,然后将其用作生成薄膜用的基材。然而,玻璃基材没有柔韧性,因此存在一个问题,即玻璃基材不能用于需要自由变形的场合。For the formation of CIS or CIGS thin films, a conventional method involves sputtering molybdenum to be vapor-deposited onto a glass substrate, which is then used as a substrate for thin film formation. However, glass substrates do not have flexibility, so there is a problem that glass substrates cannot be used where free deformation is required.
发明内容 Contents of the invention
因此,基于上述问题完成了本发明,本发明的一个目的是提供一种使用MOCVD制造CIS和CIGS薄膜的方法,所述薄膜的构成接近于化学当量比。Therefore, the present invention has been accomplished based on the above problems, and an object of the present invention is to provide a method of manufacturing CIS and CIGS thin films having compositions close to stoichiometric ratios using MOCVD.
本发明的另一个目的是提供一种使用MOCVD制造太阳能电池用CIS或CIGS薄膜的方法,该方法的制备工艺简单而且可以低成本地进行大规模生产。Another object of the present invention is to provide a method for manufacturing CIS or CIGS thin films for solar cells by using MOCVD, which has a simple preparation process and can be mass-produced at low cost.
本发明的又一个目的是提供一种制造太阳能电池用CIS或CIGS薄膜的方法,该方法对人体伤害更小并且更加环境友好。Yet another object of the present invention is to provide a method for manufacturing CIS or CIGS thin films for solar cells, which is less harmful to human body and more environment-friendly.
本发明的再一个目的是提供一种制造可自由变形或弯曲的太阳能电池用CIS或CIGS薄膜的方法。Another object of the present invention is to provide a method for manufacturing a freely deformable or bendable CIS or CIGS thin film for solar cells.
附图说明 Description of drawings
结合附图,通过以下的详细描述,将能够更清楚地理解本发明的上述和其它目的、特征及其它优点。其中:The above and other objects, features and other advantages of the present invention will be more clearly understood through the following detailed description in conjunction with the accompanying drawings. in:
图1简要地描述依据本发明第一实施方式制造CuInSe2薄膜的工艺流程;Fig. 1 briefly describes the process flow of manufacturing CuInSe thin film according to the first embodiment of the present invention;
图2为表示依据本发明而生成的InSe薄膜的XRD(X射线衍射)结果的图表;Fig. 2 is a graph showing the XRD (X-ray diffraction) results of the InSe thin film produced according to the present invention;
图3为表示依据本发明而生成的Cu2Se薄膜的XRD(X射线衍射)结果的图表;Fig. 3 is a graph showing the XRD (X-ray diffraction) results of Cu 2 Se thin films produced according to the present invention;
图4为表示依据本发明而生成的CuInSe2薄膜的XRD(X射线衍射)结果的图表;Fig. 4 is a graph showing the XRD (X-ray diffraction) results of the CuInSe thin film generated according to the present invention;
图5简要地描述依据本发明第二实施方式制造CuIn1-xGaxSe2薄膜的工艺流程;Fig. 5 briefly describes the process flow of manufacturing CuIn 1-x Ga x Se 2 thin film according to the second embodiment of the present invention;
图6为表示依据本发明而生成的CuIn1-xGaxSe2薄膜的XRD(X射线衍射)结果的图表;Fig. 6 is a graph showing the XRD (X-ray diffraction) results of CuIn 1-x Ga x Se 2 films produced according to the present invention;
图7为一图表,表示在依据本发明而生成的CuIn1-xGaxSe2薄膜中,晶格常数2a和c随[Ga]/[In+Ga]比值的变化;Fig. 7 is a graph showing the variation of lattice constants 2a and c with the ratio of [Ga]/[In+Ga] in CuIn1 - xGaxSe2 thin films produced according to the present invention;
图8为一图表,表示依据本发明形成的CuInSe2薄膜的组成比例;Fig. 8 is a chart showing the composition ratio of the CuInSe2 film formed according to the present invention;
图9为一图表,表示依据本发明形成的CuIn1-xGaxSe2薄膜的组成比例;Fig. 9 is a graph showing the composition ratio of the CuIn 1-x Ga x Se 2 film formed according to the present invention;
图10至图14分别为依据本发明形成的CuIn1-xGaxSe2薄膜样品A-E的SEM图像。10 to 14 are SEM images of CuIn 1-x Ga x Se 2 thin film samples AE formed according to the present invention.
具体实施方式 Detailed ways
现在结合附图来详细地描述本发明优选实施方式的CIS或CIGS薄膜的制造方法。The manufacturing method of the CIS or CIGS thin film according to the preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.
图1简要地描述依据本发明第一实施方式制造CIS薄膜的工艺流程。FIG. 1 briefly describes the process flow of manufacturing a CIS thin film according to the first embodiment of the present invention.
如图1所示,使用含有In和Se的单一前体[Me2In(μSeMe)]2,通过MOCVD法在由钼(Mo)材料制得的基材上形成InSe薄膜(步骤S101)。Me表示甲基,μ表示Se与In为双键连接。由钼材料制得的薄而柔韧的基材可以用作所述基材,代替常规的玻璃基材,因此可以实现各种形状的太阳能电池。As shown in FIG. 1 , an InSe thin film is formed on a substrate made of molybdenum (Mo) material by MOCVD using a single precursor [Me 2 In(μSeMe)] 2 containing In and Se (step S101 ). Me represents a methyl group, and μ represents that Se and In are connected by double bonds. A thin and flexible substrate made of a molybdenum material can be used as the substrate instead of a conventional glass substrate, and thus various shapes of solar cells can be realized.
接着,使用一价铜前体(hfac)Cu(DMB),通过MOCVD法在由步骤S101形成的InSe薄膜上形成Cu2Se薄膜(步骤S102)。Hfac和DMB分别为六氟乙酰丙酮化物(hexafluoroacetylacetonate)和3,3-二甲基-1-丁烯(3,3-dimethyl-1-butene)的缩写。Next, a Cu 2 Se thin film is formed on the InSe thin film formed in Step S101 by MOCVD using a monovalent copper precursor (hfac)Cu(DMB) (Step S102 ). Hfac and DMB are abbreviations for hexafluoroacetylacetonate and 3,3-dimethyl-1-butene, respectively.
然后,使用含有In和Se的单一前体[Me2In(μSeMe)]2,通过MOCVD法在由步骤S102形成的Cu2Se薄膜上形成CuInSe2薄膜(步骤S103)。用于形成CuInSe2薄膜的前体[Me2In(μSeMe)]2与步骤S101所用的相同。Then, a CuInSe 2 thin film is formed on the Cu 2 Se thin film formed in step S102 by MOCVD using a single precursor [Me 2 In(μSeMe)] 2 containing In and Se (step S103 ). The precursor [Me 2 In(μSeMe)] 2 used to form the CuInSe 2 thin film is the same as that used in step S101.
在本发明中,用于生成薄膜的装置为低压MOCVD设备。本发明所用的低压MOCVD设备安装有多个打泡器(bubbler),所述打泡器含有前体如(hfac)Cu(DMB)、[Me2In-(μSeMe)]2和[Me2Ga-(μSeMe)]2。因此,按序使用含有各自前体的打泡器,可以在单一工艺中制备CIGS薄膜。In the present invention, the device for forming the thin film is a low-pressure MOCVD device. The low-pressure MOCVD equipment used in the present invention is equipped with a plurality of bubblers (bubblers), and the bubblers contain precursors such as (hfac)Cu(DMB), [Me 2 In-(μSeMe)] 2 and [Me 2 Ga -(μSeMe)] 2 . Therefore, CIGS thin films can be prepared in a single process using the bubblers containing the respective precursors sequentially.
图2表示在步骤S101生成的InSe薄膜的XRD结果。图2表明,β-InSe结构的构造很好并且形成的InSe薄膜表现出良好的生成量。FIG. 2 shows the XRD results of the InSe thin film formed in step S101. Figure 2 shows that the structure of the β-InSe structure is very good and the formed InSe film shows a good yield.
图3表示在步骤S102生成的Cu2Se薄膜的XRD结果。可以看出,最初的InSe薄膜已经变成Cu2Se薄膜。X光荧光光谱(X-ray fluorescencespectroscopy,XRF)分析证实没有检测到In并且薄膜完全由Cu2Se制成。即,当使用一价铜前体(hfac)Cu(DMB),通过MOCVD法在InSe薄膜上生成铜时,最初的In消失了并由Cu所替代,因此表明InSe转变为Cu2Se。FIG. 3 shows the XRD results of the Cu 2 Se thin film formed in step S102. It can be seen that the original InSe film has become a Cu 2 Se film. X-ray fluorescence spectroscopy (XRF) analysis confirmed that no In was detected and the film was completely made of Cu 2 Se. That is, when copper was grown on an InSe thin film by MOCVD using a monovalent copper precursor (hfac)Cu(DMB), the original In disappeared and was replaced by Cu, thus indicating that InSe was transformed into Cu 2 Se.
图4表示在步骤S103生成的CuInSe2薄膜的XRD结果。可以看出,生成的CuInSe2薄膜的XRD图形与已公知的CuInSe2单晶体是一致的。生成的薄膜显示出具有四方晶格的单一相。FIG. 4 shows the XRD results of the CuInSe 2 thin film formed in step S103. It can be seen that the XRD pattern of the CuInSe 2 film produced is consistent with the known CuInSe 2 single crystal. The resulting films exhibit a single phase with a tetragonal lattice.
图5简要地描述依据本发明第二实施方式制造CuIn1-xGaxSe2薄膜的工艺流程。Fig. 5 briefly describes the process flow of manufacturing CuIn 1-x Ga x Se 2 thin film according to the second embodiment of the present invention.
如图5所示,步骤S201-S203与上述CIS薄膜制备过程相同。使用含有Ga和Se的前体[Me2Ga(μSeMe)]2,通过MOCVD法在由步骤S203形成的CuInSe2薄膜上形成CuIn1-xGaxSe2薄膜(步骤S204)。[Me2Ga(μSeMe)]2为前体物质,其中[Me2In(μSeMe)]2中的In由Ga来代替。As shown in FIG. 5, steps S201-S203 are the same as the above-mentioned CIS film preparation process. A CuIn 1-x Ga x Se 2 film is formed by MOCVD on the CuInSe 2 film formed in Step S203 using a precursor [Me 2 Ga(µSeMe)] 2 containing Ga and Se (Step S204 ). [Me 2 Ga(μSeMe)] 2 is a precursor substance, wherein In in [Me 2 In(μSeMe)] 2 is replaced by Ga.
为了分析生成的CIGS薄膜的与In和Ga组成比例相关的物理性质,通过在步骤204改变气相沉积的时间来调节In和Ga的组成比例,制备具有不同组成比例的5个样品(A、B、C、D和E)。在CuIn1-xGaxSe2薄膜中,使用X光莹光光谱法测定x值即[Ga]/[In+Ga]的组成比例分别为0、0.062、0.19、0.34和0.96。In order to analyze the physical properties related to the composition ratio of In and Ga of the CIGS thin film generated, adjust the composition ratio of In and Ga by changing the time of vapor deposition in
图6表示本发明第二实施方式中生成的CuIn1-xGaxSe2薄膜A、B、C、D和E的XRD结果。根据[Ga]/[In+Ga]的组成比例,峰的位置转换成一增长的角度(2θ)。Fig. 6 shows XRD results of CuIn 1-x Ga x Se 2 thin films A, B, C, D and E produced in the second embodiment of the present invention. According to the composition ratio of [Ga]/[In+Ga], the position of the peak is converted into an increasing angle (2θ).
图7为一图表,表示晶格常数2a和c随x值即[Ga]/[In+Ga]比值的变化。如图7所示,晶格常数2a和c随着x值的增加而线性减小。因此,晶格常数2a和c随[Ga]/[In+Ga]比值的变化率分别为0.329和0.602,表明之间的差异显著。此外,CuInSe2薄膜的晶格常数和与Gryunova得到的结果一致。在得到的CuIn1-xGaxSe2薄膜中,x的最高值为0.96(样品E)。在这种情况下,晶格常数和与Gryunova报道的晶格常数和是一致的。Fig. 7 is a graph showing the lattice constants 2a and c as a function of the value of x, ie the ratio of [Ga]/[In+Ga]. As shown in Fig. 7, the lattice constants 2a and c decrease linearly as the value of x increases. Therefore, the rate of change of lattice constants 2a and c with the [Ga]/[In+Ga] ratio is 0.329 and 0.602, respectively, indicating a significant difference between them. Furthermore, the lattice constant of the CuInSe2 thin film and Consistent with the results obtained by Gryunova. In the obtained CuIn 1-x Ga x Se 2 film, the highest value of x is 0.96 (sample E). In this case, the lattice constant and With the lattice constant reported by Gryunova and is consistent.
图8和图9分别表示依据本发明第一实施方式形成的CIS薄膜和依据本发明第二实施方式形成的CIGS薄膜的组成比例。Groenink和Janse定义的连接(In+Ga)2Se3和Cu2Se的线以及垂直线分别表示无分子性(non-molecularity)和无化学计量关系(non-stoichiometry)。三角形中心的圆圈为组成比例为Cu:In:Se=1:1:2的点。8 and 9 respectively show the composition ratios of the CIS thin film formed according to the first embodiment of the present invention and the CIGS thin film formed according to the second embodiment of the present invention. The lines connecting (In+Ga) 2 Se 3 and Cu 2 Se and the vertical lines defined by Groenink and Janse represent non-molecularity and non-stoichiometry, respectively. The circle at the center of the triangle is a point where the composition ratio is Cu:In:Se=1:1:2.
图8中的圆点表示由实验制备的多个CuInSe2样品,可以看出,依据本发明而生成的CIS薄膜的Cu:In:Se比例接近1:1:2。此外,图9中的各个圆点B、C、D和E分别表示[Ga]/[In+Ga]组成比例为0.062、0.19、0.34和0.96的样品,因此可以看出,即使在生成CIGS薄膜时改变In与Ga的比例,Cu:(In,Ga):Se还差不多保持在1:1:2。The dots in FIG. 8 represent a number of CuInSe 2 samples prepared by experiments. It can be seen that the Cu:In:Se ratio of the CIS film produced according to the present invention is close to 1:1:2. In addition, the dots B, C, D, and E in Fig. 9 represent the samples with [Ga]/[In+Ga] composition ratios of 0.062, 0.19, 0.34, and 0.96, respectively, so it can be seen that even when the CIGS thin film When changing the ratio of In and Ga, Cu:(In, Ga):Se is almost kept at 1:1:2.
以上可以看出,依据本发明生成的CIS薄膜和CIGS薄膜制备得具有非常接近的化学当量比。因此,可以毫无困难地简单地通过MOCVD大规模制备具有预期当量比的高质量薄膜。此外,即使在根据需要调整[Ga]/[In+Ga]的比例时也可以得到Cu:In(Ga):Se接近1:1:2的薄膜。It can be seen from the above that the CIS thin film and the CIGS thin film prepared according to the present invention have a very close stoichiometric ratio. Therefore, high-quality thin films with expected equivalence ratios can be fabricated simply by MOCVD on a large scale without difficulty. In addition, even when the ratio of [Ga]/[In+Ga] is adjusted as needed, a thin film of Cu:In(Ga):Se close to 1:1:2 can be obtained.
图10至图14分别为依据本发明形成的CIGS薄膜样品A、B、C、D和E的SEM图像。所有样品都表现出稳定晶粒的晶体成长,表明不管[Ga]/[In+Ga]的比例组成如何,晶体成长都很好地进行。10 to 14 are SEM images of CIGS thin film samples A, B, C, D and E formed according to the present invention, respectively. All samples exhibit crystal growth of stable grains, indicating that crystal growth proceeds well regardless of the [Ga]/[In+Ga] ratio composition.
此外,依据本发明的第三实施方式,通过使用[Me2In-(μTeMe)]2或[Me2In-(μSMe)]2代替第二实施方式步骤S204中用作前体的[Me2Ga-(μSeMe)]2,一部分Se可以被Te或S代替,其结果是,得到薄膜CuIn(Se,S)或者CuIn(Se,Te)。Furthermore, according to the third embodiment of the present invention, by using [Me 2 In-(μTeMe)] 2 or [Me 2 In-(μSMe)] 2 instead of the [Me2Ga- (μSeMe)] 2 , a part of Se can be replaced by Te or S, and as a result, thin film CuIn(Se,S) or CuIn(Se,Te) is obtained.
尽管本发明以优选实施方式的方式进行了描述,但是本发明的技术方面并不限于此。也就是说,即使作为太阳能电池用薄膜,对CuIn1-xGaxSe2(假设0≤x≤1)和CuIn(Se,S)薄膜的制备方法进行了描述,但这些薄膜只是由选自元素周期表的I、III和VI族元素组成的I-III-VI2化合物的几个例子。Although the present invention has been described in the preferred embodiments, the technical aspects of the present invention are not limited thereto. That is, even though the preparation methods of CuIn 1-x Ga x Se 2 (assuming 0≤x≤1) and CuIn(Se,S) thin films are described as thin films for solar cells, these thin films are only made of A few examples of I-III-VI 2 compounds composed of elements from groups I, III and VI of the periodic table.
下面描述一些特别的例子。首先,作为第一步,使用含有III族和VI族元素的单一前体,通过金属有机化学气相沉积法形成III-VI薄膜。III族元素包括所有属于元素周期表1II族的元素,例如In、Ga或Al;VI族元素包括所有属于元素周期表VI族的元素,例如Se、S或Te。因此生成的III-VI薄膜为InSe、GaSe、AlSe、InS、GaS、AlS、InTe、GaTe或AlTe。Some specific examples are described below. First, as a first step, a III-VI thin film is formed by metal-organic chemical vapor deposition using a single precursor containing group III and VI elements. Group III elements include all elements belonging to group III of the periodic table of elements, such as In, Ga or Al; group VI elements include all elements belonging to group VI of the periodic table of elements, such as Se, S or Te. The resulting III-VI films are InSe, GaSe, AlSe, InS, GaS, AlS, InTe, GaTe or AlTe.
在第二步中,使用含有I族金属(例如Ag或Cu)的前体(包括一价或二价前体),通过金属有机化学气相沉积法在III-VI薄膜上形成I2-VI薄膜。I族元素包括所有属于元素周期表I族的元素,例如Cu或Ag。因此,生成的I2-VI薄膜为Cu2Se、Cu2S、Cu2Te、Ag2Se、Ag2S或Ag2Te。In the second step, I2-VI thin films are formed on III-VI thin films by metal-organic chemical vapor deposition using precursors (including monovalent or divalent precursors) containing group I metals such as Ag or Cu . Group I elements include all elements belonging to group I of the periodic table, such as Cu or Ag. Therefore, the formed I 2 -VI film is Cu 2 Se, Cu 2 S, Cu 2 Te, Ag 2 Se, Ag 2 S or Ag 2 Te.
在第三步中,使用含有III和VI族元素的单一前体,通过金属有机化学气相沉积法在I2-VI薄膜上形成I-III-VI2薄膜,因此完成了依据本发明的太阳能电池用薄膜。在此,III和VI族元素与第一步所用的元素相同。In the third step, the I-III-VI 2 film is formed on the I 2 -VI film by metal-organic chemical vapor deposition using a single precursor containing group III and VI elements, thus completing the solar cell according to the present invention Use film. Here, the group III and VI elements are the same as those used in the first step.
此外,在第四步,可以使用含有III和VI族的另外元素的单一前体,通过金属有机化学气相沉积法在I-III-VI2薄膜上制备I-III-VI2薄膜的固体溶液半导体化合物。在这种情况下,在此所用的III和VI族元素与第一步和第三步所用的元素不同。因此,得到的薄膜包括CuIn1-xGaxSe2、CuIn1-xAlxSe2、CuGa1-xAlxSe2、AgIn1-xGaxSe2、AgIn1-xAlxSe2、AgIn1-xGaxSe2、CuIn(Se,S)2、CuGa(Se,S)2、AgIn(Se,S)2、AgGa(Se,S)2、CuIn(Se,Te)2、CuGa(Se,Te)2、AgIn(Se,Te)2、AgGa(Se,Te)2、CuIn(S,Te)2、CuGa(S,Te)2、AgIn(S,Te)2和AgGa(S,Te)2。Furthermore, in the fourth step, solid solution semiconductors of I-III-VI 2 thin films can be prepared by metal-organic chemical vapor deposition on I-III-VI 2 thin films using a single precursor containing additional elements from groups III and VI compound. In this case, the group III and VI elements used here are different from those used in the first and third steps. Thus, the resulting films include CuIn 1-x Ga x Se 2 , CuIn 1-x Al x Se 2 , CuGa 1-x Al x Se 2 , AgIn 1-x Ga x Se 2 , AgIn 1-x Al x Se 2 , AgIn 1-x Ga x Se 2 , CuIn(Se, S) 2 , CuGa(Se, S) 2 , AgIn(Se, S) 2 , AgGa(Se, S) 2 , CuIn(Se, Te) 2 , CuGa(Se, Te) 2 , AgIn(Se, Te) 2 , AgGa(Se, Te) 2 , CuIn(S, Te) 2 , CuGa(S, Te) 2 , AgIn(S, Te) 2 and AgGa( S, Te) 2 .
因此,本发明的技术方面亦当被理解为公开了一种制备I-III-VI2化合物及其固体溶液的方法。Therefore, the technical aspect of the present invention should also be understood as disclosing a method for preparing I-III-VI 2 compound and its solid solution.
本发明的含有III和VI族元素的单一前体并不限于在本发明第一、第二和第三实施方式中所使用的[Me2(III)-(μ(VI)Me)]型前体,明显地本领域的技术人员知道可以使用没有在本发明中举出的其它类型的前体。简而言之,由于属于元素周期表同族的元素具有相似的化学性质,因此即使使用不同的前体,也能够得到相似的结果。同样地,含有铜的前体并不限于(hfac)Cu(DMB)。The single precursors containing group III and VI elements of the present invention are not limited to the [Me 2 (III)-(μ(VI)Me)] type precursors used in the first, second and third embodiments of the present invention precursors, it is obvious to those skilled in the art that other types of precursors not enumerated in the present invention can be used. In short, due to the similar chemical properties of elements belonging to the same group of the periodic table, similar results can be obtained even with different precursors. Likewise, the copper-containing precursor is not limited to (hfac)Cu(DMB).
工业适用性Industrial Applicability
从以上描述可以明显看出,依据本发明,通过简单地控制半导体化合物的生成条件,可以制造具有预期当量比的高质量太阳能电池用CuIn1-xGaxSe2薄膜。It is obvious from the above description that according to the present invention, high-quality CuIn 1-x Ga x Se 2 thin films for solar cells with expected equivalent ratios can be produced by simply controlling the conditions for the formation of semiconductor compounds.
而且,依据本发明,通过简单的制造工艺,可以实现太阳能电池用CuIn1-NGaxSe2薄膜的低成本大规模生产。Moreover, according to the present invention, low-cost mass production of CuIn 1-N Ga x Se 2 thin films for solar cells can be realized through a simple manufacturing process.
此外,依据本发明,通过使用毒性相对较低的化合物作为制造太阳能电池用CuIn1-NGaxSe2薄膜的前体,可以使生产工艺更加安全、更加环境友好。In addition, according to the present invention, by using a compound with relatively low toxicity as a precursor for manufacturing CuIn 1-N Ga x Se 2 thin films for solar cells, the production process can be made safer and more environmentally friendly.
更进一步,本发明使用具有柔韧性的金属作为基材,因此太阳能电池的形状可以根据需要自由地进行变化,因此扩大了应用领域。Furthermore, the present invention uses a flexible metal as a base material, so the shape of the solar cell can be freely changed as required, thus expanding the application field.
尽管为了描述的目的公开了本发明的优选实施方式,但是本领域的技术人员可以理解到在不偏离随附权利要求书所公开的本发明的范围和主旨的情况下,可以做出各种变化、添加和替换。Although the preferred embodiment of the invention has been disclosed for purposes of illustration, it will be appreciated by those skilled in the art that various changes may be made without departing from the scope and spirit of the invention as disclosed in the appended claims , Add and Replace.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20030051828 | 2003-07-26 | ||
KR1020030051828 | 2003-07-26 | ||
KR1020040029221 | 2004-04-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1826697A CN1826697A (en) | 2006-08-30 |
CN100466298C true CN100466298C (en) | 2009-03-04 |
Family
ID=37224766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800213888A Expired - Fee Related CN100466298C (en) | 2003-07-26 | 2004-05-27 | Manufacturing method of solar cell absorber layer |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100495924B1 (en) |
CN (1) | CN100466298C (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100495925B1 (en) * | 2005-01-12 | 2005-06-17 | (주)인솔라텍 | Optical absorber layers for solar cell and manufacturing method thereof |
KR100809440B1 (en) | 2007-03-09 | 2008-03-05 | 한국전자통신연구원 | Thin-film transistors containing n-type and VII-type CIS and manufacturing method thereof |
KR100853197B1 (en) * | 2007-03-13 | 2008-08-20 | 한국전자통신연구원 | -type CIs and n-type CIS thin film manufacturing method |
KR100857227B1 (en) * | 2007-03-13 | 2008-09-05 | (주)인솔라텍 | Method for Preparation of I-III-VI2 Compound Thin Film by Single Organometallic Chemical Vapor Deposition Process |
KR100893744B1 (en) | 2007-05-28 | 2009-04-17 | 중앙대학교 산학협력단 | Organometallic Chemical Vapor Deposition Precursor for Chalcogenide Thin Films and Manufacturing Method Thereof |
CN100466305C (en) * | 2007-11-22 | 2009-03-04 | 北京科技大学 | A method for preparing an indium-rich light-absorbing layer of a copper indium selenium thin film solar cell |
CN101997055B (en) * | 2009-08-10 | 2012-05-30 | 北京有色金属研究总院 | Preparation method of multi-component material for thin-film solar cell absorption layer |
WO2011111889A1 (en) * | 2010-03-12 | 2011-09-15 | 주식회사 메카로닉스 | Method for manufacturing a cigs thin film |
KR101134568B1 (en) * | 2010-04-21 | 2012-04-13 | 한국과학기술연구원 | Growth Method of Single Crystalline CdTe layer on Si substrates |
KR20110128580A (en) | 2010-05-24 | 2011-11-30 | 삼성전자주식회사 | Solar cell manufacturing method |
CN103165696B (en) * | 2012-10-17 | 2015-07-29 | 广东金光伏能源投资有限公司 | Solar battery obsorbing layer membrane structure and manufacture method thereof |
CN106531845B (en) * | 2016-12-08 | 2018-02-06 | 福建师范大学 | Chemical bath prepares solar battery obsorbing layer CuInS2The method of film |
KR101867310B1 (en) * | 2017-08-25 | 2018-07-17 | 주식회사 메카로 | Chalcopyrite Thin Film Solar Cell Manufacturing Method |
CN109082650A (en) * | 2018-06-26 | 2018-12-25 | 合肥萃励新材料科技有限公司 | A kind of Cu2Se film forming method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567469A (en) * | 1992-10-30 | 1996-10-22 | Matsuhita Electric Co., Ltd. | Process for producing chalcopyrite type compound thin film |
JPH08316230A (en) * | 1995-05-15 | 1996-11-29 | Matsushita Electric Ind Co Ltd | Precursor for forming semiconductor thin film and method for manufacturing semiconductor thin film |
US5731031A (en) * | 1995-12-20 | 1998-03-24 | Midwest Research Institute | Production of films and powders for semiconductor device applications |
CN1204419A (en) * | 1995-12-12 | 1999-01-06 | 戴维斯,约瑟夫和尼格利 | Cu In Ga Se for producing high efficiency solar cells is prepared by electrodeposition (x = 0-2, y = 0-2, z = 0-2, n = 0-3) |
CN1223474A (en) * | 1998-01-16 | 1999-07-21 | 中国地质大学(北京) | Colloidal sol-gel-selenylation processes for preparing CuInSe2 semiconductor film |
US5976614A (en) * | 1998-10-13 | 1999-11-02 | Midwest Research Institute | Preparation of cuxinygazsen precursor films and powders by electroless deposition |
US20030054662A1 (en) * | 2001-09-20 | 2003-03-20 | Stanbery Billy J. | Synthesis of layers, coatings or films using surfactants |
-
2004
- 2004-04-27 KR KR10-2004-0029221A patent/KR100495924B1/en not_active Expired - Fee Related
- 2004-05-27 CN CNB2004800213888A patent/CN100466298C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567469A (en) * | 1992-10-30 | 1996-10-22 | Matsuhita Electric Co., Ltd. | Process for producing chalcopyrite type compound thin film |
JPH08316230A (en) * | 1995-05-15 | 1996-11-29 | Matsushita Electric Ind Co Ltd | Precursor for forming semiconductor thin film and method for manufacturing semiconductor thin film |
CN1204419A (en) * | 1995-12-12 | 1999-01-06 | 戴维斯,约瑟夫和尼格利 | Cu In Ga Se for producing high efficiency solar cells is prepared by electrodeposition (x = 0-2, y = 0-2, z = 0-2, n = 0-3) |
US5731031A (en) * | 1995-12-20 | 1998-03-24 | Midwest Research Institute | Production of films and powders for semiconductor device applications |
CN1223474A (en) * | 1998-01-16 | 1999-07-21 | 中国地质大学(北京) | Colloidal sol-gel-selenylation processes for preparing CuInSe2 semiconductor film |
US5976614A (en) * | 1998-10-13 | 1999-11-02 | Midwest Research Institute | Preparation of cuxinygazsen precursor films and powders by electroless deposition |
US20030054662A1 (en) * | 2001-09-20 | 2003-03-20 | Stanbery Billy J. | Synthesis of layers, coatings or films using surfactants |
Also Published As
Publication number | Publication date |
---|---|
KR100495924B1 (en) | 2005-06-16 |
KR20050013063A (en) | 2005-02-02 |
CN1826697A (en) | 2006-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7833821B2 (en) | Method and apparatus for thin film solar cell manufacturing | |
US5028274A (en) | Group I-III-VI2 semiconductor films for solar cell application | |
US5674555A (en) | Process for preparing group Ib-IIIa-VIa semiconducting films | |
CN100466298C (en) | Manufacturing method of solar cell absorber layer | |
US8188367B2 (en) | Multilayer structure to form absorber layers for solar cells | |
US20080023336A1 (en) | Technique for doping compound layers used in solar cell fabrication | |
US7854963B2 (en) | Method and apparatus for controlling composition profile of copper indium gallium chalcogenide layers | |
US8747706B2 (en) | Cu—In—Zn—Sn-(Se,S)-based thin film for solar cell and preparation method thereof | |
US20060219288A1 (en) | Process and photovoltaic device using an akali-containing layer | |
US20070093006A1 (en) | Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto | |
KR100810730B1 (en) | Manufacturing Method of Light Absorption Layer for Solar Cell | |
CN101443929A (en) | Processes and optoelectronic devices using alkali-containing layers | |
US7910396B2 (en) | Three-stage formation of thin-films for photovoltaic devices | |
KR100857227B1 (en) | Method for Preparation of I-III-VI2 Compound Thin Film by Single Organometallic Chemical Vapor Deposition Process | |
JP4427543B2 (en) | Method for manufacturing solar cell absorption layer | |
US20110005586A1 (en) | Electrochemical Deposition Methods for Fabricating Group IBIIIAVIA Compound Absorber Based Solar Cells | |
KR20080104623A (en) | Precursor for Organometallic Chemical Vapor Deposition for Thin Films of Chalcogenide and Manufacturing Method Thereof | |
Zoppi et al. | Characterisation of Thin Films CuIn1-xAlxSe2 Prepared by Selenisation of Magnetron Sputtered Metallic Precursors | |
KR100679640B1 (en) | Chemical vapor deposition precursor for the preparation of chalcogenide thin film of Group 13 metal, preparation method thereof and chalcogenide thin film using the precursor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090304 Termination date: 20130527 |