CN100465651C - Resonant Sensor Control System Using Intermittent Work Mode - Google Patents
Resonant Sensor Control System Using Intermittent Work Mode Download PDFInfo
- Publication number
- CN100465651C CN100465651C CNB200710063638XA CN200710063638A CN100465651C CN 100465651 C CN100465651 C CN 100465651C CN B200710063638X A CNB200710063638X A CN B200710063638XA CN 200710063638 A CN200710063638 A CN 200710063638A CN 100465651 C CN100465651 C CN 100465651C
- Authority
- CN
- China
- Prior art keywords
- signal
- frequency
- excitation
- resonator
- pickup element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005284 excitation Effects 0.000 claims abstract description 58
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
采用间歇工作方式的谐振式传感器控制系统,包括前置放大器、频率检测器、控制器和激励信号发生器,拾振元件输出的信号经过前置放大器放大,由频率检测器测得拾振元件输出信号的频率,控制器控制激励信号发生器产生激励信号,激励信号采用线性调频信号,敏感结构的谐振器在线性调频信号的激励下振动,当控制器控制激励信号断开后,谐振器处于自由振动状态,其振动频率为谐振器的固有频率,激励信号断开后,控制器控制频率检测器检测拾振元件输出信号的频率,测得谐振器的固有频率,从而实现对被测信号的测量。敏感结构中的激励元件和拾振元件可以是同一个元件。本发明解决了采用单一频率信号激励时,谐振式传感器敏感结构输出信号较微弱的问题。
The resonant sensor control system adopts intermittent working mode, including a preamplifier, a frequency detector, a controller and an excitation signal generator. The signal output by the vibration pickup element is amplified by the preamplifier, and the output of the vibration pickup element is measured by the frequency detector. The frequency of the signal, the controller controls the excitation signal generator to generate the excitation signal, the excitation signal adopts the linear frequency modulation signal, the resonator of the sensitive structure vibrates under the excitation of the linear frequency modulation signal, when the controller controls the excitation signal to be disconnected, the resonator is in free Vibration state, its vibration frequency is the natural frequency of the resonator, after the excitation signal is disconnected, the controller controls the frequency detector to detect the frequency of the output signal of the vibration pickup element, and measures the natural frequency of the resonator, so as to realize the measurement of the measured signal . The excitation element and the vibration pickup element in the sensitive structure can be the same element. The invention solves the problem that the output signal of the sensitive structure of the resonant sensor is relatively weak when a single frequency signal is used for excitation.
Description
技术领域 technical field
本发明涉及谐振式传感器控制系统,特别是一种采用间歇工作方式的谐振式传感器控制系统。The invention relates to a resonant sensor control system, in particular to a resonant sensor control system adopting an intermittent working mode.
背景技术 Background technique
谐振式传感器在被测量的作用下,其敏感结构的谐振器的固有频率发生改变,通过测量谐振器的固有频率即可测得被测量的值。谐振式传感器的重复性、分辨力和稳定性等性能指标适于如压力、加速度、力、密度等多种参数的测量。Under the action of the measured sensor, the natural frequency of the resonator of its sensitive structure changes, and the measured value can be measured by measuring the natural frequency of the resonator. The performance indicators such as repeatability, resolution and stability of the resonant sensor are suitable for the measurement of various parameters such as pressure, acceleration, force and density.
通常谐振式传感器的敏感结构需要和闭环系统结合才能工作,通常的闭环系统包括幅度控制环节和移相环节,幅度控制器用来调节整个闭环的增益,以满足谐振式传感器自激闭环的幅度条件,移相环节用来调节整个闭环的相移,以满足谐振式传感器自激闭环的相位条件。Usually the sensitive structure of the resonant sensor needs to be combined with a closed-loop system to work. The usual closed-loop system includes an amplitude control link and a phase shift link. The amplitude controller is used to adjust the gain of the entire closed loop to meet the amplitude conditions of the self-excited closed-loop of the resonant sensor. The phase shift link is used to adjust the phase shift of the entire closed loop to meet the phase conditions of the self-excited closed loop of the resonant sensor.
谐振式传感器的拾振信号会受到其激励信号的干扰从而使其拾振信号的信噪比变低,使得拾振信号不易测量,Thierry Corman等人1999年在文章‘“Burst”Technology with Feedback-Loop Control for CapacitiveDetection and Electrostatic Excitation of Resonant Silicon Sensors’中提出了一种“Burst”技术用来解决这一问题,采用分时激励、分时检测的方法来实现谐振式传感器的闭环,在该方案中,采用单一频率信号来激励传感器,这种方法的问题是当激励频率偏离谐振式传感器敏感结构的谐振器的固有频率太多时,敏感结构输出信号的强度将会非常微弱。谐振器的理论频率特性如图2所示,从谐振器的幅频特性可以看出,当激励信号偏离谐振器的固有频率太多时,谐振器的增益相对于其固有频率对应的增益低很多。谐振器输出信号的强度非常微弱时,检测电路将无法测得谐振器的输出信号。The vibration pickup signal of the resonant sensor will be interfered by its excitation signal, thereby reducing the signal-to-noise ratio of the vibration pickup signal, making it difficult to measure the vibration pickup signal. Thierry Corman et al. in 1999 in the article "Burst" Technology with Feedback- Loop Control for Capacitive Detection and Electrostatic Excitation of Resonant Silicon Sensors' proposes a "Burst" technology to solve this problem, using the method of time-sharing excitation and time-sharing detection to realize the closed loop of the resonant sensor. In this scheme , using a single frequency signal to excite the sensor. The problem with this method is that when the excitation frequency deviates too much from the natural frequency of the resonator of the sensitive structure of the resonant sensor, the intensity of the output signal of the sensitive structure will be very weak. The theoretical frequency characteristics of the resonator are shown in Figure 2. From the amplitude-frequency characteristics of the resonator, it can be seen that when the excitation signal deviates too much from the natural frequency of the resonator, the gain of the resonator is much lower than the gain corresponding to its natural frequency. When the strength of the output signal of the resonator is very weak, the detection circuit will not be able to measure the output signal of the resonator.
发明内容 Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供一种采用间歇工作方式的谐振式传感器控制系统,解决了采用单一频率信号激励时,谐振式传感器敏感结构输出信号较微弱的问题。The technical problem solved by the present invention is: to overcome the deficiencies of the prior art, to provide a resonant sensor control system that adopts an intermittent working mode, and to solve the problem that the output signal of the sensitive structure of the resonant sensor is relatively weak when a single frequency signal is used for excitation.
本发明的技术解决方案:采用间歇工作方式的谐振式传感器控制系统,其特点在于:包括前置放大器、频率检测器、控制器和激励信号发生器,控制器控制激励信号发生器产生激励信号,激励信号采用线性调频信号,敏感结构的谐振器在线性调频信号的激励下振动,当控制器控制激励信号断开后,谐振器处于自由振动状态,其振动频率为谐振器的固有频率,激励信号断开一定时间后,控制器控制频率检测器检测经过前置放大器放大后的拾振元件输出信号的频率,测得谐振器的固有频率,从而实现对被测信号的测量。The technical solution of the present invention: the resonant sensor control system adopting the intermittent working mode is characterized in that it includes a preamplifier, a frequency detector, a controller and an excitation signal generator, and the controller controls the excitation signal generator to generate an excitation signal. The excitation signal adopts a linear frequency modulation signal, and the resonator of the sensitive structure vibrates under the excitation of the linear frequency modulation signal. When the controller controls the excitation signal to be disconnected, the resonator is in a free vibration state, and its vibration frequency is the natural frequency of the resonator. After disconnecting for a certain period of time, the controller controls the frequency detector to detect the frequency of the output signal of the vibration pickup element amplified by the preamplifier, and measures the natural frequency of the resonator, thereby realizing the measurement of the measured signal.
本发明的原理:本发明采用了线性调频信号作为谐振式传感器敏感结构的激励信号。线性调频信号在一种功率较为均匀的集中在其起始频率和终止频率之间频带内的信号,谐振式传感器敏感结构的谐振器在线性调频信号的激励下,谐振器振动的功率也集中在这一频带内。当作为激励信号的线性调频信号的频带内包含谐振器的固有频率时,谐振器的振动信号也包含其固有频率点上的信号分量,谐振器的振动信号也较强,而偏离与谐振器固有频率的单一频率信号作为激励信号时,谐振器的振动信号较弱。当作用于谐振式传感器敏感结构的激励信号断开后,谐振器将以其固有频率做自由振动,通过测量谐振器自由振动状态下的振动信号频率,即可测得谐振器的固有频率,从而实现对被测量的测量。The principle of the present invention: the present invention adopts the linear frequency modulation signal as the excitation signal of the sensitive structure of the resonant sensor. The linear frequency modulation signal is a signal whose power is more uniformly concentrated in the frequency band between its start frequency and stop frequency. The resonator of the sensitive structure of the resonant sensor is excited by the linear frequency modulation signal, and the power of the resonator vibration is also concentrated in the within this frequency band. When the frequency band of the chirp signal used as the excitation signal contains the natural frequency of the resonator, the vibration signal of the resonator also contains the signal component at its natural frequency point, and the vibration signal of the resonator is also strong, and the deviation from the natural frequency of the resonator When a single frequency signal of a higher frequency is used as an excitation signal, the vibration signal of the resonator is weaker. When the excitation signal used for the sensitive structure of the resonant sensor is disconnected, the resonator will vibrate freely at its natural frequency. By measuring the frequency of the vibration signal in the free vibration state of the resonator, the natural frequency of the resonator can be measured, thereby Realize the measurement of the measurand.
本发明与现有技术相比的优点:由于本发明采用了线性调频信号作为谐振式传感器敏感结构的激励信号,相对与偏离谐振式传感器敏感结构的谐振器的单一频率信号作为激励信号,有效的提高了谐振式传感器敏感结构输出信号的强度。The advantages of the present invention compared with the prior art: because the present invention has adopted the linear frequency modulation signal as the excitation signal of the sensitive structure of the resonant sensor, relative to the single frequency signal of the resonator which deviates from the sensitive structure of the resonant sensor as the excitation signal, effective The strength of the output signal of the sensitive structure of the resonant sensor is improved.
附图说明 Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明的谐振传感器的理论频率特性曲线图,其中图2a为幅频特性曲线图,图2b为相频特性曲线图;Fig. 2 is the theoretical frequency characteristic curve diagram of the resonant sensor of the present invention, wherein Fig. 2a is the amplitude-frequency characteristic curve diagram, and Fig. 2b is the phase-frequency characteristic curve diagram;
图3为本发明的敏感结构中的激励元件和拾振元件是同一个元件时的传感器控制系统的结构示意图。Fig. 3 is a structural schematic diagram of the sensor control system when the excitation element and the vibration pickup element are the same element in the sensitive structure of the present invention.
具体实施方式 Detailed ways
如图1所示,谐振式传感器的间歇工作方法的传感器控制系统2由前置放大器6、频率检测器5、控制器4和激励信号发生器3组成,敏感结构1的拾振元件7输出的信号经过前置放大器6放大,由频率检测器5测得拾振元件7输出信号的频率,控制器4控制激励信号发生器3产生激励信号,激励信号采用线性调频信号,敏感结构1的谐振器8在线性调频信号的激励下振动,当控制器4控制激励信号断开后,谐振器8处于自由振动状态,其振动频率为谐振器的固有频率,激励信号断开后,控制器4控制频率检测器5检测拾振元件7输出信号的频率,测得谐振器8的固有频率。As shown in Figure 1, the
如图3所示,敏感结构1中的激励元件9和拾振元件7为同一个元件时,即激励拾振元件10时,采用切换开关11进行切换,当需要激励谐振式传感器的敏感结构1时,控制器4控制切换开关11接通激励信号发生器3,激励信号发生器3输出的信号经过切换开关11激励敏感结构1中的激励拾振元件10;激励信号完成后,控制器4控制切换开关11接通前置放大器6,激励拾振元件10输出的信号经前置放大器6后由频率检测器5检测,测得谐振器8的固有频率。As shown in Figure 3, when the
上述的激励信号发生器3由DDS芯片实现,DDS芯片可以采用ADI公司的系列DDS芯片,如AD9852等。The above-mentioned
频率检测器5可以由模拟数字转换器或微处理器实现,例如:模拟数字转换器可以ADI公司的AD7671,处理器可以采用单片机C8051F120或数字信号处理器TMS3206713。The
控制器4可以选用数字信号处理器DSP或单片机实现,例如:TMS3206713、C8051F120等处理器。The
切换开关11可以采用模拟开关或继电器实现。The changeover switch 11 can be realized by using an analog switch or a relay.
前置放大器6由根据敏感结构1的拾振元件7或激励拾振元件10的特性设计。当拾振元件7、激励拾振元件10为电阻时,可以由运算放大器实现,运算放大器的选择要考虑到传感器振动信号的带宽、运算放大器本身噪声和直流偏置,保证可以良好的实现传感器输出的微弱信号和传感器需要的激励信号的放大,具体可以选用OPA627、OPA228、LT1028等运算放大器。The
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710063638XA CN100465651C (en) | 2007-02-07 | 2007-02-07 | Resonant Sensor Control System Using Intermittent Work Mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710063638XA CN100465651C (en) | 2007-02-07 | 2007-02-07 | Resonant Sensor Control System Using Intermittent Work Mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101034115A CN101034115A (en) | 2007-09-12 |
CN100465651C true CN100465651C (en) | 2009-03-04 |
Family
ID=38730765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200710063638XA Expired - Fee Related CN100465651C (en) | 2007-02-07 | 2007-02-07 | Resonant Sensor Control System Using Intermittent Work Mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100465651C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5792645B2 (en) * | 2012-01-13 | 2015-10-14 | ルネサスエレクトロニクス株式会社 | Semiconductor device and control method thereof |
CN104729542B (en) * | 2015-02-15 | 2017-05-03 | 华东交通大学 | Embankment safety monitoring method based on self-adaption feedback-type vibrating wire sensor |
CN109374967B (en) * | 2018-11-06 | 2020-05-19 | 华中科技大学 | A method and system for detecting the resonant frequency of a low-Q-value SAW magnetoelectric sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1413890A1 (en) * | 2002-10-22 | 2004-04-28 | Yokogawa Electric Corporation | Precise frequency measuring circuit by time difference expansion and two counters as well as resonant pressure sensor transmitter |
CN1603845A (en) * | 2004-10-28 | 2005-04-06 | 复旦大学 | Detection Method of Resonant Frequency of Resonant Piezoelectric Microsensor |
CN1748353A (en) * | 2003-02-27 | 2006-03-15 | 松下电器产业株式会社 | Closed-loop control of linear vibration exciter |
CN1866747A (en) * | 2006-06-23 | 2006-11-22 | 北京航空航天大学 | Digital phase-locked closed-loop of resistance vibration pickup type silicon micromechanical resonant sensor |
CN1877998A (en) * | 2006-06-23 | 2006-12-13 | 北京航空航天大学 | Digital phase-locking loop for resistance vibration-pickup type silicon micro-mechanical resonate sensor |
-
2007
- 2007-02-07 CN CNB200710063638XA patent/CN100465651C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1413890A1 (en) * | 2002-10-22 | 2004-04-28 | Yokogawa Electric Corporation | Precise frequency measuring circuit by time difference expansion and two counters as well as resonant pressure sensor transmitter |
CN1748353A (en) * | 2003-02-27 | 2006-03-15 | 松下电器产业株式会社 | Closed-loop control of linear vibration exciter |
CN1603845A (en) * | 2004-10-28 | 2005-04-06 | 复旦大学 | Detection Method of Resonant Frequency of Resonant Piezoelectric Microsensor |
CN1866747A (en) * | 2006-06-23 | 2006-11-22 | 北京航空航天大学 | Digital phase-locked closed-loop of resistance vibration pickup type silicon micromechanical resonant sensor |
CN1877998A (en) * | 2006-06-23 | 2006-12-13 | 北京航空航天大学 | Digital phase-locking loop for resistance vibration-pickup type silicon micro-mechanical resonate sensor |
Non-Patent Citations (2)
Title |
---|
热激励谐振式硅微结构压力传感器闭环系统. 樊尚春等.测控技术,第19卷第2期. 2000 |
热激励谐振式硅微结构压力传感器闭环系统. 樊尚春等.测控技术,第19卷第2期. 2000 * |
Also Published As
Publication number | Publication date |
---|---|
CN101034115A (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101571407B (en) | A kind of vibrating wire sensor excitation method | |
JP6410827B2 (en) | Resonant impedance sensing with negative impedance control loop | |
JP5117505B2 (en) | Photoacoustic detector with improved signal processing | |
KR101044626B1 (en) | Frequency Measurement System of Vibration String Sensor Using Digital Counter Method | |
CN107515311B (en) | A kind of mems accelerometer based on synchronous resonant frequency detecting | |
CN100465651C (en) | Resonant Sensor Control System Using Intermittent Work Mode | |
CN103245819B (en) | Magnetic excitation resonant piezoresistive cantilever beam is adopted to measure the method for DC current or DC voltage | |
JP5036425B2 (en) | Broadband magnetic field compensation system | |
US20140245834A1 (en) | Vibronic Measuring Device | |
JP2011513744A (en) | Photoacoustic sample detector with background compensation | |
CN100527023C (en) | Closed loop controlling system based on amplitude-frequency feature of resonance type sensor | |
CN103339471A (en) | Device for measuring a yaw rate | |
CN102393661A (en) | Digital closed loop control system for Coriolis mass flowmeter (CMF) | |
GB0901022D0 (en) | System for measuring a property and ultrasound receiver therefor | |
CN100465593C (en) | Phase-locked closed-loop system of resistance-pickup silicon micromachined resonant sensor | |
CN207908659U (en) | The device of periodic modulation Magnetic Sensor sensitivity decrease device noise | |
CN1877998B (en) | Digital Phase-Locked Closed Loop of Resistive Pickup Silicon Micromachined Resonant Sensor | |
CN100451552C (en) | Double resonator sensitive structure resonant sensor | |
JP2986950B2 (en) | Electromagnetic flow meter | |
JP2008058211A (en) | Density sensor | |
CN211401408U (en) | Vibrating wire type wide-frequency fiber laser vibration sensor | |
CN212133679U (en) | Gyro sensor module | |
CN113933574A (en) | Signal processing circuit for reducing low-frequency noise of magnetoresistive sensor | |
SU1322145A1 (en) | Device for quality control of structural articles | |
CN212843959U (en) | Micro-vibration detection processing circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090304 Termination date: 20120207 |