CN100461454C - Semiconductor device and method for forming the same - Google Patents
Semiconductor device and method for forming the same Download PDFInfo
- Publication number
- CN100461454C CN100461454C CNB2006100016734A CN200610001673A CN100461454C CN 100461454 C CN100461454 C CN 100461454C CN B2006100016734 A CNB2006100016734 A CN B2006100016734A CN 200610001673 A CN200610001673 A CN 200610001673A CN 100461454 C CN100461454 C CN 100461454C
- Authority
- CN
- China
- Prior art keywords
- semiconductor
- buffer layer
- layer
- gate
- gate dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 186
- 238000000034 method Methods 0.000 title claims abstract description 31
- 125000006850 spacer group Chemical group 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 23
- 229910044991 metal oxide Inorganic materials 0.000 claims description 18
- 150000004706 metal oxides Chemical class 0.000 claims description 18
- 229910052732 germanium Inorganic materials 0.000 claims description 15
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 13
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/751—Insulated-gate field-effect transistors [IGFET] having composition variations in the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/01—Manufacture or treatment
- H10D62/021—Forming source or drain recesses by etching e.g. recessing by etching and then refilling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/018—Spacers formed inside holes at the prospective gate locations, e.g. holes left by removing dummy gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域 technical field
本发明是有关于一种半导体,尤其是指具有应力沟道的互补式金属氧化物半导体晶体管(CMOS)元件。The present invention relates to a semiconductor, in particular to a complementary metal-oxide-semiconductor transistor (CMOS) device with a stressed channel.
背景技术 Background technique
目前的半导体技术仍持续地朝降低超大型集成电路(VeryLarge Scale Integration,VLSI)电路的体积努力。当电路尺寸越小、操作越快时,增加每一元件的驱动电流变成越发重要的课题。元件电流与栅极长度、栅极电容和载流子移动率(mobility)密切相关。缩短多晶硅栅极长度、增加栅极电容和加快载流子移动率都可以增加元件电流。在缩短栅极长度方面,代表的是降低元件的尺寸。增加栅极电容方面,可由降低栅极介电层的厚度、增加栅极介电常数等来达成。而为了改进元件电流,如何增加载流子移动率也已被广泛研究。Current semiconductor technology is still making continuous efforts to reduce the volume of Very Large Scale Integration (VLSI) circuits. As the circuit size becomes smaller and the operation becomes faster, increasing the driving current of each element becomes an increasingly important issue. The device current is closely related to gate length, gate capacitance and carrier mobility. Shortening the polysilicon gate length, increasing gate capacitance, and accelerating carrier mobility can all increase device current. In terms of shortening the gate length, it means reducing the size of the components. In terms of increasing the gate capacitance, it can be achieved by reducing the thickness of the gate dielectric layer, increasing the gate dielectric constant, and so on. In order to improve the device current, how to increase the carrier mobility has also been extensively studied.
现有增加载流子移动率的方法之一为形成一个应变沟道(strained channel)。应变力可以增加基体(bulk)电子和空穴的移动力。应变沟道可以增加金属氧化物半导体晶体管(Metal OxideSemiconductor,MOS)元件的效能。这种技术的好处在于不改变栅极长度,亦不会增加额外的电路制程或设计。One of the existing methods to increase carrier mobility is to form a strained channel. The strain can increase the mobility of bulk electrons and holes. Strained channels can increase the performance of Metal Oxide Semiconductor (MOS) devices. The advantage of this technique is that it does not change the gate length, nor does it add additional circuit process or design.
当硅受到一平面(in-plane)应力,室温下的电子移动率会大大地增加。施加应力的其中一个方法为以渐层改变锗浓度的硅化锗外延为基底(substrate)。将一层硅形成于一松弛的硅化锗层上,该层硅就会受到一应力,再形成金属氧化物半导体晶体管于该层硅上。因为硅化锗的晶格常数大于硅的晶格常数,所以硅层就受到一二维的张力,使得载流子的移动率也因为受到应力而提升。When silicon is subjected to in-plane stress, the electron mobility at room temperature increases greatly. One method of applying stress is to use GeSi epitaxy with gradually changing Ge concentration as the substrate. A layer of silicon is formed on a relaxed silicon germanium layer, the layer of silicon is subjected to a stress, and then metal oxide semiconductor transistors are formed on the layer of silicon. Because the lattice constant of germanium silicide is larger than that of silicon, the silicon layer is subjected to one-dimensional tension, so that the mobility of carriers is also increased due to the stress.
在一个元件中,应力可以来自三种不同的方向:平行于金属氧化物半导体晶体管沟道长度的方向、平行于金属氧化物半导体晶体管沟道宽度的方向以及垂直于沟道平面的方向。平行于沟道长度和宽度的应力称为平面应力。据研究结果显示,二维的、平面张力可以增加N型金属氧化物半导体晶体管的效能,而平行于沟道长度方向的压缩应力可以增加P型金属氧化物半导体晶体管的效能。In a device, stress can come from three different directions: a direction parallel to the channel length of the MOS transistor, a direction parallel to the channel width of the MOS transistor, and a direction perpendicular to the channel plane. The stress parallel to the length and width of the channel is called plane stress. According to research results, two-dimensional, planar tension can increase the performance of NMOS transistors, and compressive stress parallel to the channel length direction can increase the performance of PMOS transistors.
发明内容 Contents of the invention
有鉴于此,本发明主要提出一方法,以对N型金属氧化物半导体晶体管增加张力,而对P型金属氧化物半导体晶体管施加压缩应力,以增加金属氧化物半导体晶体管效能。In view of this, the present invention mainly proposes a method to increase tension on the N-type MOS transistor and apply compressive stress to the P-type MOS transistor, so as to increase the performance of the MOS transistor.
本发明提出一种沟道受到应力的半导体元件,以及一种其制造方法。The present invention provides a semiconductor element whose channel is stressed, and a manufacturing method thereof.
本发明提出一种半导体元件,包括有栅极、间隙壁(spacer)、缓冲层、源极/漏极区域。栅极包括有栅极电极及栅极介电层,且上述栅极介电层位于上述栅极电极之下。间隙壁形成上述栅极电极及上述栅极介电层的侧壁。缓冲层位于一半导体基底上,上述缓冲层具有一第一部分和较第一部分厚的第二部分于上述栅极介电层及上述间隙壁之下,其中位于上述缓冲层的第一部分的上表面较位于上述缓冲层的第二部分的上表面凹陷,并构成一凹部。源极/漏极区域大致与上述间隙壁对齐。缓冲层的晶格常数大于位于其下的基底的晶格常数。上述半导体元件更包括有一半导体覆盖层,位于上述第二部分的缓冲层及栅极介电层之间,其中半导体覆盖层的晶格常数小于缓冲层的晶格常数。The present invention provides a semiconductor device, including a gate, a spacer, a buffer layer, and a source/drain region. The gate includes a gate electrode and a gate dielectric layer, and the gate dielectric layer is located under the gate electrode. The spacers form sidewalls of the gate electrode and the gate dielectric layer. The buffer layer is located on a semiconductor substrate, the buffer layer has a first part and a second part thicker than the first part under the gate dielectric layer and the spacer, wherein the upper surface of the first part of the buffer layer is thicker The upper surface of the second part located on the buffer layer is recessed and constitutes a recess. The source/drain regions are substantially aligned with the aforementioned spacers. The buffer layer has a lattice constant greater than that of the underlying substrate. The above-mentioned semiconductor device further includes a semiconductor capping layer located between the buffer layer and the gate dielectric layer of the second part, wherein the lattice constant of the semiconductor capping layer is smaller than that of the buffer layer.
本发明所述的半导体元件,位于上述第二部分的缓冲层的厚度约介于2纳米至50纳米之间。In the semiconductor device of the present invention, the thickness of the buffer layer located in the second part is approximately between 2 nm and 50 nm.
本发明所述的半导体元件,该半导体元件是为一P型金属氧化物半导体晶体管,且上述凹部的深度约小于50纳米。According to the semiconductor device of the present invention, the semiconductor device is a P-type metal-oxide-semiconductor transistor, and the depth of the recess is less than about 50 nanometers.
本发明所述的半导体元件,该半导体元件是为一N型金属氧化物半导体晶体管,且上述凹部的深度约介于2纳米至50纳米之间。According to the semiconductor element of the present invention, the semiconductor element is an N-type metal-oxide-semiconductor transistor, and the depth of the concave portion is approximately between 2 nanometers and 50 nanometers.
本发明所述的半导体元件,上述缓冲层包括硅、锗、碳或其混和物。In the semiconductor device of the present invention, the buffer layer includes silicon, germanium, carbon or a mixture thereof.
本发明所述的半导体元件,上述间隙壁延伸至上述栅极介电层以下,延伸的深度约小于30纳米。In the semiconductor device of the present invention, the spacers extend below the gate dielectric layer, and the depth of the extension is less than about 30 nanometers.
本发明所述的半导体元件,上述半导体覆盖层的成份包括硅及锗,且上述半导体覆盖层的锗浓度小于上述缓冲层的锗浓度。In the semiconductor device of the present invention, the composition of the semiconductor capping layer includes silicon and germanium, and the germanium concentration of the semiconductor capping layer is lower than the germanium concentration of the buffer layer.
本发明所述的半导体元件,所述半导体元件是为一P型金属氧化物半导体晶体管,且上述半导体覆盖层的厚度约介于0.5纳米至20纳米之间。According to the semiconductor element of the present invention, the semiconductor element is a P-type metal oxide semiconductor transistor, and the thickness of the semiconductor capping layer is approximately between 0.5 nanometers and 20 nanometers.
本发明所述的半导体元件,所述半导体元件是为一N型金属氧化物半导体晶体管,且上述半导体覆盖层的厚度约介于0.6纳米至25纳米之间,具上述半导体覆盖层的厚度大于所述P型金属氧化物半导体晶体管的半导体覆盖层的厚度。In the semiconductor element of the present invention, the semiconductor element is an N-type metal oxide semiconductor transistor, and the thickness of the above-mentioned semiconductor covering layer is approximately between 0.6 nanometers and 25 nanometers, and the thickness of the above-mentioned semiconductor covering layer is greater than the above-mentioned The thickness of the semiconductor capping layer of the PMOS transistor.
本发明所述的半导体元件,移除缓冲层的一部分,使位于上述第一部分的缓冲层下的上述半导体基底的上表面凹陷。In the semiconductor device according to the present invention, a part of the buffer layer is removed, so that the upper surface of the semiconductor substrate located under the first part of the buffer layer is recessed.
本发明所述的半导体元件,P型金属氧化物半导体晶体管的半导体覆盖层厚度比N型金属氧化物半导体晶体管的半导体覆盖层厚度要薄。In the semiconductor element of the present invention, the thickness of the semiconductor covering layer of the P-type metal oxide semiconductor transistor is thinner than that of the N-type metal oxide semiconductor transistor.
由于晶格常数的差异,使得半导体覆盖层受到一张力,而缓冲层受到一压缩力,这种混和了张力和压缩力结构使得P型金属氧化物半导体晶体管N型金属氧化物半导体晶体管的效能都被提升。Due to the difference in lattice constant, the semiconductor capping layer is subjected to a tension, and the buffer layer is subjected to a compression force. This mixed tension and compression structure makes the performance of the P-type metal-oxide-semiconductor transistor and the N-type metal-oxide-semiconductor transistor. be promoted.
本发明提供一种半导体元件,所述半导体元件包括:一半导体基底;一栅极结构,包括一栅极电极及一栅极介电层,且上述栅极电极位于上述栅极介电层之上,上述栅极介电层位于上述半导体基底之上;一间隙壁,形成于上述栅极结构的侧壁;以及一缓冲层,上述缓冲层位于上述半导体基底与上述栅极结构及上述间隙壁之间,且上述缓冲层具有一第一部分、一较第一部分厚的第二部分以及一凹陷的上表面,大致不被上述栅极结构覆盖,并构成一凹部,大致与上述间隙壁的外缘对齐,且上述缓冲层的晶格常数大于上述半导体基底的晶格常数。The present invention provides a semiconductor element, which includes: a semiconductor substrate; a gate structure, including a gate electrode and a gate dielectric layer, and the gate electrode is located on the gate dielectric layer , the above-mentioned gate dielectric layer is located on the above-mentioned semiconductor substrate; a spacer is formed on the sidewall of the above-mentioned gate structure; and a buffer layer is located between the above-mentioned semiconductor substrate, the above-mentioned gate structure and the above-mentioned spacer , and the buffer layer has a first portion, a second portion thicker than the first portion, and a concave upper surface, which is substantially not covered by the gate structure, and constitutes a concave portion, substantially aligned with the outer edge of the spacer , and the lattice constant of the buffer layer is larger than the lattice constant of the semiconductor substrate.
本发明所述的半导体元件,上述凹部的下表面向下延伸至上述半导体基底。In the semiconductor device according to the present invention, the lower surface of the concave portion extends downward to the semiconductor substrate.
本发明所述的半导体元件,更包括一半导体覆盖层,介于上述缓冲层及上述栅极结构之间,且上述凹部的下表面向下延伸至上述半导体覆盖层。The semiconductor device of the present invention further includes a semiconductor capping layer interposed between the buffer layer and the gate structure, and the lower surface of the recess extends downward to the semiconductor capping layer.
本发明另提出一种形成一半导体元件的方法,包括形成一缓冲层于一基底上,其中上述缓冲层的晶格常数与上述基底的晶格常数不同,且上述缓冲层具有一第一部分与较第一部分厚的第二部分;形成一栅极介电层于上述缓冲层之上;形成一栅极电极于上述栅极介电层上,分别图案化出上述栅极介电层及栅极电极层;形成一间隙壁于栅极的侧壁,使不位在栅极及间隙壁下的缓冲层凹陷;以及形成源极/漏极区域,大致与上述间隙壁对齐。上述的半导体元件可为一凹陷深度不超过50纳米的P型金属氧化物半导体晶体管;或可为一凹陷深度介于2纳米到50纳米之间的N型金属氧化物半导体晶体管。The present invention also proposes a method for forming a semiconductor device, including forming a buffer layer on a substrate, wherein the lattice constant of the buffer layer is different from the lattice constant of the substrate, and the buffer layer has a first portion The first part is thicker than the second part; forming a gate dielectric layer on the above-mentioned buffer layer; forming a gate electrode on the above-mentioned gate dielectric layer, patterning the above-mentioned gate dielectric layer and gate electrode respectively layer; forming a spacer on the sidewall of the gate to recess the buffer layer not located under the gate and the spacer; and forming source/drain regions substantially aligned with the spacer. The above-mentioned semiconductor element can be a P-type metal-oxide-semiconductor transistor with a recess depth not exceeding 50 nanometers; or an N-type metal-oxide-semiconductor transistor with a recess depth between 2 nanometers and 50 nanometers.
凹部的下表面向下可以延伸至半导体基底处,在较佳实施例中,凹陷深度不超过栅极介电层以下30纳米处。The lower surface of the recess can extend downwards to the semiconductor substrate, and in a preferred embodiment, the depth of the recess is no more than 30 nanometers below the gate dielectric layer.
上述方法更包括形成一半导体覆盖层,上述半导体覆盖层的晶格常数小于缓冲层的晶格常数,且上述半导体覆盖层位于缓冲层及栅极介电层之间。若上述半导体元件为一P型金属氧化物半导体晶体管,则半导体覆盖层的厚度约介于0.5纳米到20纳米之间。若上述半导体元件为一N型金属氧化物半导体晶体管,则半导体覆盖层的厚度约介于0.6纳米到25纳米之间。在较佳实施例中,P型金属氧化物半导体晶体管的半导体覆盖层厚度小于N型金属氧化物半导体晶体管的半导体覆盖层厚度。The above method further includes forming a semiconductor capping layer, the lattice constant of the semiconductor capping layer is smaller than that of the buffer layer, and the semiconductor capping layer is located between the buffer layer and the gate dielectric layer. If the above-mentioned semiconductor device is a P-type metal oxide semiconductor transistor, the thickness of the semiconductor capping layer is approximately between 0.5 nanometers and 20 nanometers. If the semiconductor element is an NMOS transistor, the thickness of the semiconductor capping layer is about 0.6 nm to 25 nm. In a preferred embodiment, the thickness of the semiconductor capping layer of the PMOS transistor is smaller than the thickness of the semiconductor capping layer of the NMOS transistor.
本发明所述半导体元件及形成半导体元件的方法,是对N型金属氧化物半导体晶体管增加张力,而对P型金属氧化物半导体晶体管施加压缩应力,以增加金属氧化物半导体晶体管效能。The semiconductor element and the method for forming the semiconductor element in the present invention increase the tension on the N-type metal oxide semiconductor transistor, and apply compressive stress on the P-type metal oxide semiconductor transistor, so as to increase the performance of the metal oxide semiconductor transistor.
附图说明 Description of drawings
图1至图5D为依据本发明的较佳实施例显示在制造一半导体元件的中间过程的剖面图;1 to 5D are cross-sectional views showing the intermediate process of manufacturing a semiconductor device according to a preferred embodiment of the present invention;
图6A至图6B为N型和P型金属氧化物半导体晶体管的沟道示意图;6A to 6B are schematic channel diagrams of N-type and P-type metal oxide semiconductor transistors;
图7为关闭状态(off-state)下漏电流对工作电流(drivecurrent)的关系图。FIG. 7 is a graph showing the relationship between leakage current and drive current in an off-state.
具体实施方式 Detailed ways
为使本发明的上述目的、特征和优点能更明显易懂,下文特举一较佳实施例,并配合所附图式,作详细说明如下:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, a preferred embodiment is specifically cited below, and in conjunction with the accompanying drawings, the detailed description is as follows:
图1至图5D为依据本发明的较佳实施例显示在一制造半导体元件的中间过程的剖面图。在不同图示中,相同的数字代表相同的元件。1 to 5D are cross-sectional views showing an intermediate process of manufacturing a semiconductor device according to a preferred embodiment of the present invention. In different drawings, the same numerals represent the same elements.
图1显示3层依序堆叠的2、4及6层。基底2多为半导体材料,一般采用一硅作为基底的材料。基底2可为基体硅(bulk silicon)或现有的绝缘物上硅(silicon-on-insulator,SOI)结构,其中绝缘物上硅为在一埋层氧化层(buried oxide later,BOX)上形成一绝缘层。Figure 1 shows 2, 4 and 6 layers stacked in sequence of 3 layers. The
缓冲层4多半外延成长于基底2之上。缓冲层4的晶格常数(lattice constant)多半大于基底2的晶格常数。在较佳实施例中,缓冲层4的成份包括硅及锗(geranium)。尽管缓冲层并非只用到硅及锗两种元素,但为简化表示,缓冲层4亦可写为硅锗层4。在其他实施例中,缓冲层4的成份包括有硅、锗及碳(carbon)。在较佳实施例中,缓冲层的厚度约介于2纳米(nm)至50纳米之间。The
一个半导体覆盖层6外延成长于缓冲层4上。在较佳实施例中,半导体覆盖层6的晶格常数小于缓冲层4的晶格常数,且由硅组成。在其他实施例中,半导体覆盖层6的成份可能包括硅、锗或其他相似性质的材料,且锗的浓度会低于缓冲层中锗的浓度。故整体来说,半导体覆盖层6的晶格常数小于缓冲层4的晶格常数。尽管半导体覆盖层并非只用到半导体材料,但为简化表示,半导体覆盖层6亦可写为硅覆盖层6。在较佳实施例中,P型金属氧化物半导体晶体管的半导体覆盖层6的厚度多半小于N型金属氧化物半导体晶体管的半导体覆盖层6的厚度。在较佳实施例中,厚度可由以下两种方法决定。(1)同时在N型及P型金属氧化物半导体晶体管形成半导体覆盖层,再减少P型金属氧化物半导体晶体管的半导体覆盖层的厚度。(2)同时在N型及P型金属氧化物半导体晶体管形成具有一第一厚度的半导体覆盖层,将P型金属氧化物半导体晶体管遮盖起来(masking),再于N型金属氧化物半导体晶体管上形成具有一第二厚度的半导体覆盖层。在P型金属氧化物半导体晶体管上的半导体覆盖层厚度约介于0.5纳米至20纳米之间。而N型金属氧化物半导体晶体管上的半导体覆盖层厚度约介于0.6纳米至25纳米之间。A
接着形成栅极介电层8和栅极电极10,如图2所示。一栅极介电层形成于半导体覆盖层6之上,栅极电极再形成于栅极介电层之上。接着在栅极介电层和栅极电极层上图案化(pattern)出所需要的位置及大小,再进行蚀刻。在较佳实施例中,栅极介电层8的成分包括二氧化硅(SiO2),亦可称为栅极氧化层8。在其他的实施例中,栅极介电层8的成分包括氮氧化硅(oxynitride)、氮化硅(nitride)、高介电常数(high-k)材料或其他具有相似性质的材料。尽管栅极电极可用其他材料如金属、金属硅化物或其他相似性质的材料,但在较佳实施例中,栅极电极10的成分多为多晶硅(polysilicon)。Next, a
图3显示一对间隙壁12形成于栅极介电层8及栅极电极10的侧壁。间隙壁12有如提供随后制程步骤的源极/漏极一自我对准遮罩。源极/漏极留待稍后详述。间隙壁12可由现有的毯覆式沉积(blanket deposit)一介电层的方法,再自介电层的下表面非等向蚀刻(anisotropic etch)移除上述介电层,留下来的就是间隙壁12。值得注意的是,当图案化栅极介电层8和栅极电极10时,由于制程的变异,有可能因为过度蚀刻而使间隙壁12延伸至半导体覆盖层6。因此,降低了半导体覆盖层的伸张应力(tensile strain)。故在较佳实施例中,半导体覆盖层6的过度蚀刻的深度Dpoly需小于30纳米。FIG. 3 shows a pair of
凹部9是沿着间隙壁12形成,如图4A、图4B所示。图4A显示,在较佳实施例中,凹部9的下表面向下延伸至半导体覆盖层6及缓冲层4,并位于基底2之上。凹部9于基底2的深度Dsubstrate约小于50纳米。自由表面(free surface)5、7位于缓冲层4的侧壁。其中,自由表面代表于退火(anneal)时几乎没有其他材料覆盖于其上,使此处的材料可以自由的膨胀或是收缩到其可达到的最大极限,然而,最后的结构还是会覆盖一层间介电层(inter-layerdielectric)。当缓冲层4退火时,缓冲层4会倾向于松弛并回复其晶格架构,于是缓冲层4便会膨胀。自由表面5、7使缓冲层4可自由的膨胀。在后续的退火程序中,缓冲层4会向自由表面5的左边以及自由表面7的右边膨胀。由于自由表面两边的作用力平衡,缓冲层4就产生了压缩应力(compressive strain),而半导体覆盖层6就产生了伸张应力。在较佳的实施例中,两个自由表面5、7使缓冲层4可以自由膨胀。在其他的实施例中,栅极介电层8及栅极电极旁仅产生一凹部9,故仅有一自由表面5或7。当缓冲层退火的时候,缓冲层大致上仅向一个方向膨胀。The
图4A、图4B显示较佳实施例中,一凹部9自两边间隙壁12延伸至浅沟槽隔离物(shallow trench isolation,STI)11。在其他的实施例中,如图4C所示,凹部9有一宽度W,小于间隙壁12到浅沟槽隔离物11的距离。W的宽度多半大到使缓冲层4退火时尚有膨胀空间。4A and 4B show that in a preferred embodiment, a
即使缓冲层4的侧壁并没有完全展露出来,压缩应力仍可以产生。在其他实施例中,如图4B所示,蚀刻半导体覆盖层6直到部分缓冲层4都凹陷进去。凹部9在缓冲层4有一凹陷,其深度为Dlayer。在P型金属氧化物半导体晶体管的Dlayer约介于0纳米至50纳米之间。而N型金属氧化物半导体晶体管上的Dlayer约介于2纳米至50纳米之间。Even if the sidewalls of the
由于制程变异,使得N型金属氧化物半导体晶体管与P型金属氧化物半导体晶体管的凹陷并非一致。有些情形下,N型金属氧化物半导体晶体管的凹部的下表面向下延伸至缓冲层4,而P型金属氧化物半导体晶体管的凹部的下表面向下仅延伸到半导体覆盖层6,并没有延伸至缓冲层4。Due to process variations, the recesses of the N-type MOS transistor and the P-type MOS transistor are not consistent. In some cases, the lower surface of the concave portion of the N-type metal-oxide-semiconductor transistor extends downward to the
图5A至图5D显示源极和漏极14的形成过程。在较佳实施例中,通过在间隙壁12的另一边掺杂(doping)而形成出源极和漏极。在其他的实施例中,源极/漏极位于间隙壁12没有遮蔽住的半导体材料的凹部,并根据所需要的杂质浓度于凹部外延成长半导体材料。5A to 5D show the formation process of the source and drain
根据上述的制程方法,可以衍生出数种不同的实施例。图5A、图5B显示省略半导体覆盖层6,使凹部9全位于缓冲区4之上,如图5A;或使凹部9的下表面向下延伸至基底2之上,如图5B。在较佳实施例中,由于压缩应力的产生,图5A、图5B较适合形成P型金属氧化物半导体晶体管。图5C、图5D显示半导体覆盖层6形成于缓冲层4之上。类似于图5A、图5B,凹部9可能位于与半导体覆盖层6与缓冲层4相同水平,如图5C;或凹部9的下表面向下可能延伸至基底2,如图5D。在较佳实施例中,P型金属氧化物半导体晶体管的凹部9形成于半导体覆盖层6之上而不延伸至缓冲层4。According to the above-mentioned manufacturing method, several different embodiments can be derived. 5A and 5B show that the
图6A、图6B分别显示应力16、18在缓冲层4、半导体覆盖层6的方向。由于基底2的晶格常数较小,缓冲层4受到一压缩应力,如箭头16的方向所示。由于缓冲层4的晶格常数较大,半导体覆盖层6受到一伸张应力,如箭头18的方向所示。图6A、图6B亦分别显示N、P型金属氧化物半导体晶体管的沟道20、22。由于半导体覆盖层6具有一伸张应力,所以提升了N型金属氧化物半导体晶体管的效能。对P型金属氧化物半导体晶体管而言,额外的锗使得价带(valence band)下降。举例来说,当锗浓度约介于10%到30%之间时,价带约会下降100mV到300mV。于是P型金属氧化物半导体晶体管的沟道倾向于发生在硅锗层4而非硅覆盖层6。因此,P型金属氧化物半导体晶体管的沟道区域具有压缩应力,进而增加P型金属氧化物半导体晶体管的效能。6A and 6B respectively show the directions of the
在P型金属氧化物半导体晶体管中,缓冲层多半选用硅化锗(SiGe)。然而,若硅化锗直接接触栅极介电层8,会产生一可靠度方面的问题。因此,硅化锗层4及栅极介电层8之间,一般多选用薄的硅覆盖层6。若用其他栅极介电材料,如高介电常数材料,此薄硅覆盖层6可以省去,就如图5A、图5B所显示的架构。In PMOS transistors, silicon germanium (SiGe) is mostly used as the buffer layer. However, if the germanium silicide directly contacts the
在较佳实施例显示出一半导体元件内包含有混和应力,即,伸张应力于半导体覆盖层6及压缩应力于缓冲层4。由于混和应力的存在,N型、P型金属氧化物半导体晶体管的效能都可以提升。图7显示P型金属氧化物半导体晶体管在关闭状态(off-state,oroff current)下的漏电流(leakage current)对工作电流(drivecurrent,or on current)作图的实验数据。直线26是根据一具有半导体覆盖层及缓冲层元件所绘出,而直线28是根据形成于基体硅上的P型金属氧化物半导体晶体管所绘。值得注意的是,在相同的关电流(off-current)下,本发明提出的较佳实施例的工作电流较形成于基体硅上的P型金属氧化物半导体晶体管的工作电流增加15%。而N型金属氧化物半导体晶体管亦有10%的增加(未绘出)。实验数据亦显示出改进的Ion-Ioff特性并不影响其他特性的表现。In the preferred embodiment, a semiconductor device contains mixed stress, ie, tensile stress in the
虽然本发明已通过较佳实施例说明如上,但该较佳实施例并非用以限定本发明。本领域的技术人员,在不脱离本发明的精神和范围内,应有能力对该较佳实施例做出各种更改和补充,因此本发明的保护范围以权利要求书的范围为准。此外,本发明的范围并不只限定于实施例所提出的制程、仪器、制造方法、物的组合、手段、方法或步骤。本领域的技术人员应明白根据本发明所揭露的制程、仪器、制造方法、物的组合、手段、方法或步骤,不论是目前已存在的或是将要研发的,皆可根据本发明的实施例执行大致相同的功能或达到大致相同的结果。故,权利要求的范围包括制程、仪器、制造方法、物的组合、手段、方法或步骤。Although the present invention has been described above through preferred embodiments, the preferred embodiments are not intended to limit the present invention. Those skilled in the art should be able to make various changes and supplements to the preferred embodiment without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is subject to the scope of the claims. In addition, the scope of the present invention is not limited only to the process, equipment, manufacturing method, combination of things, means, methods or steps proposed in the embodiments. Those skilled in the art should understand that the processes, instruments, manufacturing methods, combinations of objects, means, methods or steps disclosed in the present invention, whether existing or to be developed, can all be based on the embodiments of the present invention Perform substantially the same function or achieve substantially the same result. Therefore, the scope of the claims includes process, apparatus, manufacturing method, combination of things, means, methods or steps.
本发明提出数种优良的方法实施例。包括有:一种形成一半导体元件的方法,包括形成一缓冲层于一基底上,其中上述缓冲层的晶格常数与上述基底的晶格常数不同;形成一栅极介电层于上述缓冲层之上;形成一栅极电极于上述栅极介电层上,分别图案化出上述栅极介电层及栅极电极层;形成一间隙壁于栅极的侧壁,使不位在栅极及间隙壁下的缓冲层凹陷;以及形成源极/漏极区域,大致与上述间隙壁对齐。上述的半导体元件可为一凹陷深度不超过50纳米的P型金属氧化物半导体晶体管;或可为一凹陷深度介于2纳米到50纳米之间的N型金属氧化物半导体晶体管。The present invention proposes several advantageous method embodiments. Including: a method of forming a semiconductor device, including forming a buffer layer on a substrate, wherein the lattice constant of the buffer layer is different from the lattice constant of the substrate; forming a gate dielectric layer on the buffer layer above; form a gate electrode on the above-mentioned gate dielectric layer, pattern the above-mentioned gate dielectric layer and gate electrode layer; form a spacer on the side wall of the gate, so that it is not located And the buffer layer under the spacer is recessed; and the source/drain region is formed, roughly aligned with the spacer. The above-mentioned semiconductor element can be a P-type metal-oxide-semiconductor transistor with a recess depth not exceeding 50 nanometers; or an N-type metal-oxide-semiconductor transistor with a recess depth between 2 nanometers and 50 nanometers.
凹部的下表面向下可以延伸至半导体基底处,在较佳实施例中,凹陷深度不超过栅极介电层以下30纳米处。The lower surface of the recess can extend downwards to the semiconductor substrate, and in a preferred embodiment, the depth of the recess is no more than 30 nanometers below the gate dielectric layer.
上述方法更包括形成一半导体覆盖层,上述半导体覆盖层的晶格常数小于缓冲层的晶格常数,且上述半导体覆盖层位于缓冲层及栅极介电层之间。若上述半导体元件为一P型金属氧化物半导体晶体管,则半导体覆盖层的厚度约介于0.5纳米到20纳米之间。若上述半导体元件为一N型金属氧化物半导体晶体管,则半导体覆盖层的厚度约介于0.6纳米到25纳米之间。在较佳实施例中,P型金属氧化物半导体晶体管的半导体覆盖层厚度小于N型金属氧化物半导体晶体管的半导体覆盖层厚度。The above method further includes forming a semiconductor capping layer, the lattice constant of the semiconductor capping layer is smaller than that of the buffer layer, and the semiconductor capping layer is located between the buffer layer and the gate dielectric layer. If the above-mentioned semiconductor device is a P-type metal oxide semiconductor transistor, the thickness of the semiconductor capping layer is approximately between 0.5 nanometers and 20 nanometers. If the semiconductor element is an NMOS transistor, the thickness of the semiconductor capping layer is about 0.6 nm to 25 nm. In a preferred embodiment, the thickness of the semiconductor capping layer of the PMOS transistor is smaller than the thickness of the semiconductor capping layer of the NMOS transistor.
附图中符号的简单说明如下:A brief description of the symbols in the drawings is as follows:
2:基底2: base
4:缓冲层4: buffer layer
5、7:自由表面5, 7: Free surface
6:半导体覆盖层6: Semiconductor cover layer
8:栅极介电层8: Gate dielectric layer
9:凹部9: Concave
10:栅极电极10: Gate electrode
11:浅沟槽隔离物11: Shallow trench isolation
12:间隙壁12: spacer wall
14:源极/漏极14: Source/Drain
Dpoly:过度蚀刻的深度D poly : Depth of overetching
W:凹部的宽度W: Width of the recess
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64564905P | 2005-01-21 | 2005-01-21 | |
US60/645,649 | 2005-01-21 | ||
US11/115,484 | 2005-04-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1825627A CN1825627A (en) | 2006-08-30 |
CN100461454C true CN100461454C (en) | 2009-02-11 |
Family
ID=36936153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100016734A Active CN100461454C (en) | 2005-01-21 | 2006-01-20 | Semiconductor device and method for forming the same |
Country Status (3)
Country | Link |
---|---|
US (4) | US7465972B2 (en) |
CN (1) | CN100461454C (en) |
TW (1) | TWI277211B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12131953B2 (en) | 2021-07-05 | 2024-10-29 | Changxin Memory Technologies, Inc. | Semiconductor structure having PMOS transistor with a channel layer and forming method thereof |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060151808A1 (en) * | 2005-01-12 | 2006-07-13 | Chien-Hao Chen | MOSFET device with localized stressor |
US7465972B2 (en) | 2005-01-21 | 2008-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | High performance CMOS device design |
US7268362B2 (en) * | 2005-02-25 | 2007-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | High performance transistors with SiGe strain |
US20090206394A1 (en) * | 2005-04-01 | 2009-08-20 | Daniel Chanemougame | Strained Channel PMOS Transistor and Corresponding Production Method |
US7947546B2 (en) * | 2005-10-31 | 2011-05-24 | Chartered Semiconductor Manufacturing, Ltd. | Implant damage control by in-situ C doping during SiGe epitaxy for device applications |
US7323392B2 (en) * | 2006-03-28 | 2008-01-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | High performance transistor with a highly stressed channel |
US7608489B2 (en) * | 2006-04-28 | 2009-10-27 | International Business Machines Corporation | High performance stress-enhance MOSFET and method of manufacture |
JP5286701B2 (en) | 2007-06-27 | 2013-09-11 | ソニー株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US7829369B2 (en) * | 2007-07-12 | 2010-11-09 | Aptina Imaging Corporation | Methods of forming openings |
GB0717976D0 (en) * | 2007-09-14 | 2007-10-31 | Tavkhelldze Avto | Quantum interference depression effect MOS transistor |
US7541629B1 (en) * | 2008-04-21 | 2009-06-02 | International Business Machines Corporation | Embedded insulating band for controlling short-channel effect and leakage reduction for DSB process |
KR101776926B1 (en) | 2010-09-07 | 2017-09-08 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
US9209098B2 (en) | 2011-05-19 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | HVMOS reliability evaluation using bulk resistances as indices |
US9059321B2 (en) * | 2012-05-14 | 2015-06-16 | International Business Machines Corporation | Buried channel field-effect transistors |
CN103871882B (en) * | 2012-12-17 | 2016-09-28 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacture method thereof |
US9978833B2 (en) | 2016-03-11 | 2018-05-22 | Samsung Electronics Co., Ltd. | Methods for varied strain on nano-scale field effect transistor devices |
TW202429716A (en) * | 2023-01-06 | 2024-07-16 | 聯華電子股份有限公司 | Edmos and fabricating method of the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0964340A (en) * | 1995-08-25 | 1997-03-07 | Denso Corp | Field effect transistor and its manufacture |
CN1192587A (en) * | 1997-03-05 | 1998-09-09 | 松下电器产业株式会社 | Field effect transistor |
US6492216B1 (en) * | 2002-02-07 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method of forming a transistor with a strained channel |
US20030162348A1 (en) * | 2001-11-30 | 2003-08-28 | Taiwan Semiconductor Manufacturing Company | Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer |
US20040026765A1 (en) * | 2002-06-07 | 2004-02-12 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US722205A (en) * | 1902-08-11 | 1903-03-10 | Chattanooga Plow Company | Wheel-plow. |
US7391087B2 (en) | 1999-12-30 | 2008-06-24 | Intel Corporation | MOS transistor structure and method of fabrication |
FR2812764B1 (en) | 2000-08-02 | 2003-01-24 | St Microelectronics Sa | METHOD FOR MANUFACTURING SUBSTRATE OF SUBSTRATE-SELF-INSULATION OR SUBSTRATE-ON-VACUUM AND DEVICE OBTAINED |
EP1415331A2 (en) | 2001-08-06 | 2004-05-06 | Massachusetts Institute Of Technology | Formation of planar strained layers |
US6600170B1 (en) * | 2001-12-17 | 2003-07-29 | Advanced Micro Devices, Inc. | CMOS with strained silicon channel NMOS and silicon germanium channel PMOS |
US6900521B2 (en) | 2002-06-10 | 2005-05-31 | Micron Technology, Inc. | Vertical transistors and output prediction logic circuits containing same |
JP4421811B2 (en) | 2002-06-25 | 2010-02-24 | 株式会社ルネサステクノロジ | Semiconductor integrated circuit device and manufacturing method thereof |
JP2004241755A (en) * | 2003-01-15 | 2004-08-26 | Renesas Technology Corp | Semiconductor device |
US6825086B2 (en) * | 2003-01-17 | 2004-11-30 | Sharp Laboratories Of America, Inc. | Strained-silicon channel CMOS with sacrificial shallow trench isolation oxide liner |
US6955952B2 (en) | 2003-03-07 | 2005-10-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain balanced structure with a tensile strained silicon channel and a compressive strained silicon-germanium channel for CMOS performance enhancement |
US6882025B2 (en) | 2003-04-25 | 2005-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained-channel transistor and methods of manufacture |
WO2005018005A1 (en) * | 2003-06-26 | 2005-02-24 | Rj Mears, Llc | Semiconductor device including mosfet having band-engineered superlattice |
US6855963B1 (en) * | 2003-08-29 | 2005-02-15 | International Business Machines Corporation | Ultra high-speed Si/SiGe modulation-doped field effect transistors on ultra thin SOI/SGOI substrate |
US7057216B2 (en) * | 2003-10-31 | 2006-06-06 | International Business Machines Corporation | High mobility heterojunction complementary field effect transistors and methods thereof |
US6881635B1 (en) | 2004-03-23 | 2005-04-19 | International Business Machines Corporation | Strained silicon NMOS devices with embedded source/drain |
JP4102334B2 (en) | 2004-06-16 | 2008-06-18 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
US7227205B2 (en) | 2004-06-24 | 2007-06-05 | International Business Machines Corporation | Strained-silicon CMOS device and method |
US7102201B2 (en) * | 2004-07-15 | 2006-09-05 | International Business Machines Corporation | Strained semiconductor device structures |
JP4327104B2 (en) | 2005-01-20 | 2009-09-09 | 富士通マイクロエレクトロニクス株式会社 | Manufacturing method of MOS type field effect transistor and MOS type field effect transistor |
US7465972B2 (en) | 2005-01-21 | 2008-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | High performance CMOS device design |
US7256081B2 (en) | 2005-02-01 | 2007-08-14 | International Business Machines Corporation | Structure and method to induce strain in a semiconductor device channel with stressed film under the gate |
US7238555B2 (en) | 2005-06-30 | 2007-07-03 | Freescale Semiconductor, Inc. | Single transistor memory cell with reduced programming voltages |
US7238561B2 (en) | 2005-08-02 | 2007-07-03 | Freescale Semiconductor, Inc. | Method for forming uniaxially strained devices |
US7575975B2 (en) | 2005-10-31 | 2009-08-18 | Freescale Semiconductor, Inc. | Method for forming a planar and vertical semiconductor structure having a strained semiconductor layer |
US7422950B2 (en) | 2005-12-14 | 2008-09-09 | Intel Corporation | Strained silicon MOS device with box layer between the source and drain regions |
US20070202561A1 (en) | 2006-02-10 | 2007-08-30 | Becton Dickinson And Company | Electronic Detection Immunoassays that Utilize a Binder Support Medium |
US7538002B2 (en) | 2006-02-24 | 2009-05-26 | Freescale Semiconductor, Inc. | Semiconductor process integrating source/drain stressors and interlevel dielectric layer stressors |
US7452784B2 (en) | 2006-05-25 | 2008-11-18 | International Business Machines Corporation | Formation of improved SOI substrates using bulk semiconductor wafers |
KR100841337B1 (en) | 2007-01-12 | 2008-06-26 | 삼성전자주식회사 | Semiconductor element and method of forming the same |
-
2005
- 2005-04-27 US US11/115,484 patent/US7465972B2/en not_active Expired - Lifetime
- 2005-12-07 TW TW094143152A patent/TWI277211B/en active
-
2006
- 2006-01-20 CN CNB2006100016734A patent/CN100461454C/en active Active
-
2008
- 2008-12-09 US US12/330,961 patent/US8507951B2/en active Active
-
2013
- 2013-08-07 US US13/961,656 patent/US9159629B2/en not_active Expired - Lifetime
-
2015
- 2015-10-12 US US14/880,644 patent/US9711413B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0964340A (en) * | 1995-08-25 | 1997-03-07 | Denso Corp | Field effect transistor and its manufacture |
CN1192587A (en) * | 1997-03-05 | 1998-09-09 | 松下电器产业株式会社 | Field effect transistor |
US20030162348A1 (en) * | 2001-11-30 | 2003-08-28 | Taiwan Semiconductor Manufacturing Company | Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer |
US6492216B1 (en) * | 2002-02-07 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method of forming a transistor with a strained channel |
US20040026765A1 (en) * | 2002-06-07 | 2004-02-12 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12131953B2 (en) | 2021-07-05 | 2024-10-29 | Changxin Memory Technologies, Inc. | Semiconductor structure having PMOS transistor with a channel layer and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI277211B (en) | 2007-03-21 |
US8507951B2 (en) | 2013-08-13 |
US20060163672A1 (en) | 2006-07-27 |
TW200627641A (en) | 2006-08-01 |
US9711413B2 (en) | 2017-07-18 |
US20160035627A1 (en) | 2016-02-04 |
CN1825627A (en) | 2006-08-30 |
US7465972B2 (en) | 2008-12-16 |
US20130323899A1 (en) | 2013-12-05 |
US20090090935A1 (en) | 2009-04-09 |
US9159629B2 (en) | 2015-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100461454C (en) | Semiconductor device and method for forming the same | |
US9647118B2 (en) | Device having EPI film in substrate trench | |
CN101315933B (en) | Semiconductor structure with multiple FinFETs | |
KR100844933B1 (en) | Transistor of semiconductor device and manufacturing method thereof | |
US7928474B2 (en) | Forming embedded dielectric layers adjacent to sidewalls of shallow trench isolation regions | |
US8502316B2 (en) | Self-aligned two-step STI formation through dummy poly removal | |
CN100505263C (en) | Semiconductor structures and methods of forming them | |
US10236293B2 (en) | FinFET CMOS with silicon fin N-channel FET and silicon germanium fin P-channel FET | |
US7649233B2 (en) | High performance transistor with a highly stressed channel | |
US20160315172A1 (en) | Finfet devices having asymmetrical epitaxially-grown source and drain regions and methods of forming the same | |
US20070023795A1 (en) | Semiconductor device and method of fabricating the same | |
US7670914B2 (en) | Methods for fabricating multiple finger transistors | |
JP2007329295A (en) | Semiconductor and manufacturing method thereof | |
US8441045B2 (en) | Semiconductor device and method for manufacturing the same | |
US20050156199A1 (en) | Method of forming a CMOS device | |
US20090221122A1 (en) | MOS Field Effect Transistor and Manufacture Method Therefor | |
US7718497B2 (en) | Method for manufacturing semiconductor device | |
CN118969625B (en) | Semiconductor device and manufacturing method thereof | |
KR100698084B1 (en) | Semiconductor device and manufacturing method thereof | |
CN115719707A (en) | Fence device and manufacturing method thereof | |
JP2006196757A (en) | Semiconductor device including thin-line MOSFET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |