CN100458189C - Controller for profile of shock wave - Google Patents
Controller for profile of shock wave Download PDFInfo
- Publication number
- CN100458189C CN100458189C CNB2007100205868A CN200710020586A CN100458189C CN 100458189 C CN100458189 C CN 100458189C CN B2007100205868 A CNB2007100205868 A CN B2007100205868A CN 200710020586 A CN200710020586 A CN 200710020586A CN 100458189 C CN100458189 C CN 100458189C
- Authority
- CN
- China
- Prior art keywords
- plate
- shock wave
- pipeline
- valve
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Fluid-Pressure Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种低流动损失的特别适用于超声速进气道、高超声速进气道等流体机械的激波形状控制器。The invention relates to a shock wave shape controller with low flow loss, which is especially suitable for fluid machines such as supersonic inlets and hypersonic inlets.
背景技术 Background technique
激波是超声速流动中的一类重要流动现象,其形状和特性在很大程度上决定了各种超声速流体机械的工作效率乃至稳定性。例如对于超声速推进系统而言,激波系的配置显著影响着其进气系统的流量系数和工作效率;对于超声速飞行器而言,外流场的激波显著影响着其升阻力特性。为此,若能对激波的形状和特性实现方便的控制,则有望对流体机械的工作状态进行实时调节,使其在不同工况下均工作在较优状态,提高其整体性能。然而,由于激波的形状及特性仅与来流条件(马赫数、攻角等)以及物面形状有关,因而对其的控制并不简单。目前,在工程实际中得到应用的激波控制技术均是通过改变物面的几何参数来实现的。如英国“协和”飞机的变几何进气道,便是通过改变各级压缩斜板的角度来调整进气道口部激波的角度,使不同马赫数下进气道的口部波系尽可能保持贴口状态,从而获取高的流量系数和总压恢复。该类技术的实现需要设置专门的作动机构,使得流体机械的结构变得复杂,重量显著增加,有效空间下降,可靠性降低,并带来了控制、封严等一系列问题。Shock wave is an important flow phenomenon in supersonic flow, and its shape and characteristics determine the working efficiency and stability of various supersonic fluid machines to a large extent. For example, for a supersonic propulsion system, the configuration of the shock system significantly affects the flow coefficient and work efficiency of its intake system; for a supersonic vehicle, the shock wave of the external flow field significantly affects its lift-drag characteristics. Therefore, if the shape and characteristics of the shock wave can be controlled conveniently, it is expected to adjust the working state of the fluid machinery in real time, so that it can work in a better state under different working conditions and improve its overall performance. However, since the shape and characteristics of the shock wave are only related to the incoming flow conditions (Mach number, angle of attack, etc.) and the shape of the object surface, its control is not simple. At present, the shock wave control technology applied in engineering practice is realized by changing the geometric parameters of the object surface. For example, the variable geometry inlet of the British "Concorde" aircraft is to adjust the angle of the shock wave at the mouth of the inlet by changing the angles of the compression swash plates at all levels, so that the wave system at the mouth of the inlet at different Mach numbers can be as large as possible. Stay snug for high flow coefficient and total pressure recovery. The realization of this type of technology needs to set up a special actuating mechanism, which makes the structure of the fluid machine complex, the weight increases significantly, the effective space decreases, the reliability decreases, and a series of problems such as control and sealing are brought.
另外,基于强磁场干扰的激波控制技术是目前正在研究的一类新兴技术。在物面内部埋入可控的磁场发生器,利用来流已有或人工制造的等离子环境,通过洛伦茨力来改变气流的运动方向,进而对外部流场中的激波特性进行控制。但由于需要设置等离子激发器、可控电磁场发生器、能量存储器、能量转换器等专用装置,采用该技术能获得的净收益到底如何,目前仍是一个疑问,特别是对于飞行器一类的流体机械而言。而且,强磁场的叠加还可能给飞行器的制导、通讯等方面带来不可低估的负面影响。In addition, shock wave control technology based on strong magnetic field interference is a new type of technology currently being studied. A controllable magnetic field generator is embedded inside the object surface, and the existing or artificially manufactured plasma environment is used to change the movement direction of the airflow through the Lorenz force, thereby controlling the shock wave characteristics in the external flow field . However, due to the need to install special devices such as plasma exciters, controllable electromagnetic field generators, energy storage, and energy converters, the net benefits that can be obtained by using this technology are still a question, especially for fluid machinery such as aircraft. In terms of. Moreover, the superposition of a strong magnetic field may also have negative effects that cannot be underestimated on the guidance and communication of the aircraft.
发明内容Contents of the invention
1、发明目的:为了解决现有技术中需要通过配置复杂的辅助设施或需要转动流体机械的物面来对激波形状和特性进行控制的不足,本发明提供一种激波形状控制器,该激波形状控制器的几何形状固定、结构简单、容易操作、成本较低,仅仅通过调节阀门的开度即可完成对激波形状的控制。1. Purpose of the invention: In order to solve the deficiency in the prior art that the shape and characteristics of the shock wave need to be controlled by configuring complex auxiliary facilities or needing to rotate the object surface of the fluid machine, the present invention provides a shock wave shape controller, which The shock wave shape controller has fixed geometric shape, simple structure, easy operation, and low cost, and can control the shock wave shape only by adjusting the opening of the valve.
2、技术方案:本发明所述的一种激波形状控制器,其特征在于:它包括多孔或多缝板、稳压腔、管路和阀门;设置在流体机械腔体内的一端连接高压源的管路上安装有阀门,管路另一端通过流体机械内壁与设置在流体机械上盖斜板内的稳压腔相通,稳压腔与安装在流体机械上盖斜板上的多孔或多缝板相连。通过控制阀门的开度调节由多孔或多缝板注入外部流动区间的二次流流量,即可实现对激波形状的实时控制。2. Technical solution: A shock wave shape controller according to the present invention is characterized in that it includes a porous or multi-slit plate, a pressure stabilizing chamber, pipelines and valves; one end arranged in the fluid mechanical chamber is connected to a high pressure source A valve is installed on the pipeline, and the other end of the pipeline communicates with the pressure-stabilizing cavity set in the sloping plate of the upper cover of the fluid machine through the inner wall of the fluid machine. connected. Real-time control of the shape of the shock wave can be realized by controlling the opening of the valve to adjust the flow rate of the secondary flow injected into the external flow area by the porous or multi-slit plate.
若多孔或多缝板上孔或缝的轴线与流体机械板面的夹角过小则驱动压比偏高,夹角过大则流动损失偏大,所以根据对激波形状控制的实际需要,多孔或多缝板上孔或缝的轴线与流体机械板面的夹角范围可在20°~160°之间选取。If the angle between the axis of the holes or slots on the porous or multi-slot plate and the surface of the fluid machine is too small, the driving pressure ratio will be high, and if the angle is too large, the flow loss will be too large. Therefore, according to the actual needs of shock wave shape control, The angle range between the axis of the holes or slots on the porous or multi-slit plate and the surface of the fluid machine can be selected from 20° to 160°.
本发明的工作原理是:在产生激波的物面的前端,通过多孔或多缝板按一定的沿程分布规律向外部流动区间注入少量的二次流体16,由于注入后的二次流在物面附近需占据一定的流动空间,并且会带来扰动导致一定的总压损失,因此使得外部被控制的主流在壁面附近区域的流通能力不断减弱,其“气动等效边界”15被迫向外局部偏转。于是,在弯曲的“气动等效边界”15的前端发出了一个弱压缩波束11,而在后端则发出了一个膨胀波束12,这两个波束与物面前端发出的激波14相干扰,使得激波14局部弯曲并向外偏转,形成弯曲激波13,从而实现对激波14形状的控制。通过阀门4适当调整二次流16的流量,即可对激波14形状进行实时控制。The working principle of the present invention is: at the front end of the object plane that produces the shock wave, a small amount of
3、有益效果:本发明所述的激波形状控制器不仅几何形状固定、结构简单、所占空间较小,而且具有控制流量小、驱动压比低的特点,因而易于在各种流体机械中集成。并且,本发明中二次流是以分布式、连续型的方式注入的,故给外流带来的总压损失较小,有利于流体机械的高效工作。3. Beneficial effects: the shock wave shape controller described in the present invention not only has a fixed geometric shape, a simple structure, and takes up less space, but also has the characteristics of small control flow and low driving pressure ratio, so it is easy to be used in various fluid machines integrated. Moreover, in the present invention, the secondary flow is injected in a distributed and continuous manner, so the total pressure loss to the external flow is small, which is beneficial to the efficient operation of the fluid machine.
附图说明Description of drawings
图1是本发明的工作原理图,图中弱压缩波束11、膨胀波束12、弯曲激波13、激波14、气动等效边界15、二次流体16。Fig. 1 is a working principle diagram of the present invention, in which a
图2是本发明的结构示意图。Fig. 2 is a structural schematic diagram of the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
如图2,本激波形状控制器所涉及到的部件名称包括多孔或多缝板1、稳压腔2、管路3、阀门4、高压源5和流体机械6;通过管路3从流体机械6内的高压源5中提取少量的二次流,其流量经阀门4控制且一般小于主流流量的2%,输入设置在流体机械6上盖斜板内的稳压腔2内,而后二次流以稳定的压强经多孔或多缝板1注入流体机械6上盖斜板附近的外部流场中,由于附加质量的引入以及注入扰动带来的流动损失,主流在靠近流体机械6壁面区间的流通能力不断减弱,形成弯曲的“气动边界”而被迫向外局部偏转,因而产生一束弱压缩波及一束膨胀波与流体机械6斜板前端发出的激波相干扰,使之弯曲并向外偏转。在工作过程中,可根据流体机械最佳工作状态的需要,通过控制阀门4的开度对二次流流量进行调节,从而实现对激波形状的实时控制。As shown in Figure 2, the names of the parts involved in the shock wave shape controller include porous or multi-slit plate 1,
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100205868A CN100458189C (en) | 2007-03-13 | 2007-03-13 | Controller for profile of shock wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100205868A CN100458189C (en) | 2007-03-13 | 2007-03-13 | Controller for profile of shock wave |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101033763A CN101033763A (en) | 2007-09-12 |
CN100458189C true CN100458189C (en) | 2009-02-04 |
Family
ID=38730458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100205868A Expired - Fee Related CN100458189C (en) | 2007-03-13 | 2007-03-13 | Controller for profile of shock wave |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100458189C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102953825B (en) * | 2012-11-22 | 2013-09-25 | 南京航空航天大学 | Pneumatic supersonic velocity/hypersonic velocity adjustable air inlet passage for self-circulation of forebody |
CN102953826B (en) * | 2012-11-22 | 2013-11-27 | 南京航空航天大学 | Pneumatic supersonic/hypersonic adjustable inlet for precursor-inner channel circulation |
CN109026396B (en) * | 2018-08-07 | 2020-07-14 | 北京空间技术研制试验中心 | Supersonic three-dimensional air inlet channel pneumatic control method |
CN109533356A (en) * | 2018-11-21 | 2019-03-29 | 南京航空航天大学 | A kind of shock wave boundary layer interaction controller |
CN110886653B (en) * | 2019-12-24 | 2021-10-15 | 中国航空工业集团公司西安飞机设计研究所 | Jet engine shock wave protection system |
CN114165337B (en) * | 2021-11-26 | 2023-03-31 | 南京航空航天大学 | Wide-area hypersonic-speed air inlet passage structure with shock waves and electromagnetic isentropic waves compressed together and design method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2162582A (en) * | 1978-10-28 | 1986-02-05 | Messerschmitt Boelkow Blohm | A variable geometry air intake for a gas turbine engine |
US5165228A (en) * | 1990-02-13 | 1992-11-24 | Mtu Motoren-Und Turbinen-Union Munchen Gmbh | Turboramjet engine |
GB2301402A (en) * | 1988-12-02 | 1996-12-04 | Rolls Royce Plc | Valve for diverting fluid flows in gas turbine engines |
-
2007
- 2007-03-13 CN CNB2007100205868A patent/CN100458189C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2162582A (en) * | 1978-10-28 | 1986-02-05 | Messerschmitt Boelkow Blohm | A variable geometry air intake for a gas turbine engine |
GB2301402A (en) * | 1988-12-02 | 1996-12-04 | Rolls Royce Plc | Valve for diverting fluid flows in gas turbine engines |
US5165228A (en) * | 1990-02-13 | 1992-11-24 | Mtu Motoren-Und Turbinen-Union Munchen Gmbh | Turboramjet engine |
Also Published As
Publication number | Publication date |
---|---|
CN101033763A (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100458189C (en) | Controller for profile of shock wave | |
CN100430584C (en) | Fixed geometry supersonic or hypersonic adjustable inlet | |
CN100381710C (en) | Single-membrane, dual-chamber, dual-port synthetic jet actuator | |
CN110657043B (en) | Mechanical disturbance type throat offset pneumatic vectoring nozzle | |
CN107505138A (en) | A kind of complicated distortion generator for Compressor Stability experiment | |
CN103899433A (en) | Novel thrust vectoring nozzle structure adopting shock vectoring controlling | |
CN103437911B (en) | Band dividing plate fluid controls dual vector jet pipe and vectored thrust produces and controlling method | |
EP2771239A1 (en) | Synchronization of fluidic actuators | |
CN101598105A (en) | Device for controlling flow fluid separation on blade surface | |
CN111397235B (en) | A Frequency Adjustable Sonic Jet Oscillator | |
CN101307698A (en) | Nozzle steam distribution method for a steam turbine | |
CN207610837U (en) | Air-flow driver | |
CN107701314B (en) | Flow control method for improving starting performance of air inlet channel by using flexible wall surface | |
CN109618481A (en) | Plasma Synthetic Jet Exciter at Low Reynolds Number | |
CN109026621A (en) | Steam compressor exhaust pipe capable of reducing temperature and increasing pressure | |
CN105544067A (en) | Main jet, supplementary main jet, auxiliary jet and magnetic valve integrated weft insertion mechanism for air-jet loom | |
Kayvanpour et al. | Numerical investigation of flow control using plasma actuator to improve aerodynamic characteristics of a pitching airfoil | |
CN115465445B (en) | A rudderless airfoil lift device based on non-feedback oscillating jet | |
CN103104575A (en) | Electric arc type discharging plasma vortex generator | |
CN105402464A (en) | Frequency-controllable airflow deflection control device | |
CN109681475A (en) | High load capacity compressor boundary-layer nonstationary oscillation aspirates flow control method | |
CN206339117U (en) | A kind of steam accumulator and its fill thermal | |
CN204646326U (en) | A kind of turbine nozzle regulation structure | |
CN210890264U (en) | Pipeline constant pressure device | |
CN104989529B (en) | Control the closed loop bleed fluidic system of turbine cascade top petiolarea flowing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090204 Termination date: 20160313 |