CN100456527C - A method for improving the light-coupling efficiency of flat-panel light-emitting devices - Google Patents
A method for improving the light-coupling efficiency of flat-panel light-emitting devices Download PDFInfo
- Publication number
- CN100456527C CN100456527C CNB2006101316295A CN200610131629A CN100456527C CN 100456527 C CN100456527 C CN 100456527C CN B2006101316295 A CNB2006101316295 A CN B2006101316295A CN 200610131629 A CN200610131629 A CN 200610131629A CN 100456527 C CN100456527 C CN 100456527C
- Authority
- CN
- China
- Prior art keywords
- polymer
- luminescent device
- microballoon
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000010168 coupling process Methods 0.000 title claims abstract description 17
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 229920000642 polymer Polymers 0.000 claims abstract description 45
- 239000004005 microsphere Substances 0.000 claims abstract description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 47
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 22
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 21
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 20
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 19
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 19
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims description 19
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims description 19
- 230000008878 coupling Effects 0.000 claims description 14
- -1 polysiloxanes Polymers 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- 229920000620 organic polymer Polymers 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 229920001084 poly(chloroprene) Polymers 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 229920001971 elastomer Polymers 0.000 claims 1
- 230000027756 respiratory electron transport chain Effects 0.000 claims 1
- 238000004017 vitrification Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 12
- 238000000206 photolithography Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000000813 microcontact printing Methods 0.000 abstract 1
- 239000011368 organic material Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 42
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 150000003384 small molecules Chemical class 0.000 description 6
- 238000012856 packing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
本发明属于平板发光器件领域,特别是有机电致发光器件领域,具体涉及一种改善平板发光器件耦合出光效率的方法,本发明利用直径为纳米或微米量级的微球阵列来改善平板发光器件耦合出光效率,采用微接触打印技术将微球半压入预先旋涂在有机发光器件基片上的聚合物里,然后在基片的另一面依次叠置透明电极一、有机材料层和电极二。其特点是保持微球、微球压入的聚合物,基片的折射率相等或接近,这样器件所发出的光线在基片与聚合物、聚合物与微球界面处的折射反射效应可以忽略,从而提高器件的耦合出光效率。本发明的整个工艺过程不需要光刻,相对来说比较简单,另外微球的直径可以选择,使最终形成的类微透镜大小一致,均匀整齐。
The invention belongs to the field of flat light-emitting devices, especially the field of organic electroluminescent devices, and specifically relates to a method for improving the light-coupling efficiency of flat light-emitting devices. To couple light efficiency, the microspheres are semi-pressed into the polymer pre-spin-coated on the organic light-emitting device substrate by using microcontact printing technology, and then the transparent electrode 1, organic material layer and electrode 2 are sequentially stacked on the other side of the substrate. Its characteristic is to keep the microspheres, the polymers pressed into the microspheres, and the refractive index of the substrate to be equal or close, so that the refraction and reflection effect of the light emitted by the device at the interface between the substrate and the polymer, and the polymer and the microspheres can be ignored , thereby improving the outcoupling efficiency of the device. The entire technological process of the present invention does not require photolithography, and is relatively simple. In addition, the diameter of the microspheres can be selected, so that the finally formed quasi-microlenses are uniform in size and uniform.
Description
技术领域 technical field
本发明属于平板发光器件领域,特别是有机电致发光器件领域,具体涉及一种改善平板发光器件耦合出光效率的方法。The invention belongs to the field of flat light-emitting devices, in particular to the field of organic electroluminescence devices, and specifically relates to a method for improving the light-coupling efficiency of flat light-emitting devices.
背景技术 Background technique
有机电致发光器件是利用注入的载流子进行发光的器件,具有自主发光、低电压驱动、视角宽、响应快、颜色丰富等优点,因而作为下一代显示器件而广受关注。Organic electroluminescent devices are devices that use injected carriers to emit light. They have the advantages of autonomous light emission, low-voltage drive, wide viewing angle, fast response, and rich colors. Therefore, they have attracted wide attention as next-generation display devices.
有机电致发光器件典型的结构为:基片/阳极/有机发光层/阴极。由于构成各层的材料存在折射率的差异,所以在各层界面处会形成折射和反射,当光线由折射率高的材料层向折射率低的材料层入射时还会形成全反射。结果导致器件的光耦合输出效率只有20%左右,因而大部分的光都在器件内部损耗掉了。The typical structure of an organic electroluminescent device is: substrate/anode/organic light-emitting layer/cathode. Due to the difference in refractive index of the materials that make up each layer, refraction and reflection will be formed at the interface of each layer, and total reflection will also be formed when light is incident from a material layer with a high refractive index to a material layer with a low refractive index. As a result, the optical coupling output efficiency of the device is only about 20%, so most of the light is lost inside the device.
为了解决此类问题,在专利文献(美国专利:6984934)中公开了一种方法,即在有机发光器件基片上制作出一层微透镜来提高耦合出光效率。然而制作微透镜的过程比较复杂,需要采用传统的光刻工艺即先制作出模板、然后在模板上制作微透镜,再转移到有机发光器件的基片上。为了改进微透镜的制作方法,在另一篇专利文献(中国专利:公开号CN1719955A)中提到向有机发光器件基片表面喷射含有形成微透镜材料的并且与基片材料表面亲和性低的液滴,然后使液滴固化形成微透镜。该方法工艺过程比较简单,但是喷射的液滴大小难以控制,导致在有机发光器件基片表面形成的微透镜大小不一,非常不规则。In order to solve such problems, a method is disclosed in the patent literature (US Patent: 6984934), that is, a layer of micro-lenses is fabricated on the substrate of the organic light-emitting device to improve the outcoupling efficiency of light. However, the process of fabricating the microlens is relatively complicated, and a traditional photolithography process is required, that is, a template is firstly fabricated, and then the microlens is fabricated on the template, and then transferred to the substrate of the organic light-emitting device. In order to improve the method of making microlenses, another patent document (Chinese Patent: Publication No. CN1719955A) mentions spraying microlens-forming materials on the surface of organic light-emitting device substrates and having low affinity with the surface of the substrate material. droplets, which are then allowed to solidify to form microlenses. The process of this method is relatively simple, but the size of the sprayed droplets is difficult to control, resulting in the microlenses formed on the surface of the substrate of the organic light-emitting device with different sizes and very irregular.
发明内容 Contents of the invention
本发明的目的是提供一种简便的提高平板发光器件耦合出光效率的方法,针对以往制作微透镜的工艺复杂,或微透镜的大小难以控制的缺点,提出先制作微球,再把经过筛选的微球半压入预先旋涂在有机发光器件基片上的聚合物里的方法,形成类微透镜结构。The purpose of the present invention is to provide a simple method for improving the light coupling efficiency of flat light-emitting devices. Aiming at the shortcomings of the complicated process of making microlenses in the past, or the shortcomings of difficult control of the size of microlenses, it is proposed to make microspheres first, and then use the screened microspheres Microspheres are semi-pressed into the polymer pre-spin-coated on the organic light-emitting device substrate to form a microlens-like structure.
为达到上述目的,本发明的技术方案包括以下步骤:To achieve the above object, the technical solution of the present invention comprises the following steps:
(1)制备直径为纳米或微米量级的微球胶状液体;(1) preparing a microsphere colloidal liquid whose diameter is on the order of nanometers or micrometers;
(2)采用离心分离机将不同直径的微球分离开,选取一种直径的微球进行以下步骤;(2) Use a centrifuge to separate microspheres of different diameters, and select a microsphere with a diameter to carry out the following steps;
(3)将步骤(2)得到的含有微球的胶状液体滴到稍微倾斜一定角度的基片上,通过蒸发溶剂在基片上形成多层紧密堆积的微球胶体晶体;(3) drop the colloidal liquid containing microspheres obtained in step (2) onto a slightly inclined substrate at a certain angle, and form multi-layered closely packed microsphere colloidal crystals on the substrate by evaporating the solvent;
(4)利用弹性比较好的聚合物1将单层微球转移到预先旋涂聚合物2的有机发光器件基片上,形成紧密堆积或是非紧密堆积的微球结构,聚合物2与微球的粘合力要大于聚合物1与微球的粘合力;(4) Using
(5)加热有机发光器件基片,使其温度超过聚合物2的玻璃化温度,并施加压力将微球半压入聚合物2中,然后揭去聚合物1;(5) heating the substrate of the organic light-emitting device so that its temperature exceeds the glass transition temperature of
(6)在有机发光器件基片的另一面制作包含有机聚合物层或是小分子层的电致发光器件,从而制备出耦合出光效率得到改善的平板发光器件。(6) Fabricate an electroluminescent device comprising an organic polymer layer or a small molecule layer on the other side of the substrate of the organic light-emitting device, thereby preparing a flat-panel light-emitting device with improved light coupling efficiency.
上述方法步骤(1)中所述的微球是无机材料微球或聚合物材料微球,直径为100纳米~1400纳米;聚合物2、微球、有机发光器件基片的折射率是接近或是相等的,这样器件所发出的光线在有机发光器件基片与聚合物、聚合物与微球界面处的折射反射效应可以忽略,从而提高器件的耦合出光效率;通过拉伸聚合物1(如聚硅氧烷;聚乙烯;乙丙橡胶;氯丁橡胶等)的方法,使聚合物1表面的微球具有100纳米~1000纳米的间距,从而使半压入聚合物2(如聚乙烯醇;聚乙二醇;聚甲基丙烯酸甲酯;聚氨酯)中的微球形成非紧密堆积结构,微球间距为100纳米~1000纳米;也可以不拉伸聚合物1,使半压入聚合物2中的微球形成紧密堆积结构;有机发光器件包括透明基片、第一和第二电极层以及夹在两个电极层之间的有机聚合物层或小分子层,其中有机聚合物层材料可以选用梯形聚苯及其衍生物、聚苯撑乙烯及其衍生物、聚芴及其衍生物等,小分子层材料可以选用八羟基喹啉铝、三苯胺及其衍生物、酚基吡啶配合物、喹吖啶酮衍生物、卟啉金属配合物等;透明基片使用玻璃或柔性塑料(如聚酯、聚酰胺等);第一电极是功函数大而且要透明的金属、合金或电传导性化合物(如氧化锡铟、氧化锌、氧化锌铟、金、铜、银等);有机聚合物层或小分子层是空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层其中的一层或多层;第二电极使用功函数低的金属或合金,如金属锂、镁、钙、锶、铝或它们与铜、金、银的合金等。The microspheres described in the above method step (1) are inorganic material microspheres or polymer material microspheres, with a diameter of 100 nanometers to 1400 nanometers; are equal, the refraction and reflection effect of the light emitted by the device at the organic light-emitting device substrate and the polymer, the polymer and the microsphere interface can be ignored, thereby improving the outcoupling light efficiency of the device; by stretching the polymer 1 (such as polysiloxane; polyethylene; ethylene-propylene rubber; neoprene, etc.), so that the microspheres on the surface of the
电致发光器件的结构、材料及电极本身并不是本专利的发明点,关于器件结构,比较典型的有双层或多层结构(Appl.Phys.Lett.1987,51,913)。The structure, materials and electrodes of the electroluminescence device are not the invention points of this patent. Regarding the device structure, there are typically double-layer or multi-layer structures (Appl. Phys. Lett. 1987, 51, 913).
下面进行具体的说明:The specific instructions are as follows:
(1)根据Stober的方法(W.Stober,A.Fink.J.Colloid Interface Sci.26,62(1968)),在乙醇中制备直径为100nm~1400nm的单分散的二氧化硅微球胶状液体;(1) According to Stober's method (W.Stober, A.Fink.J.Colloid Interface Sci.26, 62 (1968)), prepare monodisperse colloidal silica microspheres with a diameter of 100nm to 1400nm in ethanol liquid;
(2)采用离心分离机将不同直径的二氧化硅微球分离开,选取直径为400~700纳米间的微球进行以下步骤;(2) Use a centrifuge to separate silica microspheres of different diameters, and select microspheres with a diameter of 400 to 700 nanometers to carry out the following steps;
(3)将步骤2得到的微球的胶状液体滴到与水平面成3~12°的硅基片上,然后在可以控制温度和湿度的烘箱中,通过蒸发溶剂的方式在硅基片上形成大面积单层或多层(2层及以上)的六方密堆积的微球胶体晶体;(3) Drop the colloidal liquid of microspheres obtained in
(4)利用弹性比较好的聚合物1(聚硅氧烷;聚乙烯;乙丙橡胶;氯丁橡胶),这里选用聚二甲基硅氧烷poly(dimethylsiloxane)简称PDMS,将单层二氧化硅微球转移到预先旋涂聚合物2的有机发光器件基片上,聚合物2(如聚乙烯醇;聚乙二醇;聚甲基丙烯酸甲酯;聚氨酯)选用聚乙烯醇poly(vinyl alchohol)简称PVA上,可以是紧密堆积也可以是非紧密堆积。参考我们的专利(中国专利:ZL200310110094.X);(4) Using polymer 1 (polysiloxane; polyethylene; ethylene-propylene rubber; neoprene) with relatively good elasticity, poly(dimethylsiloxane) poly(dimethylsiloxane) is used here for short as PDMS, and the single-layer dioxide The silicon microspheres are transferred to the organic light-emitting device substrate that is pre-spin-coated with
(5)在95~105度加热有机发光器件基片,使其温度超过PVA的玻璃化温度(80度),施加压力约0.1×105Pa~0.5×105Pa,将微球半压入聚合物PVA中,然后揭去PDMS,因为二氧化硅微球与PVA的粘合力大于二氧化硅与PDMS的粘合力,故而可以揭去PDMS层,而将二氧化硅微球留在PVA层上;(5) Heating the organic light-emitting device substrate at 95-105 degrees to make the temperature exceed the glass transition temperature of PVA (80 degrees), apply a pressure of about 0.1×10 5 Pa to 0.5×10 5 Pa, and press the microspheres into the Polymer PVA, and then peel off PDMS, because the adhesion of silica microspheres to PVA is greater than that of silica to PDMS, so the PDMS layer can be peeled off, leaving silica microspheres in PVA layer;
(6)在有机发光器件基片的另一面采用传统的方法制作包含有机聚合物层或是小分子层的电致发光器件。(6) On the other side of the substrate of the organic light-emitting device, an electroluminescent device comprising an organic polymer layer or a small molecule layer is fabricated by a conventional method.
本发明的整个工艺过程不需要光刻,相对来说比较简单,另外微球的直径可以选择,使最终形成的类微透镜大小一致,均匀整齐。The entire technological process of the present invention does not require photolithography, and is relatively simple. In addition, the diameter of the microspheres can be selected, so that the finally formed quasi-microlenses are uniform in size and uniform.
附图说明 Description of drawings
图1:在硅基片上形成的多层紧密堆积的二氧化硅微球胶体晶体示意图;Figure 1: Schematic diagram of multi-layer close-packed colloidal crystals of silica microspheres formed on a silicon substrate;
图2:将弹性比较好的聚合物PDMS与二氧化硅微球紧密压工艺紧示意图;Figure 2: Schematic diagram of the compact compression process of polymer PDMS with relatively good elasticity and silica microspheres;
图3:将PDMS揭起,一层二氧化硅微球被粘PDMS上工艺示意图;Figure 3: A schematic diagram of the process of uncovering the PDMS and sticking a layer of silica microspheres to the PDMS;
图4:将粘有一层二氧化硅微球的PDMS与预先旋涂在有机发光器件基片上的聚合物PVA紧密压紧,形成二氧化硅微球紧密堆积的方式工艺示意图;Figure 4: A schematic diagram of the process of tightly packing PDMS with a layer of silica microspheres and the polymer PVA pre-spin-coated on the organic light-emitting device substrate to form a dense stack of silica microspheres;
图5:将粘有一层二氧化硅微球的PDMS在两个方向上拉伸后再与PVA紧密压紧,形成二氧化硅微球非紧密堆积的方式的工艺示意图;Figure 5: A schematic diagram of the process of stretching PDMS with a layer of silica microspheres in two directions and then compacting it tightly with PVA to form non-tight packing of silica microspheres;
图6:加热有机发光器件基片,使其温度超过PVA的玻璃化温度,施加压力将微球半压入聚合物PVA中的工艺示意图;Figure 6: Schematic diagram of the process of heating the organic light-emitting device substrate to make its temperature exceed the glass transition temperature of PVA, and applying pressure to half-press the microspheres into the polymer PVA;
图7:揭去PDMS后形成的类微透镜结构示意图;Figure 7: Schematic diagram of the microlens-like structure formed after removing PDMS;
图8:图7所示结构的电子显微镜照片;Figure 8: Electron micrograph of the structure shown in Figure 7;
图9:在有机发光器件基片的另一面制作的有机发光器件示意图;Figure 9: Schematic diagram of an organic light emitting device fabricated on the other side of the organic light emitting device substrate;
图10:有二氧化硅微球和没有二氧化硅微球的有机电致发光器件法线方向的亮度效率随电流变化曲线图;Figure 10: Curves of luminance efficiency in the normal direction of organic electroluminescent devices with and without silica microspheres as a function of current;
图11:有二氧化硅微球的有机电致发光器件的电致发光光谱随观测角度的变化图,其中法线方向为0度角。Fig. 11: The electroluminescent spectrum of the organic electroluminescent device with silica microspheres as a function of the observation angle, where the normal direction is 0 degree angle.
上述图1~图11中,1是二氧化硅微球,2是硅基片,3是聚合物PDMS,4是锡铟氧化物,5是有机发光器件的基片,6是聚合物PVA,7是有机发光聚合物层或是小分子层,8是阴极层,9是电源。In the above-mentioned Figures 1 to 11, 1 is a silica microsphere, 2 is a silicon substrate, 3 is a polymer PDMS, 4 is tin indium oxide, 5 is a substrate of an organic light-emitting device, 6 is a polymer PVA, 7 is an organic light-emitting polymer layer or a small molecule layer, 8 is a cathode layer, and 9 is a power supply.
下面结合附图和具体实施例对本发明作进一步详细说明。应该理解本发明并不局限于下述优选实施方式,优选实施方式仅仅作为本发明的说明性实施方案。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the present invention is not limited to the following preferred embodiments, which are merely illustrative embodiments of the present invention.
具体实施方式 Detailed ways
实施例1:Example 1:
在乙醇中制备直径不等的单分散二氧化硅微球。直径在500nm以下的窄分散的二氧化硅微球采用如下方法:14ml正硅酸乙酯溶于100ml乙醇,27.5ml水、9.5ml氨水溶于100ml乙醇,然后在室温下混合两份溶液并搅拌6个小时。然后把乳液离心并用乙醇或水洗3次,最后在60℃的烘箱中干燥。而直径在500nm到1.4μm的二氧化硅微球,操作与上面类似,只需在体系中引入尺寸在250nm到500nm的种子二氧化硅的粉末或乳液(如果是粉末需超声完全分散后再使用)。反应完成后用同样的方法洗涤干燥。Monodisperse silica microspheres of various diameters were prepared in ethanol. For narrowly dispersed silica microspheres with a diameter below 500nm, the following method is used: 14ml tetraethyl orthosilicate is dissolved in 100ml ethanol, 27.5ml water, 9.5ml ammonia water are dissolved in 100ml ethanol, and then the two solutions are mixed and stirred at
采用离心分离机将不同直径的微球分级,这里选取直径为550纳米的二氧化硅微球进行以下步骤。The microspheres with different diameters are classified by a centrifuge, and the silica microspheres with a diameter of 550 nanometers are selected here for the following steps.
将含有二氧化硅微球的胶状液体滴到倾斜9°的硅基片上,该硅基片经过的清洗过程如下:先在H2SO4∶H2O2(v/v)=7/3的溶液中于90℃加热5个小时,之后用蒸馏水冲洗,最后用高纯氮气吹干。然后将表面有二氧化硅微球胶状液滴的硅基片转移到可以控制温度和湿度的烘箱中,通过蒸发溶剂在硅基片上形成多层紧密堆积的微球胶体晶体,如图1所示。Drop the colloidal liquid containing silicon dioxide microspheres on the silicon substrate inclined at 9 °, and the cleaning process of the silicon substrate is as follows: 3 at 90°C for 5 hours, rinsed with distilled water, and finally dried with high-purity nitrogen. Then transfer the silicon substrate with silicon dioxide microsphere colloidal droplets on the surface to an oven that can control temperature and humidity, and form multilayer microsphere colloidal crystals that are closely packed on the silicon substrate by evaporating the solvent, as shown in Figure 1 Show.
将弹性比较好的聚合物制成平板状薄片(250nm以上),这里选用poly(dimethylsiloxane)简称PDMS,与图1所示的二氧化硅微球胶体晶体紧密接触,之后在100℃加热3个小时,如图2所示。Make a flat sheet (above 250nm) from a polymer with relatively good elasticity. Here, poly (dimethylsiloxane) is selected for short as PDMS, which is in close contact with the colloidal crystal of silica microspheres shown in Figure 1, and then heated at 100°C for 3 hours ,as shown in
在样品冷却到室温后,小心地将PDMS揭起,一层二氧化硅微球就被粘到PDMS上,如图3所示。After the sample was cooled to room temperature, the PDMS was carefully lifted, and a layer of silica microspheres was adhered to the PDMS, as shown in Figure 3.
这时可以直接将粘有二氧化硅微球的PDMS与预先旋涂在有机发光器件基片上的聚合物PVA紧密压紧,形成二氧化硅微球紧密堆积,如图4所示。也可以将PDMS在两个方向上拉伸后再与PVA紧密压紧,形成二氧化硅微球非紧密堆积,如图5所示。其中有机发光器件基片选择另一面溅射有锡铟氧化物(简称ITO)的玻璃,经过了丙酮、乙醇超声,去离子水冲洗,氮气吹干的过程。At this time, the PDMS bonded with silica microspheres can be directly pressed tightly with the polymer PVA pre-spin-coated on the substrate of the organic light-emitting device to form a dense packing of silica microspheres, as shown in FIG. 4 . It is also possible to stretch PDMS in two directions and then tightly compress it with PVA to form non-close packing of silica microspheres, as shown in Figure 5. Among them, the organic light-emitting device substrate selects glass with tin indium oxide (ITO for short) sputtered on the other side, and undergoes a process of acetone, ethanol ultrasonication, deionized water washing, and nitrogen blowing.
然后施加0.2×105Pa的压力在100℃加热1.5小时,将二氧化硅微球半压入PVA中,如图6所示。Then apply a pressure of 0.2×10 5 Pa and heat at 100° C. for 1.5 hours to half-press the silica microspheres into the PVA, as shown in FIG. 6 .
冷却到室温后,小心揭去PDMS后,由于二氧化硅微球与PVA的粘合力大于二氧化硅微球与PDMS的粘合力,故而二氧化硅微球留在了PVA中,形成了类微透镜结构,如图7所示。After cooling to room temperature, after carefully peeling off the PDMS, the silica microspheres remained in the PVA because the adhesive force between the silica microspheres and PVA was greater than that of the silica microspheres and PDMS, forming a A microlens-like structure, as shown in Figure 7.
图8是图7所示结构的电子显微镜照片,可以看到二氧化硅微球大小一致,排列整齐。Fig. 8 is an electron micrograph of the structure shown in Fig. 7, and it can be seen that the silica microspheres are uniform in size and neatly arranged.
之后在图7所示的基片的另一面上制作有机电致发光器件,结构为:ITO/N,N’-二-(1-萘基)-N,N’-二苯基-1,1-联苯基-4,-4-二胺(简称NPB)(60nm)/八羟基喹啉铝(简称Alq3)(70nm)/LiF(0.5nm)/Al(100nm)。同时,为了进行对比说明,在没有二氧化硅微球的基片上制作了相同结构的有机电致发光器件。上述有机电致发光器件是在真空室中采用热蒸发的方式制作的,真空室压力在6×10-4Pa。在此种器件结构中,NPB是空穴传输层,Alq3是电子传输层同时还是发光层。Fabricate an organic electroluminescence device on the other side of the substrate shown in Figure 7 afterwards, the structure is: ITO/N, N'-two-(1-naphthyl)-N, N'-diphenyl-1, 1-biphenyl-4,-4-diamine (abbreviated as NPB) (60nm)/aluminum octahydroxyquinoline (abbreviated as Alq 3 ) (70nm)/LiF (0.5nm)/Al (100nm). At the same time, for comparison and illustration, an organic electroluminescent device with the same structure was fabricated on a substrate without silica microspheres. The above-mentioned organic electroluminescent device is manufactured by thermal evaporation in a vacuum chamber, and the pressure of the vacuum chamber is 6×10 -4 Pa. In this device structure, NPB is the hole transport layer, and Alq 3 is the electron transport layer and also the light emitting layer.
图10是有二氧化硅微球和没有二氧化硅微球的有机电致发光器件法线方向的亮度效率随电流变化曲线。可以看到有二氧化硅微球的有机电致发光器件最大亮度效率是没有二氧化硅微球的有机电致发光器件的1.8倍。Fig. 10 is the change curve of the luminance efficiency in the normal direction of the organic electroluminescent device with and without silicon dioxide microspheres as a function of current. It can be seen that the maximum brightness efficiency of the organic electroluminescent device with silica microspheres is 1.8 times that of the organic electroluminescent device without silica microspheres.
图11是有二氧化硅微球的有机电致发光器件的电致发光光谱随观测角度的变化,其中法线方向为0度角,可以看到器件的电致发光光谱不随角度发生变化,这说明本发明的增加耦合出光效率的机理不是散射机理,而是增大了全反射临界角机理。Fig. 11 is the change of the electroluminescent spectrum of the organic electroluminescent device with silica microspheres with the observation angle, wherein the normal direction is 0 degree angle, it can be seen that the electroluminescent spectrum of the device does not change with the angle, which means It shows that the mechanism of increasing the outcoupling light efficiency of the present invention is not the scattering mechanism, but the mechanism of increasing the critical angle of total reflection.
尽管结合优选实施例对本发明进行了说明,但本发明并不局限于上述实施例,应当理解,在本发明构思引导下,本领域技术人员可以进行各种修改和改进,所附权利要求概括了本发明的范围。Although the present invention has been described in conjunction with preferred embodiments, the present invention is not limited to the above-mentioned embodiments, it should be understood that under the guidance of the present invention, those skilled in the art can make various modifications and improvements, and the appended claims summarize scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101316295A CN100456527C (en) | 2006-11-15 | 2006-11-15 | A method for improving the light-coupling efficiency of flat-panel light-emitting devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101316295A CN100456527C (en) | 2006-11-15 | 2006-11-15 | A method for improving the light-coupling efficiency of flat-panel light-emitting devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1960025A CN1960025A (en) | 2007-05-09 |
CN100456527C true CN100456527C (en) | 2009-01-28 |
Family
ID=38071587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101316295A Expired - Fee Related CN100456527C (en) | 2006-11-15 | 2006-11-15 | A method for improving the light-coupling efficiency of flat-panel light-emitting devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100456527C (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104600093A (en) * | 2014-12-25 | 2015-05-06 | 上海和辉光电有限公司 | Display panel |
CN105226198A (en) | 2015-10-13 | 2016-01-06 | 京东方科技集团股份有限公司 | A kind of waterproof transmission increasing flexible OLED devices device and preparation method thereof |
CN107464891A (en) * | 2017-07-06 | 2017-12-12 | 苏州恒久光电科技股份有限公司 | The manufacture method of the OLED display screen of complex contour |
CN111224004A (en) * | 2019-11-08 | 2020-06-02 | 深圳市华星光电半导体显示技术有限公司 | OLED display panel and OLED display device |
CN110841864B (en) * | 2019-12-02 | 2024-08-23 | 中国工程物理研究院激光聚变研究中心 | Microsphere high-speed rotating coating device |
CN114695694A (en) * | 2020-12-30 | 2022-07-01 | Tcl科技集团股份有限公司 | Quantum dot light-emitting diode and preparation method thereof |
CN114833046B (en) * | 2022-04-22 | 2024-04-09 | 安徽省东超科技有限公司 | Processing method of flat lens |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1575056A (en) * | 2003-06-06 | 2005-02-02 | 精工爱普生株式会社 | Organic electroluminescent display panel, method of manufacturing it and display device equiped with the panel |
US6984934B2 (en) * | 2001-07-10 | 2006-01-10 | The Trustees Of Princeton University | Micro-lens arrays for display intensity enhancement |
CN1719955A (en) * | 2004-07-09 | 2006-01-11 | 精工爱普生株式会社 | Manufacturing method of microlens and manufacturing method of organic electroluminescence element |
CN1782911A (en) * | 2004-11-29 | 2006-06-07 | 精工爱普生株式会社 | Manufacturing method of electrooptical device and image forming apparatus |
CN1819303A (en) * | 2005-12-28 | 2006-08-16 | 华东师范大学 | Production of organic luminescent diode element |
-
2006
- 2006-11-15 CN CNB2006101316295A patent/CN100456527C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6984934B2 (en) * | 2001-07-10 | 2006-01-10 | The Trustees Of Princeton University | Micro-lens arrays for display intensity enhancement |
CN1575056A (en) * | 2003-06-06 | 2005-02-02 | 精工爱普生株式会社 | Organic electroluminescent display panel, method of manufacturing it and display device equiped with the panel |
CN1719955A (en) * | 2004-07-09 | 2006-01-11 | 精工爱普生株式会社 | Manufacturing method of microlens and manufacturing method of organic electroluminescence element |
CN1782911A (en) * | 2004-11-29 | 2006-06-07 | 精工爱普生株式会社 | Manufacturing method of electrooptical device and image forming apparatus |
CN1819303A (en) * | 2005-12-28 | 2006-08-16 | 华东师范大学 | Production of organic luminescent diode element |
Also Published As
Publication number | Publication date |
---|---|
CN1960025A (en) | 2007-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Emerging self‐emissive technologies for flexible displays | |
US10964890B2 (en) | Opto-electrical devices incorporating metal nanowires | |
US8581230B2 (en) | Light-emitting device having enhanced luminescence by using surface plasmon resonance and method of fabricating the same | |
CN100456527C (en) | A method for improving the light-coupling efficiency of flat-panel light-emitting devices | |
CN101647316B (en) | Surface light emitting body | |
CN106103095B (en) | Encapsulate layered product, organic luminescent device and the manufacture method of the body and device | |
US7564067B2 (en) | Device having spacers | |
TWI403209B (en) | Electroluminescent device with improved light output | |
Yu et al. | Molding hemispherical microlens arrays on flexible substrates for highly efficient inverted quantum dot light emitting diodes | |
US20090068915A1 (en) | Highly efficient organic light-emmitting device using substrate or electrode having nanosized half-spherical convex and method for preparing the same | |
CN103187434A (en) | Organic electroluminescence device and method for preparing same | |
CN1622727A (en) | Electroluminescent display device and thermal transfer donor film for the electroluminescent display device | |
TW201526329A (en) | Organic light emitting device and preparation method thereof | |
US20100258797A1 (en) | Organic electroluminescent device and method for manufacturing the same | |
CN105518896B (en) | Method for manufacturing ultra-thin organic light emitting apparatus | |
CN105449125A (en) | Silicon-based quantum dot display and fabrication method thereof | |
JP2023525152A (en) | Nucleation suppression coatings containing rare earth compounds and devices incorporating same | |
JP2012009225A (en) | Organic electroluminescent element and method of manufacturing the same | |
JP2021007074A (en) | Electronic device and manufacturing method thereof | |
KR101471089B1 (en) | Light emitting diode having multi-layered photonic crystal layers | |
US20100044738A1 (en) | Preparation of organic light emitting diodes by a vapour deposition method combined with vacuum lamination | |
CN110518138B (en) | Pixel structure organic light emitting diode and preparation method thereof | |
JP2010080421A (en) | Organic el element and method for manufacturing the same | |
TW202515419A (en) | Organic light-emitting diode and manufacturing method thereof | |
CN118475152A (en) | Method for self-assembling double-layer light extraction micro-nano structure quantum dot light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090128 Termination date: 20091215 |