CN100455594C - Polypeptide for inhibiting HIV virus fusion and use thereof - Google Patents
Polypeptide for inhibiting HIV virus fusion and use thereof Download PDFInfo
- Publication number
- CN100455594C CN100455594C CNB2006100870749A CN200610087074A CN100455594C CN 100455594 C CN100455594 C CN 100455594C CN B2006100870749 A CNB2006100870749 A CN B2006100870749A CN 200610087074 A CN200610087074 A CN 200610087074A CN 100455594 C CN100455594 C CN 100455594C
- Authority
- CN
- China
- Prior art keywords
- polypeptide
- seq
- virus
- amino acid
- hiv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明提供了一类抑制HIV病毒融合的多肽。根据HIV病毒在膜融合过程中与细胞膜表面的受体分子的作用机制,本发明设计了可以与病毒表面糖蛋白gp41相结合的活性多肽。所述多肽的作用位点位于gp41分子上三聚体NHR侧面的“长穴”及两端,能有效抑制HIV病毒的复制。本发明的多肽与现有药物相比,分子量小、活性高、水溶性好。用本发明所述多肽可以制备抑制多种包膜病毒感染的药物。The invention provides a class of polypeptides for inhibiting HIV virus fusion. According to the action mechanism of HIV virus and the receptor molecule on the cell membrane surface during the membrane fusion process, the present invention designs an active polypeptide that can combine with the virus surface glycoprotein gp41. The action site of the polypeptide is located at the "long hole" on the side of the trimer NHR and both ends of the gp41 molecule, and can effectively inhibit the replication of HIV virus. Compared with the existing drugs, the polypeptide of the invention has small molecular weight, high activity and good water solubility. The medicament for inhibiting the infection of various enveloped viruses can be prepared by using the polypeptide of the invention.
Description
技术领域: Technical field:
本发明涉及一类抑制病毒融合的多肽,特别是涉及抑制HIV病毒融合的一类多肽。本发明还涉及所述多肽的用途。The invention relates to a class of polypeptides for inhibiting virus fusion, in particular to a class of polypeptides for inhibiting HIV virus fusion. The present invention also relates to the use of said polypeptide.
背景技术: Background technique:
一些具有包膜的病毒,如人免疫缺陷病毒(Human Immunodeficiency Virus,HIV)、人呼吸道合胞病毒和B型肝炎病毒的生活整个周期可以分为四部分:病毒和细胞膜融合,遗传物质进入细胞内;逆转录出病毒的DNA并整合到宿主细胞的染色体上;病毒蛋白的转录,翻译,修饰;病毒颗粒的组装和出芽。这些病毒的共同点是生活周期中有膜融合过程,且融合过程中所参与的蛋白的结构有相似之处。Some viruses with envelopes, such as human immunodeficiency virus (Human Immunodeficiency Virus, HIV), human respiratory syncytial virus and hepatitis B virus, the whole life cycle can be divided into four parts: virus and cell membrane fusion, genetic material enters the cell ; reverse transcription of viral DNA and integration into host cell chromosomes; transcription, translation, modification of viral proteins; assembly and budding of virus particles. What these viruses have in common is that there is a process of membrane fusion in the life cycle, and the structures of the proteins involved in the fusion process are similar.
以治疗HIV感染的药物为例,目前临床上治疗HIV感染的药物可以分为逆转录酶抑制剂,蛋白酶抑制剂和进入抑制剂(包括融合抑制剂)三类,分别针对上述病毒复制周期的不同环节(Jiang S.,et al.,Curr.Pharm.Des.,2002,8(8):563-580)。Taking the drugs for the treatment of HIV infection as an example, the current clinical drugs for the treatment of HIV infection can be divided into three categories: reverse transcriptase inhibitors, protease inhibitors and entry inhibitors (including fusion inhibitors), which are respectively aimed at the different replication cycles of the above viruses. Links (Jiang S., et al., Curr. Pharm. Des., 2002, 8(8): 563-580).
逆转录酶抑制剂和蛋白酶抑制剂类药物在使用中容易出现抗药性,是这两类药物目前使用受限的重要原因。另外,长期使用该两类抑制剂,诸如脂肪分布异常、骨质疏松等毒副作用也十分明显(周伟,等.中国艾滋病性病.2005,11(1):73-75)。Reverse transcriptase inhibitors and protease inhibitors are prone to drug resistance during use, which is an important reason for the current limited use of these two types of drugs. In addition, the long-term use of these two types of inhibitors has obvious toxic and side effects such as abnormal fat distribution and osteoporosis (Zhou Wei, et al. China AIDS and STD. 2005, 11(1): 73-75).
HIV进入抑制剂可抑制HIV病毒进入细胞的过程,其中融合抑制剂作用于病毒和细胞膜融合过程。临床使用时发现,HIV病毒融合抑制剂单独应用即可以大大降低病毒的荷载量,并且副作用很低。HIV病毒融合抑制剂还可以与逆转录酶抑制剂和蛋白酶抑制剂联合使用,不仅可以降低这两种药物的使用量,从而降低副作用,还可以防止新的耐药株的出现。HIV entry inhibitors inhibit the entry of the HIV virus into cells, where fusion inhibitors act on the fusion of viral and cell membranes. During clinical use, it was found that the single application of HIV virus fusion inhibitors can greatly reduce the viral load, and the side effects are very low. HIV fusion inhibitors can also be used in combination with reverse transcriptase inhibitors and protease inhibitors, which can not only reduce the dosage of these two drugs, thereby reducing side effects, but also prevent the emergence of new drug-resistant strains.
进入抑制剂作用于病毒进入细胞前,即从病毒和细胞开始接触到膜融合的阶段。该阶段主要包括三个过程(Eckert D.M.,et al.,Annu.Rev.Biochem.2001,70:777-810):首先,病毒的表面糖蛋白gp120与细胞表面受体蛋白CD4分子高亲和力结合,构象发生变化使病毒吸附到宿主细胞上;然后,gp120与宿主细胞表面辅助受体(如:CCR5,CXCR4等)相互作用,构象进一步发生变化,并与gp41分离,gp41 N端的融合肽插入宿主细胞膜;最后,gp41的CHR区(C-terminal heptad repeats)回折并靠近其NHR区(N-terminal heptadrepeats)形成的α-螺旋三聚体,形成六聚体α-螺旋,拉近了病毒和细胞的距离,导致病毒包膜与细胞膜的融合。Entry inhibitors act on the stage before the virus enters the cell, that is, from the contact between the virus and the cell to the membrane fusion. This stage mainly includes three processes (Eckert D.M., et al., Annu.Rev.Biochem.2001, 70:777-810): first, the surface glycoprotein gp120 of the virus binds with the cell surface receptor protein CD4 molecule with high affinity, The conformational change causes the virus to attach to the host cell; then, gp120 interacts with host cell surface co-receptors (such as: CCR5, CXCR4, etc.), the conformation changes further, and it is separated from gp41, and the fusion peptide at the N-terminal of gp41 is inserted into the host cell membrane ; Finally, the CHR region (C-terminal heptad repeats) of gp41 turns back and approaches the α-helix trimer formed by its NHR region (N-terminal heptad repeats), forming a hexameric α-helix, which brings the virus and the cell closer distance, resulting in the fusion of the viral envelope with the cell membrane.
目前正在进行研究的HIV进入抑制剂主要针对上述过程中的病毒表面糖蛋白gp120/gp41以及细胞表面共同受体CCR5/CXCR4、CD4受体。The HIV entry inhibitors currently being studied mainly target the viral surface glycoprotein gp120/gp41 and the cell surface co-receptors CCR5/CXCR4 and CD4 receptors in the above process.
作用于gp120的进入抑制剂有(Thali M.,et al.,J.Virol.1993,67(7):3978-3988;ShaunakS.,J.Pharmacol.,1994,113:151-158;Trkola A.,et al.,J.Virol.1996,70:1100-1108;Wang T.,et al.,J.Med.Chem.2003,46:4236-4239;Ferrer M.,et al.,J.Virol.1999,73(7):5795-5802):17b,2G12,PRO542,BMS-378806,12P1.The entry inhibitor acting on gp120 has (Thali M., et al., J.Virol.1993, 67 (7): 3978-3988; ShaunakS., J.Pharmacol., 1994, 113: 151-158; Trkola A ., et al., J.Virol.1996,70:1100-1108; Wang T., et al., J.Med.Chem.2003,46:4236-4239; Ferrer M., et al., J. Virol.1999, 73(7):5795-5802): 17b, 2G12, PRO542, BMS-378806, 12P1.
作用于gp41的进入抑制剂(融合抑制剂)有(Wild C.T.,et al.,Proc.Natl.Acad.Sci.USA.,1994,91:9770-9774;Jiang S.,et al.,Curr.Pharm.Des.,2002,8(8):563-580;Root M.J.,et al.,Science,2001,291:884-888):DP107,T-20,T-1249,C34,IQN37,5-Helix.The entry inhibitor (fusion inhibitor) acting on gp41 has (Wild C.T., et al., Proc.Natl.Acad.Sci.USA., 1994, 91:9770-9774; Jiang S., et al., Curr. Pharm.Des., 2002, 8(8):563-580; Root M.J., et al., Science, 2001, 291:884-888): DP107, T-20, T-1249, C34, IQN37, 5- Helix.
作用于共同受体CCR5/CXCR4的进入抑制剂(Maeda K.,et al.,Curr.Opin.Pharmacol,2004,4(5):447-452;Pierson T.C.,et al.,Rev.Med.Virol.2004,14:255-270.):AOP-RANTES,PRO140,UK-427857,TAK-779,TAK-220.Entry inhibitor acting on co-receptor CCR5/CXCR4 (Maeda K., et al., Curr. Opin. Pharmacol, 2004, 4(5): 447-452; Pierson T.C., et al., Rev. Med. Virol .2004, 14:255-270.): AOP-RANTES, PRO140, UK-427857, TAK-779, TAK-220.
作用于CD4受体的进入抑制剂有(Reimann K.A.,et al.,ADIS Res.Hum.Retroviruses.,1997,12(11):933-943):TNX-355The entry inhibitor acting on the CD4 receptor has (Reimann K.A., et al., ADIS Res. Hum. Retroviruses., 1997, 12 (11): 933-943): TNX-355
上述的几类进入抑制剂中,作用于共同受体CCR5/CXCR4的抑制剂现在认为有着内在的缺陷。众所周知,CCR5/CXCR4是存在正常细胞表面的分子,除在HIV病毒进入过程作为共同受体外,还是趋化因子和炎症因子等的受体,因此长期的使用抑制剂竞争性的结合会引起问题,一些小分子的拮抗剂在临床研究的时候就发现了对心脏的副作用(MaedaK.,et al.,Curr.Opin.Pharmacol,2004,4(5):447-452)。Among the several classes of entry inhibitors mentioned above, inhibitors acting on the coreceptor CCR5/CXCR4 are now considered to have inherent defects. As we all know, CCR5/CXCR4 is a molecule that exists on the surface of normal cells. In addition to serving as a co-receptor in the HIV virus entry process, it is also a receptor for chemokines and inflammatory factors, so long-term use of inhibitors will cause problems. Competitive binding , Some small molecule antagonists have found side effects on the heart during clinical research (MaedaK., et al., Curr. Opin. Pharmacol, 2004, 4(5): 447-452).
作用于gp120的进入抑制剂主要是筛选或者从感染者体内得到的抗体,小分子较少。目前仅得到17b和2G12两个具有广泛中和活性的抗体,其他的抗体有的在体外实验中具有中和活性,但是在体内则没有。目前的小分子抑制剂有BMS-378806,它结合于gp120上一个疏水口袋,另外通过肽库筛选得到的小肽(12P1)可能具有与之相同的结合部位。The entry inhibitors acting on gp120 are mainly screened or antibodies obtained from infected persons, and there are fewer small molecules. At present, only two antibodies with broad neutralizing activity, 17b and 2G12, have been obtained. Some other antibodies have neutralizing activity in vitro, but not in vivo. The current small molecule inhibitors include BMS-378806, which binds to a hydrophobic pocket on gp120, and the small peptide (12P1) obtained through peptide library screening may have the same binding site.
作用于CD4受体的进入抑制剂目前研究的最少,因为在体内它是一个很重要的分子,对它的抑制很可能出现严重的副反应。Entry inhibitors acting on the CD4 receptor are the least studied because it is a very important molecule in the body, and its inhibition is likely to cause serious side effects.
目前仅有一种多肽类融合抑制剂T-20(商品名为Fuzeon)应用于临床。Currently, only one peptide fusion inhibitor T-20 (trade name Fuzeon) is used clinically.
T-20衍生于HIV-1 LAI毒株gp41的CHR区,由36个氨基酸组成(Wild,C.T.,et al,Proc.Natl.Acad.Sci.U.S.A 1994,91:9770-9774)。gp41融合前构象可以持续约30分钟的时间,在这一段时间T-20可以作用于三个gp41分子的NHR区形成的-螺旋三聚体(Melikyan G.B.,J.Cell.Biol.,2000,151:413-423)。T-20的竞争性结合使gp41的CHR区不能结合NHR区,抑制螺旋六聚体的形成,病毒和宿主的细胞膜因此也不能相互靠近,膜融合过程受阻。T-20 is derived from the CHR region of HIV-1 LAI strain gp41 and consists of 36 amino acids (Wild, C.T., et al, Proc. Natl. Acad. Sci. U.S.A 1994, 91: 9770-9774). The pre-fusion conformation of gp41 can last for about 30 minutes, during which time T-20 can act on the -helical trimer formed by the NHR regions of three gp41 molecules (Melikyan G.B., J.Cell.Biol., 2000, 151 : 413-423). The competitive combination of T-20 prevents the CHR region of gp41 from binding to the NHR region and inhibits the formation of hexamers. Therefore, the cell membranes of the virus and the host cannot approach each other, and the membrane fusion process is hindered.
最近的研究结果认为,T-20不能和衍生于gp41的NHR区多肽N36在溶液中形成稳定的螺旋六聚体,因此其可能和gp41、gp120的多个位点相互作用(Liu S.,et al.,J.Biol.Chem,2005,280(12):11259-11273),这与其设计原理相异。Recent research results suggest that T-20 cannot form a stable helical hexamer in solution with NHR peptide N36 derived from gp41, so it may interact with multiple sites of gp41 and gp120 (Liu S., et al. al., J.Biol.Chem, 2005, 280(12): 11259-11273), which is different from its design principle.
T-1249是T-20的第二代产品,由39个氨基酸组成,衍生于HIV-1 LAI,HIV-2 NIHZ,SIV mac251三种毒株的CHR区(Schneider S.E.,et al,J.Pept.Sci.2005,11(11):744-753)。在临床使用过程中发现gp41的CHR区仅仅一个氨基酸的突变就可以造成毒株对T-20的抗性,但是这些毒株仍然对T-1249敏感,这被认为可能与其可以与膜相互作用的能力相关(VeigaA.S.,et al,J.Am.Chem.Soc.,2004,126(45):14758-14763)。T-1249 is the second-generation product of T-20, consisting of 39 amino acids, derived from the CHR regions of HIV-1 LAI, HIV-2 NIHZ, and SIV mac251 strains (Schneider S.E., et al, J.Pept . Sci. 2005, 11(11): 744-753). During clinical use, it was found that only one amino acid mutation in the CHR region of gp41 can cause strains resistant to T-20, but these strains are still sensitive to T-1249, which is considered to be likely to interact with the membrane. Ability-related (VeigaA.S., et al, J.Am.Chem.Soc., 2004, 126(45):14758-14763).
罗氏公司及其合作者于2004年起转而研究TR-290999和TR-291144(13th CROIConference on Retroviruses and Opportunistic Infections Denver,Colorado,Feb 5-8,2006),这两个多肽分别由38个和36个氨基酸组成,据称活性均高于T-20。Roche and its collaborators have turned to study TR-290999 and TR-291144 since 2004 (13th CROIConference on Retroviruses and Opportunistic Infections Denver, Colorado, Feb 5-8, 2006). These two polypeptides consist of 38 and 36 peptides respectively. Amino acid composition, it is said that the activity is higher than T-20.
尽管T-20、T-1249、TR-290999和TR-291144是目前效果最好的多肽类HIV融合抑制剂,但它们的共同缺点是分子量相对其它抗HIV药物来说较大,因而合成相对困难。Although T-20, T-1249, TR-290999 and TR-291144 are currently the most effective polypeptide HIV fusion inhibitors, their common disadvantage is that the molecular weight is relatively large compared to other anti-HIV drugs, so the synthesis is relatively difficult .
因此迫切需要有较短氨基酸序列的多肽类抑制病毒融合剂,以便于合成;另外,融合剂还需要有与T-20的作用位点不同,以对抗T-20耐药的病毒;增加药物的溶解性和稳定性,以加强疗效并减少药物用量。Therefore there is an urgent need for polypeptides with shorter amino acid sequences to inhibit virus fusion agents so as to facilitate synthesis; in addition, fusion agents also need to have different sites of action from T-20 to combat T-20 drug-resistant viruses; Solubility and stability to enhance efficacy and reduce drug dosage.
发明内容: Invention content:
本发明的目的是提供一种新型的抑制HIV病毒融合的多肽。该类多肽的氨基酸序列较短,作用位点与现有药物不同,并且水溶性较好,活性高。The purpose of the present invention is to provide a novel polypeptide for inhibiting HIV virus fusion. The amino acid sequence of this type of polypeptide is short, the action site is different from that of existing drugs, and it has better water solubility and high activity.
本发明提供的新型多肽的设计原理The design principle of the novel polypeptide provided by the invention
HIV-1的表面糖蛋白gp41的NHR区由于其高度的保守性可以作为理想的药物作用靶点,而衍生于CHR区的多肽因为可以与NHR区相互作用成为该类药物的先导多肽。本发明所提供的病毒融合抑制剂衍生于在中国内地流行面积最广和感染人数最多的B′亚型的RL42毒株的gp41的一段CHR序列,该段序列具有如下的氨基酸排列顺序:The NHR region of the surface glycoprotein gp41 of HIV-1 can be used as an ideal drug target due to its high degree of conservation, and the polypeptide derived from the CHR region can become the lead polypeptide of this type of drug because it can interact with the NHR region. The virus fusion inhibitor provided by the present invention is derived from a CHR sequence of gp41 of the RL42 strain of the B' subtype, which is the most popular in the mainland of China and has the largest number of infected people. This sequence has the following amino acid sequence:
EIWNNMTWMEWEREIDNYTREIYTLIEESQNQEIWNNMTWMEWEREIDNYTREIYTLIEESQNQ
对HIV-1的表面糖蛋白gp41的序列分析结果显示,在NHR区存在有两个非常保守的区域,其一是“GIVQQQ”(Rimsky L.T.,et al,J.Virol.,1998,72:986-993),该区域任何一个氨基酸的改变即可造成T-20的耐药,因此是T-20的主要作用位点;另外一个是Leu-565,Leu-566,Leu-568,Thr-569,Val-570,Trp-571,Gly-572,Ile-573,Lys-574,Leu-576,Gln-577等11个高度保守的氨基酸组成的长的疏水结构域“Cavity”(Eckert D.M.,et al,Cell,1999,99:103)。The sequence analysis results of the surface glycoprotein gp41 of HIV-1 show that there are two very conserved regions in the NHR region, one of which is "GIVQQQ" (Rimsky L.T., et al, J.Virol., 1998, 72:986 -993), any amino acid change in this region can cause T-20 drug resistance, so it is the main action site of T-20; the other is Leu-565, Leu-566, Leu-568, Thr-569 , Val-570, Trp-571, Gly-572, Ile-573, Lys-574, Leu-576, Gln-577 and other 11 highly conserved long hydrophobic domain "Cavity" (Eckert D.M., et al. al, Cell, 1999, 99:103).
在设计与NHR区结合的多肽抑制剂中,发明者重点考虑了与gp41的三聚体NHR区上的“Cavity”结构域及其两端相结合的序列,以往的抑制剂只考虑CHR序列中Trp628,Trp631,而忽略Trp623的作用。另外,发明者设计了与“Cavity”C端结合的螺旋序列,以增加与gp41 NHR区域的疏水作用力;除去了对gp41的三聚体NHR结合能力较弱的序列,并引入亲水氨基酸以增加抑制剂的水溶性,在多肽序列中的“I”及“I+4”位引入可产生离子键的酸性或碱性氨基酸,以增加自身形成螺旋的能力,最终形成本发明。In designing a polypeptide inhibitor that binds to the NHR region, the inventors focused on the sequence that binds to the "Cavity" domain on the trimeric NHR region of gp41 and its two ends. Previous inhibitors only considered the sequence in the CHR sequence Trp628, Trp631, while ignoring the role of Trp623. In addition, the inventors designed a helical sequence that binds to the C-terminus of "Cavity" to increase the hydrophobic interaction with the gp41 NHR region; removed the sequence with weak binding ability to the trimeric NHR of gp41, and introduced hydrophilic amino acids to Increase the water solubility of the inhibitor, introduce acidic or basic amino acids that can generate ionic bonds in the "I" and "I+4" positions of the polypeptide sequence, so as to increase the ability to form a helix by itself, and finally form the present invention.
本发明发现具有通式I的新型多肽具有抑制病毒融合作用,通式I多肽一级结构如下:The present invention finds that the novel polypeptide having the general formula I has the effect of inhibiting virus fusion, and the primary structure of the polypeptide of the general formula I is as follows:
α-X1-X2WN-X3-X4-TWMEWER-X5-IE-X6-YTKLIY-X7-IL-X8-SQEX9-βα-X 1 -X 2 WN-X 3 -X 4 -TWMEWER-X 5 -IE-X 6 -YTKLIY-X 7 -IL-X 8 -SQEX 9 -β
通式IFormula I
其中:in:
α选自氨基、乙酰基、马来酰基、琥珀酰基、叔丁氧羰基、苄氧羰基或脂肪酰基;α is selected from amino, acetyl, maleoyl, succinyl, tert-butoxycarbonyl, benzyloxycarbonyl or fatty acyl;
X1选自V、L、I、M中任意一个氨基酸或空缺; X1 is selected from any amino acid or vacancy in V, L, I, M;
X2选自E、D、N中任意一个氨基酸或空缺; X2 is selected from any amino acid or vacancy in E, D, N;
X3选自E、D、N中任意一个氨基酸; X3 is selected from any amino acid in E, D, N;
X4选自K、M、Q或L中任意一个氨基酸; X4 is selected from any amino acid in K, M, Q or L;
X5选自K或E; X5 is selected from K or E;
X6选自N、E或D中任意一个氨基酸; X6 is selected from any amino acid in N, E or D;
X7选自D、E、K或R中任意一个氨基酸; X7 is selected from any amino acid in D, E, K or R;
X8选自D、E、K或R中任意两个相同或不同氨基酸; X is selected from any two identical or different amino acids in D, E, K or R;
X9选自Q或L; X9 is selected from Q or L;
β选自酰胺基、羧基或羧基衍生物;β is selected from amido, carboxyl or carboxyl derivatives;
上述其它字母表示如下氨基酸:The other letters above represent the following amino acids:
D-天冬氨酸;E-谷氨酸;I-异亮氨酸;K-赖氨酸;L-亮氨酸;M-蛋氨酸;N-天冬酰胺;Q-谷氨酰胺;R-精氨酸;S-丝氨酸;T-苏氨酸;V-缬氨酸;W-色氨酸;Y-酪氨酸。D-aspartic acid; E-glutamic acid; I-isoleucine; K-lysine; L-leucine; M-methionine; N-asparagine; Q-glutamine; R- Arginine; S-serine; T-threonine; V-valine; W-tryptophan; Y-tyrosine.
本发明的多肽的一个或多个氨基酸可以用构象为D-型的氨基酸、自然界存在的稀有氨基酸或人工修饰的氨基酸替换,以增加生物利用度及提高抑制活性。其中D-型的氨基酸指与组成蛋白质的L-型的氨基酸相对的氨基酸;自然界存在的稀有氨基酸包括组成蛋白质的不常见氨基酸和不组成蛋白质的氨基酸,如:5-羟基赖氨酸,甲基组氨酸,γ-氨基丁酸,高丝氨酸等;人工修饰的氨基酸指经过甲基化,磷酸化等修饰的组成蛋白质的常见L-型氨基酸。One or more amino acids of the polypeptide of the present invention can be replaced with D-type amino acids, rare amino acids in nature or artificially modified amino acids to increase bioavailability and inhibitory activity. Among them, D-type amino acids refer to amino acids that are opposite to L-type amino acids that make up proteins; rare amino acids that exist in nature include uncommon amino acids that make up proteins and amino acids that do not make up proteins, such as: 5-hydroxylysine, methyl Histidine, γ-aminobutyric acid, homoserine, etc.; artificially modified amino acids refer to the common L-type amino acids that make up proteins after modification such as methylation and phosphorylation.
本发明所述多肽可与大分子的载体或者多肽联接,这些载体或者多肽包括但是不局限于:蛋白质,聚乙二醇,脂类物质等。The polypeptide of the present invention can be linked with macromolecular carriers or polypeptides, and these carriers or polypeptides include but not limited to: proteins, polyethylene glycol, lipids and the like.
本发明所述多肽包括其截断部分及其截断部分的修饰物。上述的多肽的截断部分为包括含15-32个氨基酸的肽。截断部分的修饰物指的是使用聚乙二醇修饰、化学小分子(如马来酰亚胺)以及蛋白质的修饰物。截断部分的修饰物指的是多肽的某个或某些氨基酸连接聚乙二醇、化学小分子(如马来酰亚胺)以及蛋白质后产生的衍生物。The polypeptide of the present invention includes its truncated parts and modifications of the truncated parts. The truncated portion of the above-mentioned polypeptides includes peptides containing 15-32 amino acids. Modifications of truncated parts refer to modifications using polyethylene glycol, chemical small molecules (such as maleimide) and proteins. The modification of the truncated part refers to the derivatives produced after one or some amino acids of the polypeptide are linked to polyethylene glycol, small chemical molecules (such as maleimide) and proteins.
本发明所述多肽还包括上述通式加入单个和多个氨基酸插入物,替换物和/或缺失物。The polypeptides of the present invention also include single and multiple amino acid insertions, substitutions and/or deletions added to the general formula above.
本发明所述多肽还包括上述多肽(通式I)及其截断物多聚体,即几个(1-4个)相同的多肽通过氨基酸,如赖氨酸、半胱氨酸,或者其他的分子连接在一起形成多聚体。The polypeptide of the present invention also includes the above-mentioned polypeptide (general formula I) and its truncated multimers, that is, several (1-4) identical polypeptides through amino acids, such as lysine, cysteine, or other Molecules link together to form polymers.
通式I多肽中,优选的是下列18个多肽,它们的结构分别如下:Among the polypeptides of general formula I, the following 18 polypeptides are preferred, and their structures are as follows:
多肽1: NH2-SEQ ID No:1-CONH2 Polypeptide 1: NH 2 -SEQ ID No: 1-CONH 2
SEQ ID No:1=VEWNNKTWMEWERKIEEYTKLIYEILKKSQEQSEQ ID No: 1 = VEWNNKTWMEWERKIEEYTKLIYEILKKSQEQ
多肽2: NH2-SEQ ID No:2-CONH2 Polypeptide 2: NH 2 -SEQ ID No: 2-CONH 2
SEQ ID No:2=VEWNNMTWMEWERKIEEYTKLIYEILKKSQEQSEQ ID No: 2 = VEWNNMTWMEWERKIEEYTKLIYEILKKSQEQ
多肽3: NH2-SEQ ID No:3-CONH2 Polypeptide 3: NH 2 -SEQ ID No: 3-CONH 2
SEQ ID No:3=VEWNNMTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 3 = VEWNNMTWMEWEREIENYTKLIYKILEESQEQ
多肽4: Ac-SEQ ID No:4-CONH2 Polypeptide 4: Ac-SEQ ID No: 4-CONH 2
SEQ ID No:4=VEWNNMTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 4 = VEWNNMTWMEWEREIENYTKLIYKILEESQEQ
多肽5: Ac-SEQ ID No:5-CONH2 Polypeptide 5: Ac-SEQ ID No: 5-CONH 2
SEQ ID No:5=VEWNNKTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 5=VEWNNKTWMEWEREIENYTKLIYKILEESQEQ
多肽6: NH2-NEKDLLEWMEWEREIENYTKLIYKILEESQEQ-CONH2 Peptide 6: NH 2 -NEKDLLEWMEWEREIENYTKLIYKILEESQEQ-CONH 2
多肽7: NH2-RINNIPWSEAMWMEWEREIENYTKLIYKILEESQEQ-CONH2 Peptide 7: NH 2 -RINNIPWSEAMWMEWEREIENYTKLIYKILEESQEQ-CONH 2
多肽8: NH2-YDINYYTWMEWERKIEEYTKLIYEILKKSQEQ-CONH2 Peptide 8: NH 2 -YDINYYTWMEWERKIEEYTKLIYEILKKSQEQ-CONH 2
多肽9: NH2-(CEKNEQELLWMEWEREIENYTKLIYKILEESQEQCONH2)2 Peptide 9: NH 2 -(CEKNEQELLWMEWEREIENYTKLIYKILEESQEQCONH 2 ) 2
多肽10: NH2-SEQ ID No:6-CO NH2 Peptide 10: NH2-SEQ ID No: 6-CO NH 2
SEQ ID No:6=WNEMTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 6 = WNEMTWMEWEREIENYTKLIYKILEESQEQ
多肽11: Ac-SEQ ID No:7-CO NH2 Peptide 11: Ac-SEQ ID No: 7-CO NH 2
SEQ ID No:7=WNEMTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 7 = WNEMTWMEWEREIENYTKLIYKILEESQEQ
多肽12:NH2-SEQ ID No:8-CO NH2 Polypeptide 12: NH 2 -SEQ ID No: 8-CO NH 2
SEQ ID No:8=VEWNEMTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 8 = VEWNEMTWMEWEREIENYTKLIYKILEESQEQ
多肽13:NH2-SEQ ID No:9-CO NH2 Polypeptide 13: NH 2 -SEQ ID No: 9-CO NH 2
SEQ ID No:9=LEWNEMTWMEWEREIENYTKLIYKILEESQEQSEQ ID No: 9 = LEWNEMTWMEWEREIENYTKLIYKILEESQEQ
多肽14:NH2-SEQ ID No:10-CO NH2 Polypeptide 14: NH 2 -SEQ ID No: 10-CO NH 2
SEQ ID No:10=LEWNEMTWMEWEREIENYTKLIYKILEESQELSEQ ID No: 10 = LEWNEMTWMEWEREIENYTKLIYKILEESQEL
多肽15: NH2-WNNMTWMEWEREIENYTKLIYKILEESQEQ-CO NH2 Peptide 15: NH 2 -WNNMTWMEWEREIENYTKLIYKILEESQEQ-CO NH 2
多肽16: NH2-WNNMTWMEWEREIENYTKLIYKILEESQEL-CO NH2 Peptide 16: NH 2 -WNNMTWMEWEREIENYTKLIYKILEESQEL-CO NH 2
多肽17: NH2-VEWNNMTWMEWEREIENYTKLIYKILEESQEL-CO NH2 Peptide 17: NH 2 -VEWNNMTWMEWEREIENYTKLIYKILEESQEL-CO NH 2
多肽18: NH2-LEWNNMTWMEWEREIENYTKLIYKILEESQEL-CO NH2 Peptide 18: NH 2 -LEWNNMTWMEWEREIENYTKLIYKILEESQEL-CO NH 2
在上述18个多肽中,特别优选的是多肽1、2、3、4、5、10、11、12、13、14。Among the above-mentioned 18 polypeptides,
本发明所提供的多肽与T-20、C34、T-1249等在序列结构上显著不同。T-20的序列为:Ac-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-CONH2(Wild,C.T.,et al,Proc.Natl.Acad.Sci.U.S.A 1994,91:9770-9774);C34的序列为Ac-WMEWDREINNYTSLHISLIEESQNQQEKNEQELL-CONH2(Lu,M.,et al,J.Biomol.Struct.Dyn.,1997,15:465-471);T-1249的序列为WQEWEQKITALLEQAQIQQEKNEYELQKLDKWASLWEWF(SchneiderS.E.et al,J.Pept.Sci.2005,11(11):744-753)。The sequence structure of the polypeptide provided by the invention is significantly different from T-20, C34, T-1249 and the like. The sequence of T-20 is: Ac-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-CONH 2 (Wild, CT, et al, Proc.Natl.Acad.Sci.USA 1994, 91:9770-9774); the sequence of C34 is Ac-WMEWDREINNYTSLHISLIEESQNQQEKNEQELL-CONH2 (Lu , M., et al, J.Biomol.Struct.Dyn., 1997, 15:465-471); The sequence of T-1249 is WQEWEQKITALLEQAQIQQEKNEYELQKLDKWASLWEWF (SchneiderS.E.et al, J.Pept.Sci.2005, 11( 11): 744-753).
本发明根据HIV病毒在膜融合过程中与细胞膜表面的受体分子的作用机制,设计了可以与病毒表面糖蛋白gp41相结合的活性多肽。本发明的作用位点位于gp41分子上三聚体NHR的疏水“Cavity”结构域及两端,可以在低至纳摩尔浓度完全抑制病毒的复制。According to the action mechanism of HIV virus and the receptor molecule on the surface of the cell membrane during the membrane fusion process, the invention designs an active polypeptide that can combine with the virus surface glycoprotein gp41. The action site of the present invention is located at the hydrophobic "Cavity" domain and both ends of the trimeric NHR on the gp41 molecule, and can completely inhibit virus replication at a concentration as low as nanomolar.
本发明所提供的多肽的优点是:The advantage of polypeptide provided by the present invention is:
1、易于合成1. Easy to synthesize
T-20和T-1249分别由36个和39个氨基酸组成,合成时采用分段合成然后再连接的方法。本发明提供的抗HIV融合多肽可以仅由30-32个氨基酸组成,但仍具有高于T-20和T-1249的活性,且合成容易。T-20 and T-1249 consist of 36 and 39 amino acids respectively, and are synthesized by segmented synthesis and then ligation. The anti-HIV fusion polypeptide provided by the invention may only consist of 30-32 amino acids, but still has higher activity than T-20 and T-1249, and is easy to synthesize.
2、多肽序列和作用位点与现有药物不同2. The peptide sequence and action site are different from existing drugs
本发明的多肽序列和T-20、T-1249及其它已报道的融合多肽序列不同(Jiang S.,et al.,Curr.Pharm.Des.,2002,8(8):563-580),作用位点也不同,已报道的多肽,如T-20,C34等主要作用于gp41的NHR疏水“Cavity”及其N端结合,本发明提供的多肽与gp41的疏水“Cavity”结构域及两端结合。The polypeptide sequence of the present invention is different from T-20, T-1249 and other reported fusion polypeptide sequences (Jiang S., et al., Curr.Pharm.Des., 2002, 8(8):563-580), The action sites are also different. The reported polypeptides, such as T-20, C34, etc., mainly act on the NHR hydrophobic "Cavity" of gp41 and its N-terminal binding. end-joint.
3、与天然肽和现有药物相比活性更高3. Higher activity compared with natural peptides and existing drugs
我们合成了本发明多肽C端的25肽,其在1μM仍不能抑制病毒和细胞的融合,这与文献中报道的与本发明C端的25肽相似的天然序列肽抑制融合的活性低的结果一致(EC50为2.8±1.4μM(Marc F,et al.Nature structural biology.1999,6(10):953-960)。我们还合成了本发明的前端12个氨基酸的四聚体,其抑制病毒融合的IC50为2.6±0.1μM。文献中报道的与本发明的N端相似的序列肽(SLEQIWNNMTWMQWDK)没有检测到活性(Hovanessian A G.,eta1.Immunity,2004,21:617-627)。We have synthesized the 25 peptides at the C-terminus of the polypeptide of the present invention, which still cannot inhibit the fusion of viruses and cells at 1 μM, which is consistent with the results reported in the literature that the natural sequence peptides similar to the 25 peptides at the C-terminus of the present invention have low activity in inhibiting fusion ( EC 50 is 2.8 ± 1.4 μ M (Marc F, et al.Nature structural biology.1999, 6 (10): 953-960). We also synthesized the tetramer of the
本发明在进行肽链设计时重点考虑了与gp41的三聚体NHR区上的“Cavity”结构域及其两端相结合的序列相结合的序列,除去了结合能力较弱的序列。同时引入了亲水氨基酸以增加本发明的水溶性,并在多肽序列中的“I”及“I+4”位引入可产生离子键的酸性或碱性氨基酸,使设计的序列具有较强的形成α-螺旋的能力,以更好的与上述区域结合。经上述设计得到的本发明多肽较天然肽的活性有了很大的提高(约500倍),其中多肽3、4、10等的活性高于现有多肽药物T-20(见实施例4中表3),且对T-20的耐药毒株依然有效(见实施例5)。The present invention focuses on the sequence combined with the "Cavity" domain on the trimeric NHR region of gp41 and the sequence combined at both ends when designing the peptide chain, and the sequence with weaker binding ability is removed. At the same time, hydrophilic amino acids are introduced to increase the water solubility of the present invention, and acidic or basic amino acids that can generate ionic bonds are introduced into the "I" and "I+4" positions in the polypeptide sequence, so that the designed sequence has a strong The ability to form α-helices to better bind to the above regions. Compared with the natural peptide, the activity of the polypeptide of the present invention obtained through the above design has been greatly improved (about 500 times), and the activity of
4、水溶性好4. Good water solubility
由于在多肽分子中引入亲水氨基酸,本发明的多肽均易溶于水,水溶性的提高便于提高药物疗效及药物剂型开发。Due to the introduction of hydrophilic amino acids into the polypeptide molecules, the polypeptides of the invention are all easily soluble in water, and the improvement of water solubility facilitates the improvement of drug efficacy and the development of drug dosage forms.
本发明的多肽不仅可抑制HIV病毒与细胞的膜融合,实际上,对一些具有相似的膜融合过程的包膜病毒进入细胞同样都有抑制作用,如:人呼吸道合胞病毒(RSV)、肝炎病毒等。The polypeptide of the present invention can not only inhibit the membrane fusion of HIV virus and cells, in fact, it also has an inhibitory effect on the entry of some enveloped viruses with a similar membrane fusion process, such as: human respiratory syncytial virus (RSV), hepatitis virus etc.
本发明多肽的制备方法The preparation method of polypeptide of the present invention
本发明的多肽可以通过多种方法生产:如固相合成,液相合成,工程菌表达等。例如,和T-20的合成路线相似,先在树脂上分段合成,然后在液相连接个多肽,以形成本发明的多肽;合成或提取可以表达本发明多肽的DNA序列,连接到某一载体上,并转染到真核或者原核生物的细胞中,表达含有本发明所提供的多肽序列的蛋白质或者多肽,经提取和纯化得到本发明的多肽。The polypeptide of the present invention can be produced by various methods: such as solid-phase synthesis, liquid-phase synthesis, and expression by engineering bacteria. For example, similar to the synthetic route of T-20, it is first synthesized in segments on the resin, and then connected to two polypeptides in the liquid phase to form the polypeptide of the present invention; a DNA sequence that can express the polypeptide of the present invention is synthesized or extracted, and connected to a vector, and transfected into eukaryotic or prokaryotic cells, express the protein or polypeptide containing the polypeptide sequence provided by the present invention, and obtain the polypeptide of the present invention through extraction and purification.
本发明多肽的使用方法Methods of using the polypeptides of the invention
本发明的多肽可以直接单独用于HIV感染治疗,也可以与一种或多种抗HIV药物联合使用,以达到提高整体治疗效果的目的。这些抗HIV药物来自于(但不局限于)逆转录酶抑制剂、蛋白酶抑制剂和进入和融合抑制剂中的一种或几种。上述的逆转录酶抑制剂包括:AZT、3TC、ddI、ddT、d4T、Abacavir、Nevirapine、Efavirenz和Delavirdine的一种或几种。上述的蛋白酶抑制剂包括:Saquinavir mesylate、Idinavir、Ritonavir、Amprenavir、Kaletra和Nelfinavir mesylate的一种或几种。上述的进入和融合抑制剂包括:T-20、T-1249、C34、IQN37、5-Helix、TAK-779、SCH-C及天然提取的蛋白质等具有抑制病毒进入的功能的多肽。The polypeptide of the present invention can be directly used for the treatment of HIV infection alone, and can also be used in combination with one or more anti-HIV drugs to achieve the purpose of improving the overall therapeutic effect. These anti-HIV drugs come from (but not limited to) one or more of reverse transcriptase inhibitors, protease inhibitors and entry and fusion inhibitors. The aforementioned reverse transcriptase inhibitors include: one or more of AZT, 3TC, ddI, ddT, d4T, Abacavir, Nevirapine, Efavirenz and Delavirdine. The above protease inhibitors include: one or more of Saquinavir mesylate, Idinavir, Ritonavir, Amprenavir, Kaletra and Nelfinavir mesylate. The above-mentioned entry and fusion inhibitors include: T-20, T-1249, C34, IQN37, 5-Helix, TAK-779, SCH-C and naturally extracted proteins and other polypeptides that have the function of inhibiting virus entry.
可以将含有本发明的多肽或其截断物、衍生物及组合物的药物直接给予病人,或者与适宜的载体或者赋型剂混合后给予病人,以达到治疗HIV病毒感染的目的。这里的载体材料包括:水溶性载体材料,如聚乙二醇,聚乙烯吡咯烷酮,有机酸等;难溶性载体材料,如乙基纤维素,胆固醇硬脂酸酯等;肠溶性载体材料,如醋酸纤维素酞酸酯和羧甲乙纤维素等,优选的是水溶性材料。使用这些材料,可以制成如下的剂型:片剂、栓剂、溶液、胶囊、气雾剂、泡腾剂和滴剂等,优选的是溶液和气雾剂。The medicine containing the polypeptide of the present invention or its truncated products, derivatives and compositions can be directly administered to patients, or mixed with appropriate carriers or excipients and then administered to patients, so as to achieve the purpose of treating HIV infection. The carrier materials here include: water-soluble carrier materials, such as polyethylene glycol, polyvinylpyrrolidone, organic acids, etc.; insoluble carrier materials, such as ethyl cellulose, cholesterol stearate, etc.; enteric carrier materials, such as acetic acid Cellulose phthalate, carboxymethyl ethyl cellulose, and the like are preferably water-soluble materials. Using these materials, the following dosage forms can be made: tablets, suppositories, solutions, capsules, aerosols, effervescents and drops, etc., preferably solutions and aerosols.
使用上述的剂型,本发明所提供的抗HIV药物及其衍生物、截断物和类似物及组合物可以:经注射给药,包括静脉注射、皮下注射、腔内注射等;呼吸道给药,如鼻腔给药;粘膜给药,如鼻腔,在局部起效或经粘膜吸收全身发挥作用;腔道给药,如经直肠和阴道给药,局部起效或者经吸收全身发挥作用。上述给药途径优选的是经注射给药。Using the above-mentioned dosage forms, the anti-HIV drugs and their derivatives, truncates and analogs and compositions provided by the present invention can be: administered by injection, including intravenous injection, subcutaneous injection, intracavitary injection, etc.; respiratory tract administration, such as Nasal administration; mucosal administration, such as nasal cavity, acts locally or acts systemically through mucosal absorption; oral administration, such as rectal and vaginal administration, acts locally or acts systemically through absorption. The above-mentioned route of administration is preferably administration by injection.
附图说明: Description of drawings:
图1是N36与多肽3的螺旋构象及二者相互作用后构象的改变,图中,▲是复合物,●是多肽3,■是N36;Figure 1 shows the helical conformation of N36 and
图2是N36与多肽6的螺旋构象及二者相互作用后构象的改变,▲是复合物,●是多肽6,■是N36;Figure 2 shows the helical conformation of N36 and
图3是N36与多肽7的螺旋构象及二者相互作用后构象的改变,▲是复合物,●是多肽7,■是N36;Figure 3 shows the helical conformation of N36 and polypeptide 7 and the conformational change after the interaction between the two, ▲ is the complex, ● is polypeptide 7, and ■ is N36;
图4是N36与多肽9的螺旋构象及二者相互作用后构象的改变;▲是复合物,●是多肽9,■是N36;Figure 4 shows the helical conformation of N36 and
图5是多肽3的HPLC分析图;Fig. 5 is the HPLC analysis figure of
图6是多肽4及其与N36形成的复合物的凝胶HPLC分析,图中,1是复合物,2是多肽4,3是N36;Figure 6 is a gel HPLC analysis of polypeptide 4 and its complex with N36, in which 1 is the complex, 2 is
图7是多肽6及其与N36形成的复合物的凝胶HPLC分析,图中,1是复合物,2是多肽6,3是N36。7 is a gel HPLC analysis of
图8是N36与多肽10的螺旋构象及二者相互作用后构象的改变,图中,▲是复合物,●是多肽10,■是N36;Figure 8 shows the helical conformation of N36 and
图9是N36与多肽12的螺旋构象及二者相互作用后构象的改变,▲是复合物,●是多肽12,■是N36;Figure 9 shows the helical conformation of N36 and
图10是N36与多肽13的螺旋构象及二者相互作用后构象的改变,▲是复合物,●是多肽13,■是N36。Figure 10 shows the helical conformation of N36 and
具体实施方式: Detailed ways:
实施例1多肽的合成和纯化Synthesis and purification of
本发明提供的多肽可以在美国应用系统生物的ABI 433型固相合成仪上合成,多肽的修饰手工完成。该合成使用的氨基酸以Fmoc保护(美国Advanced Chemtech公司产品),使用的树脂为Rink树脂(美国Advanced Chemtech公司产品)。合成时使用1-羟基苯并三唑(HoBt)(美国Advanced Chemtech公司产品)溶解在N-甲基吡咯烷酮(NMP)(PE公司)中作为活化剂,使用二环己基碳二亚胺(DCC)(Acros公司)作为偶联剂,使用哌啶(Piperidine)(上海吉尔生化)除去保护基。氨基酸均具有L-型化学结构,它们被依次偶联在Rink树脂上。The polypeptide provided by the present invention can be synthesized on the ABI 433 solid phase synthesizer of Applied Systems Biosystems in the United States, and the modification of the polypeptide is done manually. The amino acid used in this synthesis is protected with Fmoc (U.S. Advanced Chemtech company product), and the resin used is Rink resin (U.S. Advanced Chemtech company product). During synthesis, 1-hydroxybenzotriazole (HoBt) (product of Advanced Chemtech, USA) was dissolved in N-methylpyrrolidone (NMP) (PE company) as an activator, and dicyclohexylcarbodiimide (DCC) was used (Acros Company) was used as a coupling agent, and piperidine (Piperidine) (Shanghai Jier Biochemical) was used to remove the protecting group. Amino acids all have an L-type chemical structure, and they are sequentially coupled to the Rink resin.
Rink树脂的使用量与Fmc保护氨基酸的使用量按1∶5进行,保护氨基酸如下:Fmoc-Ala-OH,Fmoc-Cys(Trt)-OH,Fmoc-Asp(OtBu)-OH,Fmoc-Glu(OtBu)-OH,Fmoc-Phe-OH,Fmoc-Gly-OH,Fmoc-His(Trt)-OH,Fmoc-Ile-OH,Fmoc-Lys(Boc)-OH,Fmoc-Leu-OH,Fmoc-Met-OH,Fmoc-Asn(Trt)-OH,Fmoc-Pro-OH,Fmoc-Gln(Trt)-OH,Fmoc-Arg(Pbf)-OH,Fmoc-Ser(tBu)-OH,Fmoc-Thr(tBu)-OH,Fmoc-Val-OH,Fmoc-Trp(Boc)-OH,Fmoc-Tyr(tBu)-OH。氨基酸的偶联按照仪器操作规程的进行。The usage amount of Rink resin and the usage amount of Fmc protected amino acid are carried out by 1:5, and protected amino acid is as follows: Fmoc-Ala-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Glu( OtBu)-OH, Fmoc-Phe-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Ile-OH, Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Met -OH, Fmoc-Asn(Trt)-OH, Fmoc-Pro-OH, Fmoc-Gln(Trt)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu )-OH, Fmoc-Val-OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH. Coupling of amino acids was carried out according to the protocol of the instrument.
用人工方法将N-末端乙酰化。在反应腔中加入肽树脂、N-甲基吡咯烷酮(NMP)(用量为肽树脂重量的8-15倍)、醋酸酐(1g树脂上用0.5ml),二异丙基乙酰胺(DIEA)(1g树脂上用0.7ml),在室温反应2小时,过滤,树脂用二氯甲烷、甲醇及N-甲基吡咯烷酮(NMP)各洗涤三次。The N-terminus was acetylated manually. Add peptide resin, N-methylpyrrolidone (NMP) (consumption is 8-15 times of peptide resin weight), acetic anhydride (use 0.5ml on 1g resin), diisopropylacetamide (DIEA) ( Use 0.7 ml on 1 g of resin, react at room temperature for 2 hours, filter, and wash the resin three times with dichloromethane, methanol and N-methylpyrrolidone (NMP).
上述合成后的树脂用裂解液(组成:二巯基苏糖醇(DTT)5%,水(5%),三氟乙酸(TFA)88%,和三异丙基硅烷(TIPS)2%)(树脂与裂解液的用量比例为:0.5-1.0克树脂/10毫升裂解液)裂解2.5~3.0小时,过滤,滤液用旋转蒸发仪蒸去大部分三氟乙酸后,用预冷的无水乙醚进行沉淀,过滤得到初肽,用稀氨水溶解固体,滤液冻干。The resin after above-mentioned synthesis is used lysate (composition: dimercaptothreitol (DTT) 5%, water (5%), trifluoroacetic acid (TFA) 88%, and triisopropylsilane (TIPS) 2%) ( The ratio of the amount of resin to the lysate is: 0.5-1.0 g resin/10 ml lysate) cracked for 2.5-3.0 hours, filtered, and the filtrate was evaporated with a rotary evaporator to remove most of the trifluoroacetic acid, and then carried out with pre-cooled anhydrous ether Precipitate, filter to obtain the initial peptide, dissolve the solid with dilute ammonia water, and freeze-dry the filtrate.
上述冻干粗肽用反相HPLC进行纯化,纯化柱为反相C18半制备柱(Zorbax,300SB-C18,9.4mm×25cm),梯度洗脱液为含有不同梯度的乙腈(含0.1%TFA)/水(含0.1%TFA),收集目标峰,旋转蒸发除去大部分乙腈,冻干得到纯肽。用基质辅助激光解析电离飞行质谱(MALDI-TOF-MS Reflex III,Micromass公司)测定各多肽的分子量,结果与理论计算值相符。The above-mentioned lyophilized crude peptide was purified by reverse-phase HPLC. The purification column was a reverse-phase C18 semi-preparative column (Zorbax, 300SB-C18, 9.4mm×25cm), and the gradient elution solution was acetonitrile containing different gradients (containing 0.1% TFA )/water (containing 0.1% TFA), the target peak was collected, most of the acetonitrile was removed by rotary evaporation, and the pure peptide was obtained by lyophilization. The molecular weight of each polypeptide was determined by matrix-assisted laser desorption ionization-of-flight mass spectrometry (MALDI-TOF-MS Reflex III, Micromass Company), and the results were consistent with the theoretically calculated values.
多肽3的合成具体步骤如下:称取0.17gRink树脂(0.1mmol,取代率0.6g/mmol),各Fmoc保护氨基酸的用量为0.5mmol,以1-羟基苯并三唑(HoBt)及二环己基碳二亚胺(DCC)(Acros公司)为缩合剂,哌啶(Piperidine)(上海吉尔公司)脱保护剂,按美国应用系统生物的ABI 433型固相合成仪的操作说明,适当延长偶合时间(60-90min)及脱保护试剂时间(20-30min),合成肽-树脂。得肽树脂0.52g。The specific steps for the synthesis of
取上述肽-树脂0.52g,放入10ml裂解液中(组成:0.5g二巯基苏糖醇(DTT),0.5ml水,8.8ml三氟乙酸(TFA),0.2ml三异丙基硅烷(TIPS),裂解3.0小时,用G3玻璃砂芯漏斗过滤,用旋转蒸发仪蒸去大部分滤液至残余液体约2ml后,用100ml预冷的无水乙醚进行沉淀,静置1小时,G4玻璃砂芯漏斗过滤得到初肽,用1%的稀氨水溶解固体,滤液冻干得粗肽0.33g,纯度约为60%。Take 0.52g of the above-mentioned peptide-resin, put it into 10ml lysate (composition: 0.5g dimercaptothreitol (DTT), 0.5ml water, 8.8ml trifluoroacetic acid (TFA), 0.2ml triisopropylsilane (TIPS) ), cracked for 3.0 hours, filtered with a G3 glass sand core funnel, and evaporated most of the filtrate to a residual liquid of about 2ml with a rotary evaporator. The initial peptide was obtained by funnel filtration, the solid was dissolved with 1% dilute ammonia water, and the filtrate was lyophilized to obtain 0.33 g of crude peptide with a purity of about 60%.
取粗肽0.1g用HPLC纯化,色谱柱为反相C18半制备柱(Zorbax,300SB-C18,9.4mm×25cm)。流动相:A,乙腈(含0.1%TFA);B,水(含0.1%TFA)。洗脱梯度为:1-5min10-45%A;5-30min,45-65%A,流速3ml/min,UV 214nm检测,每次上样5mg。收集目标组份,旋转蒸发除去大部分乙腈,冻干得到纯肽20mg。质谱测定分子量为4163.20Da(理论计算值4162.67Da)。0.1 g of the crude peptide was purified by HPLC on a reversed-phase C 18 semi-preparative column (Zorbax, 300SB-C18, 9.4 mm×25 cm). Mobile phase: A, acetonitrile (containing 0.1% TFA); B, water (containing 0.1% TFA). The elution gradient is: 1-5min 10-45%A; 5-30min, 45-65%A, flow rate 3ml/min, UV 214nm detection, 5mg each time. The target fractions were collected, most of the acetonitrile was removed by rotary evaporation, and 20 mg of pure peptide was obtained by lyophilization. The molecular weight determined by mass spectrometry was 4163.20Da (theoretical calculation value 4162.67Da).
多肽3的纯度分析见附图5,分析条件如下:The purity analysis of
色谱柱:Kromasil C-18柱(北京分析仪器厂,5μm,4.6×250 mm)。流动相:A,乙腈(含0.1%TFA);B,水(含0.1%TFA)。洗脱梯度为:1-5min 10-35%A;5-30min,35-65%A,流速1ml/min,UV 214nm检测Chromatographic column: Kromasil C-18 column (Beijing Analytical Instrument Factory, 5 μm, 4.6×250 mm). Mobile phase: A, acetonitrile (containing 0.1% TFA); B, water (containing 0.1% TFA). The elution gradient is: 1-5min 10-35%A; 5-30min, 35-65%A, flow rate 1ml/min, UV 214nm detection
各多肽HPLC的保留时间见表1。The HPLC retention times of each polypeptide are shown in Table 1.
表1 9个多肽的HPLC分析的出峰时间The peak time of the HPLC analysis of table 1 9 peptides
注:多肽6、8、9的洗脱条件同多肽3,其余5个多肽的分析条件除洗脱梯度(为1-5min10-25%A;5-32min,25-80%A)和色谱柱(Kromasil C-18柱,5μm,4.6×250mm)外均相同。Note: The elution conditions of
实施例2多肽二级结构的CD谱测定The CD spectrum determination of
1.实验目的1. Purpose of the experiment
通过测定本发明提供的多肽与N36(来自于HIV gp41的NHR区的一段序列,含有本发明多肽及T20等的作用位点)各自及二者复合物的二级结构(如螺旋含量)的改变来分析本发明多肽与N36二者之间的分子间相互作用。相互作用强的其活性可能也较高,反之亦然。By measuring the changes in the secondary structure (such as helical content) of the polypeptide provided by the invention and N36 (a sequence from the NHR region of HIV gp41, containing the action site of the polypeptide of the invention and T20, etc.) and their complexes To analyze the intermolecular interaction between the polypeptide of the present invention and N36. The stronger the interaction, the higher the activity, and vice versa.
2.实验仪器、试剂和方法2. Experimental instruments, reagents and methods
仪器:JASCO J-715-150L型Instrument: JASCO J-715-150L type
参数选择:分辨率0.1nm,波宽5.0nm,响应时间4.0s,波长200-250nmParameter selection: resolution 0.1nm, wave width 5.0nm, response time 4.0s, wavelength 200-250nm
溶解缓冲液:50mM NaH2PO4(含1 50mM NaCl)pH=7.2Dissolving buffer: 50mM NaH 2 PO 4 (containing 1 50mM NaCl) pH=7.2
多肽浓度:10μMPeptide concentration: 10μM
对本发明提供的18个多肽在水溶液中的二级结构测定依下述方法进行:The secondary structure determination of 18 polypeptides provided by the invention in aqueous solution is carried out according to the following method:
将N36及本发明提供的每种多肽分别用水溶解,浓度为2.5mM,然后以磷酸盐缓冲液稀释至10μM,在上述的参数下分别测定二级结构。然后将等量的N36及本发明混合后以磷酸盐缓冲液稀释至各自浓度均为10μM,37℃水浴中温育30min,取温育后的混合物在上述的参数下分别测定混合物的二级结构。N36 and each polypeptide provided by the present invention were respectively dissolved in water to a concentration of 2.5 mM, then diluted to 10 μM with phosphate buffer, and the secondary structure was respectively determined under the above parameters. Then equal amounts of N36 and the present invention were mixed and then diluted with phosphate buffer to a concentration of 10 μM, incubated in a water bath at 37°C for 30 min, and the incubated mixture was taken to determine the secondary structure of the mixture under the above parameters.
3.实验结果3. Experimental results
附图1-8分别示出了N36与多肽3、6、7、9、10、12、13二者相互作用后螺旋构象的改变及上述多肽的HPLC分析图。Figures 1-8 respectively show the changes in the helical conformation after the interaction between N36 and
典型的α-螺旋在CD图上显示为208nm和222nm处有双负峰,附图1~4及附图8~10是N36与本发明多肽的螺旋构象及二者相互作用后构象的改变。从图中可以看出,本发明的多肽与衍生于HIV gp41 NHR区的N36有相互作用,二者的复合物在220nm处形成明显的负峰。复合物的摩尔旋光率[θ]按如下公式计算:A typical α-helix shows double negative peaks at 208nm and 222nm on the CD diagram. Figures 1-4 and Figures 8-10 show the helical conformation of N36 and the polypeptide of the present invention and the conformational changes after the interaction between the two. It can be seen from the figure that the polypeptide of the present invention interacts with N36 derived from the NHR region of HIV gp41, and the complex of the two forms an obvious negative peak at 220nm. The molar optical rotation [θ] of the complex is calculated according to the following formula:
其中:θ为在圆二色谱仪上测得的椭圆度值(单位为mdeg);n为多肽的残基数目,(复合物的残基数目按二个肽残基数之和的1/2计算);C为多肽的摩尔浓度(复合物的浓度按10μM计算);L为石英杯的光径,单位为厘米。Wherein: θ is the ellipticity value (in mdeg) measured on the circular dichroism spectrometer; n is the number of residues of the polypeptide, (the number of residues of the complex is 1/2 of the sum of the number of residues of the two peptides Calculation); C is the molar concentration of the polypeptide (the concentration of the complex is calculated as 10 μM); L is the optical path of the quartz cup, in centimeters.
4.结论4 Conclusion
本发明提供的大部分多肽在溶液中与N36相互作用后螺旋的含量增加,说明这些多肽与N36有相互作用,并形成复合物,该复合物的螺旋形成趋势增加。Most of the polypeptides provided by the present invention have increased helix content after interacting with N36 in solution, indicating that these polypeptides interact with N36 and form complexes, and the helix formation tendency of the complexes increases.
实施例3 凝胶HPLC检测本发明的多肽和N36的结合作用Example 3 Gel HPLC detection of the binding effect of the polypeptide of the present invention and N36
1.实验目的和原理1. Experimental purpose and principle
目的是通过检测本发明多肽是否与N36结合,证明二者之间是否有较强的相互作用。The purpose is to prove whether there is a strong interaction between the two by detecting whether the polypeptide of the present invention binds to N36.
在凝胶柱中,物质依分子量大小进行分离,分子量大的物质首先被洗脱出来。本实验中,若多肽与N36形成复合物,分子量增大后会先被洗脱出来,若不能形成复合物则其混合物会形成两个等高的峰,分别对应本发明提供的多肽和N36。In a gel column, substances are separated according to their molecular weights, and substances with larger molecular weights are eluted first. In this experiment, if the polypeptide forms a complex with N36, it will be eluted first after the molecular weight increases. If the complex cannot be formed, the mixture will form two peaks of equal height, corresponding to the polypeptide and N36 provided by the present invention respectively.
2.实验仪器、试剂和方法2. Experimental instruments, reagents and methods
凝胶柱:TSK-G3000SWxl,5μm,7.8mm×300mm(日本TOSOH公司产品)Gel column: TSK-G3000SWxl, 5μm, 7.8mm×300mm (product of Japan TOSOH company)
仪器:Bio-Rad 13507泵,Bio-DimensionTM UV/VIS检测器Instrument: Bio-Rad 13507 pump, Bio-Dimension TM UV/VIS detector
流动相:50mM NaH2PO4(含150mM NaCl)pH=7.2Mobile phase: 50mM NaH 2 PO 4 (containing 150mM NaCl) pH=7.2
梯度:0.8ml/min等梯度洗脱Gradient: 0.8ml/min isocratic elution
检测波长:UV 214nmDetection wavelength: UV 214nm
步骤:将N36及本发明的多肽4先以去离子水溶解,浓度为2.5mM。然后分别用50mMNaH2PO4(含150mM NaCl,pH=7.2)稀释至0.208mM,稀释后的溶液各取30μl分别进样分析,按照上述条件进行洗脱。取稀释后的各溶液30μl,混合后在37℃水浴中温育30min,取全部混合物上样,分析条件同上。Step: Dissolve N36 and polypeptide 4 of the present invention in deionized water at a concentration of 2.5 mM. Then they were diluted to 0.208mM with 50mM NaH 2 PO 4 (containing 150mM NaCl, pH=7.2), and 30μl of the diluted solutions were injected and analyzed respectively, and eluted according to the above conditions. Take 30 μl of each diluted solution, mix and incubate in a water bath at 37° C. for 30 min, take the entire mixture and load the sample, and the analysis conditions are the same as above.
3.实验结果3. Experimental results
在本试验中,本发明的多肽和N36形成复合物后分子量增大,先被洗脱出来,后洗脱的为单体分子。图6显示的第一峰(t=12.2min)是多肽4及其与N36形成的复合物的洗脱峰;图7显示的第一峰是多肽6及其与N36形成复合物的洗脱峰(t=12.50min)。In this test, the molecular weight increases after the polypeptide of the present invention and N36 form a complex, which is eluted first, and the monomer molecule eluted later. The first peak (t=12.2min) shown in Figure 6 is the elution peak of polypeptide 4 and its complex with N36; the first peak shown in Figure 7 is the elution peak of
表2各多肽及与N36形成的复合物的保留时间Table 2 The retention time of each polypeptide and the complex formed with N36
4.结论4 Conclusion
本发明提供的多肽可以在磷酸盐缓冲液中与N36形成多聚体复合物,说明二者之间有较强的相互作用。The polypeptide provided by the invention can form a multimer complex with N36 in phosphate buffer solution, indicating that there is a strong interaction between the two.
实施例4 本发明的多肽对HIV病毒抑制作用Example 4 The polypeptide of the present invention has an inhibitory effect on HIV virus
本发明提供的多功能HIV进入抑制剂具有抑制病毒和细胞膜融合的作用,通过以下实验进行测定。所用细胞和病毒均来自于美国NIH AIDS Research and Reference ReagentProgram。The multifunctional HIV entry inhibitor provided by the present invention has the effect of inhibiting the fusion of virus and cell membrane, which is determined by the following experiments. The cells and viruses used are from the NIH AIDS Research and Reference Reagent Program in the United States.
实验一:对HIV-1介导的细胞间的融合抑制作用Experiment 1: Inhibition of HIV-1-mediated cell-to-cell fusion
HIV-1 IIIB病毒感染的人淋巴细胞H9以荧光染料Calcein-AM(Molecular Probes,Inc.,Eugene,OR)染色,然后与人淋巴细胞MT-2按一定的比例混合后加在96孔板上,分别加入本发明的9个多肽(见表3),在37℃培养2小时,以未加本发明的多肽的细胞作为对照。在带有标尺的荧光倒置显微镜(Zeiss,Germany)下观察融合和未融合的细胞并计数,使用GraphPad Prism软件(GraphPad Software Inc.,San Diego,CA)计算融合百分率和半数抑制剂量(IC50)、90%抑制剂量(IC90)。(Jiang S,et al.Procedings of SPIE.2000,3926,212-219.及Jiang S,et al.J.Virol.Meth.1999,80,85-96.)结果见表3。Human lymphocyte H9 infected with HIV-1 IIIB virus was stained with fluorescent dye Calcein-AM (Molecular Probes, Inc., Eugene, OR), and then mixed with human lymphocyte MT-2 in a certain ratio and added to a 96-well plate , were added with 9 polypeptides of the present invention (see Table 3), cultured at 37° C. for 2 hours, and the cells without the polypeptides of the present invention were used as a control. Fusion and non-fusion cells were observed and counted under a fluorescent inverted microscope (Zeiss, Germany) with a ruler, and the fusion percentage and half inhibitory dose (IC 50 ) were calculated using GraphPad Prism software (GraphPad Software Inc., San Diego, CA) , 90% inhibitory dose (IC 90 ). (Jiang S, et al. Procedings of SPIE. 2000, 3926, 212-219. and Jiang S, et al. J. Virol. Meth. 1999, 80, 85-96.) The results are shown in Table 3.
实验二:病毒中和作用Experiment 2: Virus neutralization
以含10%胎牛血清(Gibco Laboratories)的RPMI-1640培养基(Gibco Laboratories,Grand Island,NY)悬浮人淋巴细胞MT-2,细胞密度为5×104个/毫升,然后铺板,每孔体积为200μl。以100倍TCID50(半数感染剂量)浓度的HIV-1 IIIB病毒进行感染。本发明的多肽孔经梯度稀释后加入上述经感染的病毒培养基中,以未加本发明的多肽的孔作为对照,然后培养过夜。第二天换为新鲜的培养基。37℃经过四天的培养后,收集培养物上清100μl,加入等体积的含5%Triton X-100的水,ELISA方法检测p24的含量(Jiang,S,et al.J.Exp.Med.1991,174,1557-1563)。Suspend human lymphocyte MT-2 in RPMI-1640 medium (Gibco Laboratories, Grand Island, NY) containing 10% fetal bovine serum (Gibco Laboratories) at a cell density of 5×104 cells/ml, then plate, volume per well for 200 μl. Infect with HIV-1 IIIB virus at a concentration 100 times TCID50 (half the infectious dose). The wells of the polypeptide of the present invention are serially diluted and added to the above-mentioned infected virus culture medium, and the wells without the polypeptide of the present invention are used as a control, and then cultured overnight. Replace with fresh medium the next day. After four days of cultivation at 37°C, 100 μl of the culture supernatant was collected, added to an equal volume of water containing 5% Triton X-100, and the content of p24 was detected by ELISA (Jiang, S, et al. J. Exp. Med. 1991, 174, 1557-1563).
结果见表3,C F和VN(p24)分别为实验一和实验二的实验结果。The results are shown in Table 3, and CF and VN (p24) are the experimental results of experiment one and experiment two respectively.
表3 18个多肽对HIV病毒的抑制活性Table 3 The inhibitory activity of 18 polypeptides to HIV virus
对表3的说明:Explanation to Table 3:
1、名词解释1. Explanation of terms
CF:细胞融合/cell fusion;VN:病毒中和试验/viral neutralization;CF: cell fusion/cell fusion; VN: virus neutralization test/viral neutralization;
2、多肽的纯度:细胞融合和中和实验所用的多肽均经纯化,除多肽4外(纯度70%)纯度大于90%。试验中以T-20作为对照,后者的纯度大于95%。2. The purity of the polypeptides: the polypeptides used in the cell fusion and neutralization experiments were all purified, except for polypeptide 4 (purity 70%), the purity was greater than 90%. In the test, T-20 was used as a control, the purity of which was greater than 95%.
3、上述每个数值均测四次,并取平均值。3. Each of the above values is measured four times, and the average value is taken.
实施例5 本发明的多肽对T-20耐药性HIV细胞株的融合抑制作用Example 5 The fusion inhibitory effect of the polypeptide of the present invention on T-20 drug-resistant HIV cell lines
方法同实施例4的实验一,所不同的是使用临床分离的T-20抗性毒株(92US657)感染细胞,其余相同。The method is the same as
本发明所提供的多肽3可以在1.0uM完全抑制病毒在细胞内的复制,而T-20则在3.2uM仍不能抑制病毒的复制。
结论:多肽3抑制病毒的复制活性高于对照药物T-20。Conclusion: The activity of
<110>中国人民解放军军事医学科学院生物工程研究所<110> Institute of Bioengineering, Academy of Military Medical Sciences, Chinese People's Liberation Army
<120>抑制HIV病毒融合的多肽及其用途<120> Polypeptides for Inhibiting HIV Virus Fusion and Uses thereof
<160>10<160>10
<170>PatentIn version 3.1<170>PatentIn version 3.1
<210>1<210>1
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>1<400>1
Val Glu Trp Asn Asn Lys Thr Trp Met Glu Trp Glu Arg Lys Ile GluVal Glu Trp Asn Asn Lys Thr Trp Met Glu Trp Glu Arg Lys Ile Glu
1 5 10 151 5 10 15
Glu Tyr Thr Lys Leu Ile Tyr Glu Ile Leu Lys Lys Ser Gln Glu GlnGlu Tyr Thr Lys Leu Ile Tyr Glu Ile Leu Lys Lys Ser Gln Glu Gln
20 25 3020 25 30
<210>2<210>2
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>2<400>2
Val Glu Trp Asn Asn Met Thr Trp Met Glu Trp Glu Arg Lys Ile GluVal Glu Trp Asn Asn Met Thr Trp Met Glu Trp Glu Arg Lys Ile Glu
1 5 10 151 5 10 15
Glu Tyr Thr Lys Leu Ile Tyr Glu Ile Leu Lys Lys Ser Gln Glu GlnGlu Tyr Thr Lys Leu Ile Tyr Glu Ile Leu Lys Lys Ser Gln Glu Gln
20 25 3020 25 30
<210>3<210>3
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>3<400>3
Val Glu Trp Asn Asn Met Thr Trp Met Glu Trp Glu Arg Glu Ile GluVal Glu Trp Asn Asn Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu
1 5 10 151 5 10 15
Asn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnAsn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>4<210>4
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>4<400>4
Val Glu Trp Asn Asn Met Thr Trp Met Glu Trp Glu Arg Glu Ile GluVal Glu Trp Asn Asn Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu
1 5 10 151 5 10 15
Asn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnAsn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>5<210>5
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>5<400>5
Val Glu Trp Asn Asn Lys Thr Trp Met Glu Trp Glu Arg Glu Ile GluVal Glu Trp Asn Asn Lys Thr Trp Met Glu Trp Glu Arg Glu Ile Glu
1 5 10 151 5 10 15
Asn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnAsn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>6<210>6
<211>30<211>30
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>6<400>6
Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu Asn TyrTrp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu Asn Tyr
1 5 10 151 5 10 15
Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnThr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>7<210>7
<211>30<211>30
<212>PRT<212>PRT
<213>人工序列<<213>Artificial sequence<
400>7400>7
Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu Asn TyrTrp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu Asn Tyr
1 5 10 151 5 10 15
Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnThr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>8<210>8
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>8<400>8
Val Glu Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile GluVal Glu Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu
1 5 10 151 5 10 15
Asn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnAsn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>9<210>9
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>9<400>9
Leu Glu Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile GluLeu Glu Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu
1 5 10 151 5 10 15
Asn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu GlnAsn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Gln
20 25 3020 25 30
<210>10<210>10
<211>32<211>32
<212>PRT<212>PRT
<213>人工序列<213> Artificial sequence
<400>10<400>10
Leu Glu Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile GluLeu Glu Trp Asn Glu Met Thr Trp Met Glu Trp Glu Arg Glu Ile Glu
1 5 10 151 5 10 15
Asn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu LeuAsn Tyr Thr Lys Leu Ile Tyr Lys Ile Leu Glu Glu Ser Gln Glu Leu
20 25 3020 25 30
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100870749A CN100455594C (en) | 2005-12-14 | 2006-06-14 | Polypeptide for inhibiting HIV virus fusion and use thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510126473.7 | 2005-12-14 | ||
CNA2005101264737A CN1793170A (en) | 2005-12-14 | 2005-12-14 | Polypeptide of inhibiting HIV virus fusion and application thereof |
CNB2006100870749A CN100455594C (en) | 2005-12-14 | 2006-06-14 | Polypeptide for inhibiting HIV virus fusion and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1955190A CN1955190A (en) | 2007-05-02 |
CN100455594C true CN100455594C (en) | 2009-01-28 |
Family
ID=38062768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100870749A Expired - Fee Related CN100455594C (en) | 2005-12-14 | 2006-06-14 | Polypeptide for inhibiting HIV virus fusion and use thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100455594C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102089329B (en) * | 2008-06-25 | 2014-10-15 | 中国人民解放军军事医学科学院毒物药物研究所 | Polypeptides and derivatives thereof that inhibit HIV infection |
WO2012022040A1 (en) * | 2010-08-19 | 2012-02-23 | 清华大学 | Hiv-1 virus membrane fusion inhibitor and use thereof |
CN102180970B (en) * | 2011-02-22 | 2017-05-24 | 中国人民解放军军事医学科学院生物工程研究所 | Large-scale preparation method of HIV (Human Immunodeficiency Virus)-resistant fusion polypeptide CP32M based on solid-liquid mixing strategy |
CN102180951B (en) * | 2011-05-03 | 2012-09-26 | 中国医学科学院病原生物学研究所 | Cholesterol modified anti-human immunodeficiency virus (HIV) polypeptide medicament and application thereof |
CN104788548B (en) * | 2014-01-20 | 2018-06-05 | 中国人民解放军军事医学科学院毒物药物研究所 | New AntiHIV1 RT activity infection polypeptide and its utilization |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1468861A (en) * | 2002-07-17 | 2004-01-21 | 华北制药集团有限责任公司 | Recombinant human immune deficiency virus fusion inhibitor and its prepn and use |
WO2004103312A2 (en) * | 2003-05-19 | 2004-12-02 | Progenics Pharmaceuticals, Inc. | Peptides useful as hiv fusion inhibitors |
US20050053917A1 (en) * | 1997-04-17 | 2005-03-10 | Whitehead Institute For Biomedical Research | Core structure of gp41 from the HIV envelope glycoprotein |
US20050113292A1 (en) * | 2003-07-18 | 2005-05-26 | Vanderbilt University | Compositions of protein mimetics and methods of using same against HIV-1, SARS-coV and the like |
CN1668330A (en) * | 2002-09-24 | 2005-09-14 | 重庆前沿生物技术有限公司 | Peptide derivative fusion inhibitors of HIV infection |
-
2006
- 2006-06-14 CN CNB2006100870749A patent/CN100455594C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050053917A1 (en) * | 1997-04-17 | 2005-03-10 | Whitehead Institute For Biomedical Research | Core structure of gp41 from the HIV envelope glycoprotein |
CN1468861A (en) * | 2002-07-17 | 2004-01-21 | 华北制药集团有限责任公司 | Recombinant human immune deficiency virus fusion inhibitor and its prepn and use |
CN1668330A (en) * | 2002-09-24 | 2005-09-14 | 重庆前沿生物技术有限公司 | Peptide derivative fusion inhibitors of HIV infection |
WO2004103312A2 (en) * | 2003-05-19 | 2004-12-02 | Progenics Pharmaceuticals, Inc. | Peptides useful as hiv fusion inhibitors |
US20050113292A1 (en) * | 2003-07-18 | 2005-05-26 | Vanderbilt University | Compositions of protein mimetics and methods of using same against HIV-1, SARS-coV and the like |
Non-Patent Citations (2)
Title |
---|
结合HIV-1 gp41 NHR的环肽及模拟gp41融合核心结构表位的筛选与鉴定. 刘北一,全文. 2004 * |
阻断HIV-1进入细胞的抑制剂研究. 谭建军等.北京工业大学学报,第30卷第3期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1955190A (en) | 2007-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4682251B2 (en) | HIV fusion inhibitor peptides with improved biological properties | |
CZ200288A3 (en) | Hybrid polypeptide | |
JPH06340698A (en) | Synthetic polypeptide as inhibitor against hiv-1 | |
Schneider et al. | Development of HIV fusion inhibitors | |
CN111944025B (en) | HIV membrane fusion inhibitor lipopeptide and medicinal use | |
AU2017410525B2 (en) | Potent HIV inhibiting lipopeptide, derivative thereof, pharmaceutical composition thereof and use thereof | |
CN100455594C (en) | Polypeptide for inhibiting HIV virus fusion and use thereof | |
CN106749558B (en) | Broad-spectrum HIV inhibiting lipopeptides, derivatives thereof, pharmaceutical compositions thereof and uses thereof | |
Geng et al. | Characterization of novel HIV fusion-inhibitory lipopeptides with the MT hook structure | |
WO2009042194A2 (en) | Methods of synthesis for therapeuthic anti-hiv peptides | |
WO2007068163A1 (en) | Hiv fusion inhibitor peptides and use thereof | |
WO2013075594A1 (en) | Artificially designed anti-hiv infection polypeptide, composition and use | |
WO2018141089A1 (en) | Hiv inhibiting broad-spectrum lipopeptide, derivatives thereof, pharmaceutical compositions thereof, and use thereof | |
JP2003176299A (en) | Selected peptide of group-specific antigen (gag) of human immunodeficiency virus (hiv), preparation and use thereof | |
US20140357577A1 (en) | HIV Membrane Fusion Inhibitors | |
US7285621B2 (en) | Multiple branch peptide construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090128 Termination date: 20160614 |