CN100455517C - Preparation method of nanotube titanate - Google Patents
Preparation method of nanotube titanate Download PDFInfo
- Publication number
- CN100455517C CN100455517C CNB2006100173504A CN200610017350A CN100455517C CN 100455517 C CN100455517 C CN 100455517C CN B2006100173504 A CNB2006100173504 A CN B2006100173504A CN 200610017350 A CN200610017350 A CN 200610017350A CN 100455517 C CN100455517 C CN 100455517C
- Authority
- CN
- China
- Prior art keywords
- nitrate
- titanate
- nanotube
- reaction
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002071 nanotube Substances 0.000 title claims abstract description 49
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 30
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 8
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 8
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical group [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims abstract description 8
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims abstract description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 8
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 claims abstract description 6
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims abstract description 6
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims abstract description 5
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 4
- 235000010333 potassium nitrate Nutrition 0.000 claims abstract description 4
- 239000004323 potassium nitrate Substances 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims abstract description 4
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 4
- 239000002253 acid Substances 0.000 claims abstract description 3
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 3
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 2
- 238000001914 filtration Methods 0.000 claims abstract 2
- 238000005406 washing Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 11
- -1 titanic acid ester Chemical class 0.000 claims description 5
- KLBIUKJOZFWCLW-UHFFFAOYSA-N thallium(iii) nitrate Chemical compound [Tl+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O KLBIUKJOZFWCLW-UHFFFAOYSA-N 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 11
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 abstract description 2
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 abstract description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- DGXKDBWJDQHNCI-UHFFFAOYSA-N dioxido(oxo)titanium nickel(2+) Chemical compound [Ni++].[O-][Ti]([O-])=O DGXKDBWJDQHNCI-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KYNKUCOQLYEJPH-UHFFFAOYSA-N [K][Ti] Chemical compound [K][Ti] KYNKUCOQLYEJPH-UHFFFAOYSA-N 0.000 description 1
- BYRRPYMBVHTVKO-UHFFFAOYSA-N [Na].[Ti] Chemical compound [Na].[Ti] BYRRPYMBVHTVKO-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- LFSBSHDDAGNCTM-UHFFFAOYSA-N cobalt(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Co+2] LFSBSHDDAGNCTM-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- UKGZHELIUYCPTO-UHFFFAOYSA-N dicesium;oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Cs+].[Cs+] UKGZHELIUYCPTO-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- FPBMTPLRBAEUMV-UHFFFAOYSA-N nickel sodium Chemical compound [Na][Ni] FPBMTPLRBAEUMV-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
纳米管钛酸盐制备方法,将硝酸盐与纳米管钛酸钠粉末按摩尔比5-100∶1混合均匀,于50-450℃熔融反应3-48h,冷却、洗涤,除去未参加反应的硝酸盐,干燥得纳米管钛酸盐。所述硝酸盐为硝酸锂、硝酸钾、硝酸铷、硝酸铯、硝酸银、硝酸镍、硝酸铊、硝酸铜、硝酸锌或硝酸钴。用于反应的前驱体纳米管钛酸钠由二氧化钛、偏钛酸或钛酸酯与20-80wt%NaOH水溶液在100-140℃反应12-72h后用水洗去NaOH,过滤、干燥制成。本发明通过熔融交换制备出高比表面的纳米管钛酸盐。
The preparation method of nanotube titanate is to mix nitrate and nanotube sodium titanate powder evenly in a molar ratio of 5-100:1, melt and react at 50-450°C for 3-48h, cool and wash, and remove unreacted nitric acid Salt, dried nanotube titanate. The nitrate is lithium nitrate, potassium nitrate, rubidium nitrate, cesium nitrate, silver nitrate, nickel nitrate, thallium nitrate, copper nitrate, zinc nitrate or cobalt nitrate. The precursor nanotube sodium titanate used for the reaction is prepared by reacting titanium dioxide, metatitanic acid or titanate with 20-80wt% NaOH aqueous solution at 100-140°C for 12-72h, washing away NaOH with water, filtering and drying. The invention prepares nanotube titanate with high specific surface through melt exchange.
Description
技术领域 technical field
本发明涉及一种以纳米管钛酸钠作为前驱体制备多种纳米管状结构的钛酸盐的新方法--熔融交换法。The invention relates to a new method for preparing titanates with various nanotube structures by using nanotube sodium titanate as a precursor-melting exchange method.
背景技术 Background technique
钛酸盐因具有广泛的用途和特殊的性能而备受关注。例如,钛酸钡是一种良好的铁电材料和电介质,钛酸钾纤维可作为离子交换材料、电介质材料、摩擦材料、增强材料等,而钛酸锂是目前颇受青睐的新一代锂离子电池的电极材料。近年来,随着纳米科技的发展,一维纳米结构的钛酸盐受到广泛关注,与微米级钛酸盐材料相比,它们具有大的比表面,所以在作为锂电池电极材料、催化剂或催化剂载体材料、离子交换材料和复合材料增强剂等领域很有发展潜力。目前,纳米管钛酸钠因其独特的管状结构受到广泛研究,现有的制备方法包括烧结法、水热法和低温回流法等,但这些方法不能用于制备钛酸锂、钛酸钾、钛酸铷、钛酸铯、钛酸银、钛酸镍、钛酸铊、钛酸铜、钛酸锌、钛酸钴等。Titanates have attracted much attention due to their wide range of uses and special properties. For example, barium titanate is a good ferroelectric material and dielectric, potassium titanate fiber can be used as ion exchange material, dielectric material, friction material, reinforcement material, etc., and lithium titanate is a new generation of lithium ion Electrode materials for batteries. In recent years, with the development of nanotechnology, titanates with one-dimensional nanostructures have received widespread attention. Compared with micron-sized titanate materials, they have a large specific surface area, so they are used as lithium battery electrode materials, catalysts or catalysts. There is great potential for development in the fields of carrier materials, ion exchange materials and composite material reinforcements. At present, nanotube sodium titanate has been widely studied because of its unique tubular structure. The existing preparation methods include sintering, hydrothermal and low-temperature reflux methods, etc., but these methods cannot be used to prepare lithium titanate, potassium titanate, Rubidium titanate, cesium titanate, silver titanate, nickel titanate, thallium titanate, copper titanate, zinc titanate, cobalt titanate, etc.
发明内容 Contents of the invention
本发明的目的在于提供一种通过熔融交换制备高比表面纳米管钛酸盐的方法。The purpose of the present invention is to provide a method for preparing nanotube titanate with high specific surface area through melt exchange.
为达上述目的,本发明采用如下技术方案:纳米管钛酸盐制备方法,将硝酸盐与纳米管钛酸钠粉末按摩尔比5-100∶1混合均匀,于50-450℃熔融反应3-48h(小时,下同),冷却、洗涤,除去未参加反应的硝酸盐,干燥得纳米管钛酸盐。In order to achieve the above-mentioned purpose, the present invention adopts the following technical scheme: the method for preparing nanotube titanate, mixing nitrate and nanotube sodium titanate powder uniformly in a molar ratio of 5-100:1, and melting and reacting at 50-450°C for 3- After 48 hours (hour, the same below), cool and wash to remove unreacted nitrate, and dry to obtain nanotube titanate.
所述硝酸盐为硝酸锂、硝酸钾、硝酸铷、硝酸铯、硝酸银、硝酸镍、硝酸铊、硝酸铜、硝酸锌或硝酸钴。The nitrate is lithium nitrate, potassium nitrate, rubidium nitrate, cesium nitrate, silver nitrate, nickel nitrate, thallium nitrate, copper nitrate, zinc nitrate or cobalt nitrate.
用于反应的前驱体纳米管钛酸钠由二氧化钛、偏钛酸或钛酸酯与20-80wt%(重量百分比浓度)NaOH水溶液在100-140℃反应12-72h后用水洗去NaOH,过滤、干燥制成。The precursor nanotube sodium titanate used in the reaction is made of titanium dioxide, metatitanic acid or titanate and 20-80wt% (weight percent concentration) NaOH aqueous solution at 100-140 ° C for 12-72h, then washes off NaOH with water, filters, Made dry.
熔融交换反应方程式为:The melt exchange reaction equation is:
Na2Ti2O4(OH)2+xM(NO3)y→MxTi2O4(OH)2+2NaNO3 Na 2 Ti 2 O 4 (OH) 2 +xM(NO 3 ) y →M x Ti 2 O 4 (OH) 2 +2NaNO 3
其中:M=Li,K,Rb,Cs,Ag,Tl,Ni,Cu,Zn,Co等;x=2,y=1或x=1,y=2。Where: M=Li, K, Rb, Cs, Ag, Tl, Ni, Cu, Zn, Co, etc.; x=2, y=1 or x=1, y=2.
本发明可以在不高的温度条件下,以廉价的含钛化合物为原料,大量合成纳米管钛酸盐,且比表面积增大使得其电、催化等性能得以改善。本发明的纳米管钛酸盐的内径约为4-10nm,外径为10-16nm,长度在10nm-100μm范围,呈管状。The invention can synthesize a large amount of nanotube titanates by using cheap titanium-containing compounds as raw materials under low temperature conditions, and the specific surface area is increased so that its electrical, catalytic and other properties are improved. The inner diameter of the nanotube titanate of the present invention is about 4-10nm, the outer diameter is 10-16nm, the length is in the range of 10nm-100μm, and it is tubular.
本发明原料价廉、无毒,反应温度不高,工序简单,操作容易,易进行规模化生产,是一种简单的制备高比表面钛酸盐的新方法。The invention has cheap and non-toxic raw materials, low reaction temperature, simple procedure, easy operation and easy large-scale production, and is a simple new method for preparing titanate with high specific surface area.
附图说明 Description of drawings
图1为本发明所用前驱体纳米管钛酸钠的电镜图(日本电子(JEOL)JEM-100CX II型透射电子显微镜(TEM),加速电压为100kV,制样采用无水乙醇超声分散后滴加在负有碳膜的铜网上,空气中干燥)。可见,纳米管钛酸钠的管径均匀,内径约为4~6nm,外径大约为8~10nm,长度约几百纳米;Fig. 1 is the electron microscope picture (Japan Electronics (JEOL) JEM-100CX II type transmission electron microscope (TEM) of precursor nanotube sodium titanate used in the present invention, and accelerating voltage is 100kV, and sample preparation adopts dehydrated alcohol ultrasonic dispersion and then drips Air dry on copper grid with carbon film). It can be seen that the diameter of the nanotube sodium titanate is uniform, the inner diameter is about 4-6nm, the outer diameter is about 8-10nm, and the length is about several hundred nanometers;
图2为本发明所得纳米管钛酸锂的电镜图(电子显微镜及试验条件同上),纳米管钛酸锂的管径均匀,内径约为4~6nm,外径大约为8~10nm,长度约为100nm;Fig. 2 is the electron microscope picture (electron microscope and test condition are the same as above) of nanotube lithium titanate obtained in the present invention, the tube diameter of nanotube lithium titanate is uniform, and inner diameter is about 4~6nm, and outer diameter is about 8~10nm, and length is about 100nm;
图3为本发明所得纳米管钛酸钾的电镜图(电子显微镜及试验条件同上),纳米管钛酸钾的形貌特征与纳米管钛酸钠的相近;Fig. 3 is the electron micrograph of gained nanotube potassium titanate of the present invention (electron microscope and test condition are the same as above), and the morphology feature of nanotube potassium titanate is similar to that of nanotube sodium titanate;
图4为本发明所得纳米管钛酸镍的电镜图(电子显微镜及试验条件同上),纳米管钛酸镍的管径均匀,内径约为4~6nm,外径大约为8~10nm,长度较不均一,为10~200nm;Fig. 4 is the electron micrograph of the gained nanotube nickel titanate of the present invention (electron microscope and test condition are the same as above), the pipe diameter of nanotube nickel titanate is even, and inner diameter is about 4~6nm, and outer diameter is about 8~10nm, and length is relatively long. Inhomogeneity, 10-200nm;
图5为本发明所得纳米管钛钠的X射线衍射图(荷兰PHILIPS的X′PertPro型X射线粉末衍射仪(XRD),电压40kv电流40mA,辐射源为CuKαI,λ=1.54056),纳米管钛酸钠的结构与层状结构的Li2Ti2O5·H2O和H2Ti2O5·H2O结构相似,属正交晶系,其晶格常数为:a0=19.26,b0=3.78,c0=3.00 Fig. 5 is the X-ray diffraction pattern (X'PertPro type X-ray powder diffractometer (XRD) of Holland PHILIPS of gained nanotube titanium sodium of the present invention, voltage 40kv electric current 40mA, radiation source is CuK α I, λ=1.54056 ), the structure of nanotube sodium titanate is similar to that of Li 2 Ti 2 O 5 ·H 2 O and H 2 Ti 2 O 5 ·H 2 O in layered structure. It belongs to the orthorhombic crystal system, and its lattice constant is: a 0 =19.26 , b 0 =3.78 , c 0 =3.00
图6为本发明所得纳米管钛锂的X射线衍射图(X射线衍射仪及试验条件同上),纳米管钛酸锂的结构与纳米管钛酸钠的明显不同,它包含两种不同晶型物质:立方尖晶石结构的Li2Ti2O4和锐钛矿结构的LixTiO2(x<0.1);Fig. 6 is the X-ray diffractogram (X-ray diffractometer and test condition are the same as above) of nanotube titanium lithium obtained in the present invention, the structure of nanotube lithium titanate is obviously different from that of nanotube sodium titanate, and it contains two different crystal forms Substance: Li 2 Ti 2 O 4 with cubic spinel structure and Li x TiO 2 with anatase structure (x<0.1);
图7为本发明所得纳米管钛钾的X射线衍射图(X射线衍射仪及试验条件同上),与纳米管钛酸钠结构相近,属正交晶系。Fig. 7 is the X-ray diffraction diagram of nanotube titanium potassium obtained in the present invention (X-ray diffractometer and test conditions are the same as above), which is similar to nanotube sodium titanate and belongs to the orthorhombic crystal system.
具体实施方式 Detailed ways
实施例1、取3g TiO2锐钛矿,缓慢加入盛有150ml浓度为10M的NaOH水溶液的聚四氟乙烯容器中,控制温度为120℃,搅拌并加回流冷凝管,反应24h。24h后,将反应后的混合物冷却沉降,沉降洗涤至pH值约为12,过滤,干燥得前驱体纳米管钛酸钠。Example 1. Take 3g of TiO2 anatase and slowly add it into a polytetrafluoroethylene container filled with 150ml of 10M NaOH aqueous solution, control the temperature at 120°C, stir and add a reflux condenser to react for 24h. After 24 hours, the reacted mixture was cooled and settled, and washed until the pH value was about 12, filtered and dried to obtain the precursor nanotube sodium titanate.
将硝酸锂晶体与干燥的前驱体纳米管钛酸钠按锂钠摩尔比为10∶1的量混合均匀,让混合物在260℃下反应3h后,冷却至室温,洗涤,干燥得纳米管钛酸锂。Lithium nitrate crystals and dry precursor nanotube sodium titanate are uniformly mixed at a lithium-sodium molar ratio of 10:1, and the mixture is allowed to react at 260°C for 3 hours, cooled to room temperature, washed, and dried to obtain nanotube titanate lithium.
实施例2、取3g TiO2锐钛矿,缓慢加入盛有150ml浓度为10M的NaOH溶液的聚四氟乙烯容器中,控制温度为100℃,搅拌并加回流冷凝管,反应12h。12h后,将反应后的混合物冷却沉降,沉降洗涤至pH值约为12,过滤,干燥得前驱体纳米管钛酸钠。Example 2. Take 3g of TiO2 anatase, slowly add it into a polytetrafluoroethylene container containing 150ml of 10M NaOH solution, control the temperature at 100°C, stir and add a reflux condenser, and react for 12h. After 12 hours, the reacted mixture was cooled and settled, washed by sedimentation until the pH value was about 12, filtered and dried to obtain the precursor nanotube sodium titanate.
将硝酸钾晶体与干燥的前驱体纳米管钛酸钠按钾钠摩尔比为10∶1的量混合均匀,让混合物在360℃下反应48h后,冷却至室温,洗涤,干燥得纳米管钛酸钾。Mix potassium nitrate crystals and dry precursor nanotube sodium titanate uniformly at a potassium-sodium molar ratio of 10:1, let the mixture react at 360°C for 48 hours, cool to room temperature, wash, and dry to obtain nanotube titanate potassium.
实施例3、取3g TiO2锐钛矿,缓慢加入盛有150ml浓度为5M的NaOH溶液的聚四氟乙烯容器中,控制温度为140℃,搅拌并加回流冷凝管,反应72h。72h后,将反应后的混合物冷却沉降,沉降洗涤至pH值约为12,过滤,干燥得前驱体纳米管钛酸钠。Example 3. Take 3g of TiO2 anatase and slowly add it into a polytetrafluoroethylene container filled with 150ml of 5M NaOH solution, control the temperature at 140°C, stir and add a reflux condenser to react for 72h. After 72 hours, the reacted mixture was cooled and settled, washed by sedimentation until the pH value was about 12, filtered and dried to obtain the precursor nanotube sodium titanate.
将硝酸银晶体与干燥的前驱体纳米管钛酸钠按银钠摩尔比为5∶1的量混合均匀,让混合物在220℃下反应6h后,冷却至室温,洗涤,干燥得纳米管钛酸银。Mix silver nitrate crystals and dry precursor nanotube sodium titanate uniformly at a silver-to-sodium molar ratio of 5:1, let the mixture react at 220°C for 6 hours, cool to room temperature, wash, and dry to obtain nanotube titanate silver.
实施例4、取3g TiO2锐钛矿,缓慢加入盛有150ml浓度为10M的NaOH溶液的聚四氟乙烯容器中,控制温度为110℃,搅拌并加回流冷凝管,反应24h。24h后,将反应后的混合物冷却沉降,沉降洗涤至pH值约为12,过滤,干燥得前驱体纳米管钛酸钠。Example 4. Take 3g of TiO2 anatase, slowly add it into a polytetrafluoroethylene container containing 150ml of 10M NaOH solution, control the temperature at 110°C, stir and add a reflux condenser, and react for 24h. After 24 hours, the reacted mixture was cooled and settled, and washed until the pH value was about 12, filtered and dried to obtain the precursor nanotube sodium titanate.
将硝酸镍晶体与干燥的前驱体纳米管钛酸钠按镍钠摩尔比为10∶1的量混合均匀,让混合物在100℃下反应6h后,冷却至室温,洗涤,干燥得纳米管钛酸镍。Mix nickel nitrate crystals and dry precursor nanotube sodium titanate uniformly at a nickel-sodium molar ratio of 10:1, let the mixture react at 100°C for 6 hours, cool to room temperature, wash, and dry to obtain nanotube titanate nickel.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100173504A CN100455517C (en) | 2006-01-17 | 2006-01-17 | Preparation method of nanotube titanate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100173504A CN100455517C (en) | 2006-01-17 | 2006-01-17 | Preparation method of nanotube titanate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101003385A CN101003385A (en) | 2007-07-25 |
CN100455517C true CN100455517C (en) | 2009-01-28 |
Family
ID=38702822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100173504A Expired - Fee Related CN100455517C (en) | 2006-01-17 | 2006-01-17 | Preparation method of nanotube titanate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100455517C (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101363136B (en) * | 2007-08-10 | 2012-05-23 | 上海晶须复合材料制造有限公司 | Synthetic method of sodium hexatitanate whisker |
CN101564688B (en) * | 2009-02-24 | 2012-08-08 | 福建工程学院 | Method for preparing titanic oxide nano composited tube |
CN101789287B (en) * | 2010-03-04 | 2011-06-08 | 长春理工大学 | Zinc titanite and titanium dioxide polycrystal nanocable preparation method |
CN101922044B (en) * | 2010-09-11 | 2012-02-15 | 天津大学 | Method for doping nano-Ag particles in TiO2 nanotubes |
RU2457182C1 (en) * | 2011-01-31 | 2012-07-27 | Государственное образовательное учреждение высшего профессионального образования "Челябинский государственный педагогический университет" | Method of producing nanodispersed nickel titanate |
CN102986729B (en) * | 2011-09-15 | 2014-06-11 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of silver-carrying layered titanate composite nano-grade material |
CN103170301B (en) * | 2012-11-24 | 2015-08-26 | 青岛大学 | In a kind of nuclear waste water 131i -the preparation method of high-efficiency adsorbent |
CN103027379B (en) * | 2013-01-19 | 2013-12-04 | 福州大学 | Method for selectively reducing nitrosamines in mainstream smoke of cigarettes |
CN103342386A (en) * | 2013-07-12 | 2013-10-09 | 河南大学 | Preparation method of anatase titanium dioxide nanotubes |
CN106299344B (en) * | 2016-11-04 | 2019-09-24 | 中南大学 | A kind of nickel titanate negative electrode material of sodium ion battery and preparation method thereof |
CN109825879A (en) * | 2019-02-27 | 2019-05-31 | 徐超 | A kind of preparation method of metallic fiber dispersed material and its application in pipeline material |
CN111439779A (en) * | 2020-04-30 | 2020-07-24 | 南京邮电大学 | Two-step hydrothermal method for preparing high-purity BaTiO3Method of nanowires |
CN112552056B (en) * | 2020-11-19 | 2021-06-18 | 广州拓新能源科技有限公司 | Complex phase rubidium titanate functional ceramic material and preparation method thereof |
CN113880134A (en) * | 2021-10-21 | 2022-01-04 | 北京化工大学 | A kind of preparation method and application of titanate-based hollow material |
CN113862252B (en) * | 2021-10-28 | 2022-09-27 | 江苏奕农生物股份有限公司 | Method for immobilizing laccase by titanate nanotube composite material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1378977A (en) * | 2002-05-24 | 2002-11-13 | 清华大学 | Process for preparing hydrated sodium titanate and nano titanate tube series |
US6827921B1 (en) * | 2001-02-01 | 2004-12-07 | Nanopowder Enterprises Inc. | Nanostructured Li4Ti5O12 powders and method of making the same |
CN1607182A (en) * | 2003-10-14 | 2005-04-20 | 河南大学 | Nanometer tube titanic acid and its preparation method and application |
CN1676491A (en) * | 2004-04-02 | 2005-10-05 | 河南大学 | Preparation method of nanotube titanic acid embedded in transition metal and its oxide |
-
2006
- 2006-01-17 CN CNB2006100173504A patent/CN100455517C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6827921B1 (en) * | 2001-02-01 | 2004-12-07 | Nanopowder Enterprises Inc. | Nanostructured Li4Ti5O12 powders and method of making the same |
CN1378977A (en) * | 2002-05-24 | 2002-11-13 | 清华大学 | Process for preparing hydrated sodium titanate and nano titanate tube series |
CN1607182A (en) * | 2003-10-14 | 2005-04-20 | 河南大学 | Nanometer tube titanic acid and its preparation method and application |
CN1676491A (en) * | 2004-04-02 | 2005-10-05 | 河南大学 | Preparation method of nanotube titanic acid embedded in transition metal and its oxide |
Also Published As
Publication number | Publication date |
---|---|
CN101003385A (en) | 2007-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100455517C (en) | Preparation method of nanotube titanate | |
Pan et al. | Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis | |
CN101412541B (en) | A method for synthesizing rod-like and sea urchin-like molybdenum oxide-based nanomaterials | |
CN103143370B (en) | Preparation method of sulfide/graphene composite nano material | |
CN103072968B (en) | Carbon nano composite and preparation method thereof | |
CN104773762B (en) | A kind of NiCo being grown on carbon cloth2O4Meso-porous nano tube material and preparation method thereof | |
CN103274441B (en) | Method for preparing nanoscale sheet cerium oxide by hydrothermal method | |
CN100558640C (en) | Single-crystal perovskite type oxide La 2CuO 4The preparation method of nano and micron rod | |
CN115038666B (en) | Nano titanate, nano titanic acid and nano TiO2Preparation method and application of (C) | |
Bretado et al. | Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers | |
CN102502783A (en) | Method for preparing alkali zinc chloride nano-powder in hexagonal flake structures | |
CN110690419A (en) | Transition metal chalcogenide composite material, preparation method and application thereof | |
CN103964505A (en) | Method for preparing nano structure of columbite-type metal niobate | |
US20240228315A9 (en) | Method for preparing nano-titanate, nano-titanic acid and nano-tio2 containing embedded nanoparticles and method for preparing metal nanoparticles | |
CN106784817A (en) | The preparation method of ferric phosphate/graphene composite material | |
CN101234347A (en) | Preparation method of niobate composite metal oxide nanoparticles | |
CN105883910B (en) | A kind of perovskite SrTiO3The preparation method and product of porous nano particle | |
CN1111138C (en) | Process for preparing nm powder of zinc oxide | |
CN113348150B (en) | Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide | |
CN101830518A (en) | Spherical cobaltosic oxide with nuclear shell structure and preparation method thereof | |
Lu et al. | Top-down synthesis of sponge-like Mn 3 O 4 at low temperature | |
CN104192914A (en) | Preparation method of manganese tungsten single-crystalline nanowire | |
CN103936082A (en) | Synthetic method of samarium cobaltate nanopowder | |
Arvisdea et al. | Synthesis of nanoparticles and nanocomposite of WO3 | |
CN102616840A (en) | Method for preparing transition metal oxide nano single crystal with specific exposed crystal faces through stripping nanosheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090128 Termination date: 20190117 |