Background technology
Al
2O
3Reinforced aluminum matrix composites (Al
2O
3/ Al) owing to have wearability and corrosion resistance and the good good characteristics such as dimensional stability of specific strength height, specific modulus height, excellence, extremely pay attention in fields such as Aeronautics and Astronautics, auto industrys.Al
2O
3/ Al composite manufacture method has that reaction in-situ is synthetic, powder metallurgic method, stirring casting method and pressure casting method.
The ultimate principle of reaction in synthetic technology is to pass through between the element under certain condition or the chemical reaction between element and the compound, generates one or more ceramic enhancement phase at the metal matrix internal in-situ.The oxide replacement reduction reaction is the synthetic key reaction pattern of original position, for Al
2O
3/ Al composite, common displacement reaction system has Al-TiO
2, Al-SiO
2, Al-CuO etc.But the difficult control of the course of reaction of reaction in-situ synthetic technology, the fluctuation of technological parameter in the process (such as reaction temperature etc.) can make the reinforced particle size of generation change within the specific limits, reduces the mechanical property of aluminum matrix composite.And generated in-situ enhancing body particle is micron order, and particle diameter makes molten mass produce high viscosity less than micron-sized fine particle, gives further to process and dilution brings difficulty, can't make uniform aluminum matrix composite.
Powder metallurgic method prepares Al
2O
3/ Al is earlier with Al
2O
3Particle with make the composite blank after aluminium powder evenly mixes, the mould press forming of packing into then adds thermal recovery vacuum hotpressing again or the high temperature insostatic pressing (HIP) method is made the composite ingot bar, composite is made in afterwards sintering and forging; In pressing process, need the composite blank is carried out degasification, to remove the volatile materials such as adsorbed gas, hydrous oxide.The powder metallurgic method operation is various, preparation cycle is long, cost is higher; And shrink when having sintering inhomogeneously, easily tissue odds to occur even in segregation, the unfavorable defective of matrix material effect of preparation high-volume fractional.
Stirring casting method prepares Al
2O
3/ Al adds earlier Al gradually in aluminum solutions
2O
3Particle mixes rear cooling and makes the composite blank, can remelting carry out casting during use.The main drawback of stirring casting method is that particle is easily assembled agglomeratingly in the whipping process, and the influence of gravity sinks particle and cause skewness, is prone to segregation.In addition, inevitable entrained gas and field trash when high speed machine stirs affect the performance of composite; The addition of particle also is restricted, and Al
2O
3Grain graininess is bigger, generally is not less than 10 μ m.
Pressure casting method prepares Al
2O
3/ Al is by applying external pressure with Al
2O
3Particle joins and makes composite in the aluminium alloy solution.Pressure casting method is at first with Al
2O
3The particle metal die of packing into is made the prefabricated component of definite shape and volume fraction, then the aluminium alloy of melting is poured among the mould, and pressurization is penetrated in the prefabricated component aluminum solutions by force under forcing press subsequently, obtains aluminum matrix composite after the cooled and solidified.Pressure casting method is with short production cycle, is fit to batch production; But need special equipment and metal die to increase production cost, and casting institute applied pressure is higher, can prepares the simple shape of composite material element, when preparing small-sized, thin-walled parts, easily by pressure break, the crack occurs.
The pressure-free impregnation method can remedy the defective of above the whole bag of tricks.The pressure-free impregnation method need not to rely on pressure or stirring action, and technology is simple, does not need expensive equipment, and cost is low; Infiltration mold materials range of choice is wide, can be refractory material and the sintered ceramic material of good permeability.Although the Al of big particle diameter
2O
3Strengthen particle and produce easily stress and concentrate, cause composite in deformation process along the interface or strengthen particle itself and occur rupturing, the toughness of material is sharply reduced; But because equal volume Al
2O
3Situation under the Al of small particle diameter
2O
3Granule surface area is big, the particle gap reduces, and has caused the wetting Al of aluminium alloy molten mass
2O
3The difficulty of particle increases and the difficulty of pressure-free impregnation increases; So present Al
2O
3Al in the reinforced aluminum matrix composites pressure-free impregnation method
2O
3The grain diameter size is big, is not less than 3 μ m.
Summary of the invention
The objective of the invention is in order to solve present Al
2O
3Use the Al of small particle diameter in the reinforced aluminum matrix composites pressure-free impregnation method
2O
3Particle causes the wetting Al of aluminium alloy molten mass
2O
3The problem that the difficulty of particle increases, infiltration speed slows down and the difficulty of pressure-free impregnation increases, and a kind of Al that provides
2O
3The pressure-free impregnation preparation method of particle enhanced aluminum-based composite material.Al
2O
3The pressure-free impregnation preparation method of particle enhanced aluminum-based composite material is realized according to the following steps: (one) will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 28%~40%, particle diameter are the Al of 0.1 μ m~0.8 μ m
2O
3Particle is made prefabricated component; (2) with aluminium alloy and Al
2O
3Prefabricated component is put into mould, accounts for Al
2O
3The aluminium alloy of particle enhanced aluminum-based composite material cumulative volume 60%~72% places Al
2O
3The prefabricated component top is at N
2Atmosphere, temperature are insulation infiltration 2~6h in 900~1100 ℃ the environment, namely obtain Al
2O
3Particle enhanced aluminum-based composite material; Wherein said aluminium alloy is made up of 10%~20% Si, 5%~10% Mg and the Al of surplus by mass percentage.
The Al that the present invention uses
2O
3Grain diameter is 0.1 μ m~0.8 μ m, is submicron order, and grain diameter is significantly less than present Al
2O
3The Al that uses in the reinforced aluminum matrix composites pressure-free impregnation method
2O
3Grain diameter.It is good that the inventive method has wetting property, and infiltration speed accelerates 10~20%, do not have the low advantage of the spontaneous infiltration difficulty of pressure.
The Al that the present invention prepares
2O
3Particle enhanced aluminum-based composite material is because the Al that uses
2O
3Grain diameter is little, aluminum matrix composite shows nearly dislocation-free, does not closely have the characteristic separated out and a matrix of nano-sized crystal under the impact of huge skin effect (increase such as the particle surface atomic fraction, surface-active increase etc.) and bulk effect (strengthen body distribution disperse, grain spacing little, also in sub-micrometer scale etc.), has high strength and dimensional stability.In addition, the spacing of the submicron order between the particle distributes the microcosmic residual stress in the matrix and becomes evenly, makes Al
2O
3Particle enhanced aluminum-based composite material has good plastic working and precision cutting performance.
Embodiment
The specific embodiment one: in conjunction with Fig. 1 present embodiment is described, present embodiment Al
2O
3The pressure-free impregnation preparation method of particle enhanced aluminum-based composite material is realized according to the following steps: (one) will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 28%~40%, particle diameter are the Al of 0.1 μ m~0.8 μ m
2O
3Particle is made prefabricated component; (2) with aluminium alloy 1 and Al
2O
3Prefabricated component 2 is put into mould 3, accounts for Al
2O
3The aluminium alloy 1 of particle enhanced aluminum-based composite material cumulative volume 60%~72% places Al
2O
3Prefabricated component 2 tops are at N
2Atmosphere, temperature are insulation infiltration 2~6h in 900~1100 ℃ the environment, namely obtain Al
2O
3Particle enhanced aluminum-based composite material; Wherein said aluminium alloy 1 is made up of 10%~20% Si, 5%~10% Mg and the Al of surplus by mass percentage.
Present embodiment is passed through Al
2O
3Density and required volume (account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 28%~40%) can calculate required Al
2O
3The quality of particle, and take by weighing Al by this
2O
3Particle.
Aluminium alloy in the present embodiment contains the Mg of 5wt%~10wt%.The Mg element has reduced and has permeated required critical temperature, makes infiltration be easy to carry out.The existence of Mg can reduce Al in the aluminium alloy
2O
3The angle of wetting of/Al, the mechanism of action of Mg element is: (i) reduce the surface tension of aluminium alloy molten mass, the surface tension (σ) that contains the Mg aluminium alloy meets with the content (x) of Mg is approximate: σ=σ
Al-71.8ln (1+0.31x) descends so contain the aluminum alloy surface tension force of Mg element, and angle of wetting θ reduces, and wetability is improved; (ii) abolish aluminium liquid surface film oxide, the binding ability of Mg and oxygen is better than the binding ability of Al and oxygen, and the oxide of formation (MgO) stability is higher, so Mg can be with Al
2O
3Be reduced into Al, thereby remove the Al on aluminium liquid surface
2O
3Film is for the aluminium molten mass forms passage with direct contact that strengthens body.(iii) bring out interfacial reaction, play the effect of reactive wetting, reduce aluminium molten mass and Al
2O
3The angle of wetting of particle.
Aluminium alloy in the present embodiment contains the Si of 10wt%~20wt%.The existence of Si element can promote the carrying out of permeating, and its mechanism of action is: (i) enlarge the aluminium alloy molten mass to strengthening the required microchannel of body infiltration; (ii) reduce the aluminium alloy molten mass viscosity (under 900 ℃ condition, in pure A1, add 5% Si, can be with the viscosity of aluminium liquid from 9.1 * 10
-4N/m
2Drop to 5 * 10
-4N/m
2), increase infiltration speed 10%~20%.
The specific embodiment two: the difference of present embodiment and the specific embodiment one is: step () will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 30%~39%, particle diameter are the Al of 0.1 μ m~0.6 μ m
2O
3Particle is made prefabricated component.Other step is identical with embodiment one.
The volume of aluminium alloy is for accounting for Al in the present embodiment
2O
3Particle enhanced aluminum-based composite material cumulative volume 61%~70%.
The specific embodiment three: the difference of present embodiment and the specific embodiment one is: step () will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 32%~36%, particle diameter are the Al of 0.1 μ m~0.4 μ m
2O
3Particle is made prefabricated component.Other step is identical with embodiment one.
The volume of aluminium alloy is for accounting for Al in the present embodiment
2O
3Particle enhanced aluminum-based composite material cumulative volume 64%~68%.
The specific embodiment four: the difference of present embodiment and the specific embodiment one is: step () will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 35%, particle diameter are the Al of 0.1 μ m~0.2 μ m
2O
3Particle is made prefabricated component.Other step is identical with embodiment one.
The volume of aluminium alloy is for accounting for Al in the present embodiment
2O
3Particle enhanced aluminum-based composite material cumulative volume 65%.
The specific embodiment five: the difference of present embodiment and the specific embodiment one is: Al in the step ()
2O
3Particle is pressed into prefabricated component under the pressure of 50 ± 2MPa.Other step is identical with embodiment one.
Present embodiment can be set the press time according to actual particular case.
The specific embodiment six: the difference of present embodiment and the specific embodiment one is: Al in the step ()
2O
3Particle is pressed into prefabricated component under the pressure of 50MPa.Other step is identical with embodiment one.
The specific embodiment seven: the difference of present embodiment and the specific embodiment one is: in the step () with Al
2O
3Particle and poly (vinyl alcohol) binder are by 0.9~1.1: 1 volume ratio mixes afterwards press forming under the pressure condition of 30 ± 2MPa, place then 400~500 ℃ environment to be incubated 1~2h, be warming up to again afterwards 1100~1300 ℃ of sintering 2~3h, make prefabricated component.Other step is identical with embodiment one.
Present embodiment Al
2O
3Particle and poly (vinyl alcohol) binder mix and are incubated in the environment that is placed on 400~500 ℃ that 1~2h can decompose fully, poly (vinyl alcohol) binder volatilizees.
The specific embodiment eight: the difference of present embodiment and the specific embodiment one is: in the step () with Al
2O
3Particle and poly (vinyl alcohol) binder mix afterwards press forming under the pressure condition of 30MPa by 1: 1 volume ratio, place then 450 ℃ environment to be incubated 1.5h, are warming up to afterwards 1200 ℃ of sintering 2.5h again, make prefabricated component.Other step is identical with embodiment one.
Embodiment nine: the difference of present embodiment and embodiment one is: temperature is insulation infiltration 3~5h in 950~1080 ℃ the environment in the step (two).Other step is identical with embodiment one.
Embodiment ten: the difference of present embodiment and embodiment one is: temperature is insulation infiltration 4h in 1000~1050 ℃ the environment in the step (two).Other step is identical with embodiment one.
Embodiment 11: the difference of present embodiment and embodiment one is: described aluminium alloy 1 is made up of 12%~18% Si, 6%~9% Mg and the Al of surplus by mass percentage.Other step is identical with embodiment one.
Embodiment 12: the difference of present embodiment and embodiment one is: described aluminium alloy 1 is made up of 15% Si, 7% Mg and the Al of surplus by mass percentage.Other step is identical with embodiment one.
The specific embodiment 13: present embodiment Al
2O
3The pressure-free impregnation preparation method of particle enhanced aluminum-based composite material is realized according to the following steps: (one) will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 30%, particle diameter are the Al of 0.3 μ m
2O
3Particle and poly (vinyl alcohol) binder mix afterwards press forming under the pressure condition of 30MPa by 1.1: 1 volume ratio, place then 400 ℃ environment to be incubated 2h, are warming up to afterwards 1100 ℃ of sintering 2h again, make prefabricated component; (2) with aluminium alloy and Al
2O
3Prefabricated component is put into mould, accounts for Al
2O
3The aluminium alloy of particle enhanced aluminum-based composite material cumulative volume 70% places Al
2O
3The prefabricated component top is at N
2Atmosphere, temperature are insulation infiltration 2h in 1000 ℃ the environment, namely obtain Al
2O
3Particle enhanced aluminum-based composite material; Wherein said aluminium alloy is made up of 18% Si, 6% Mg and the Al of surplus by mass percentage.
The Al that present embodiment is prepared
2O
3The SEM of particle enhanced aluminum-based composite material (scanning electron micrograph) can observe tiny Al as shown in Figure 2
2O
3Uniform particles is distributed in the aluminum substrate.Al
2O
3The SEM of particle enhanced aluminum-based composite material fracture can observe dimple and the sub-micron Al that is positioned at the dimple bottom in the composite fracture as shown in Figure 3
2O
3Particle.
Test result shows, the Al that present embodiment is prepared
2O
3The bending strength of particle enhanced aluminum-based composite material reaches 450MPa.
The specific embodiment 14: present embodiment Al
2O
3The pressure-free impregnation preparation method of particle enhanced aluminum-based composite material is realized according to the following steps: (one) will account for Al
2O
3Particle enhanced aluminum-based composite material cumulative volume 28%, particle diameter are the Al of 0.6 μ m
2O
3Particle is pressed into prefabricated component under the pressure of 50MPa; (2) with aluminium alloy and Al
2O
3Prefabricated component is put into mould, accounts for Al
2O
3The aluminium alloy of particle enhanced aluminum-based composite material cumulative volume 72% places Al
2O
3The prefabricated component top is at N
2Atmosphere, temperature are insulation infiltration 6h in 1000 ℃ the environment, namely obtain Al
2O
3Particle enhanced aluminum-based composite material; Wherein said aluminium alloy is made up of 12% Si, 10% Mg and the Al of surplus by mass percentage.
Test result shows, the Al that present embodiment is prepared
2O
3The bending strength of particle enhanced aluminum-based composite material reaches 310MPa.