CN100449265C - A horizontal axis micromachined gyro and its preparation method - Google Patents
A horizontal axis micromachined gyro and its preparation method Download PDFInfo
- Publication number
- CN100449265C CN100449265C CNB2005100073978A CN200510007397A CN100449265C CN 100449265 C CN100449265 C CN 100449265C CN B2005100073978 A CNB2005100073978 A CN B2005100073978A CN 200510007397 A CN200510007397 A CN 200510007397A CN 100449265 C CN100449265 C CN 100449265C
- Authority
- CN
- China
- Prior art keywords
- electrodes
- mask
- electrode
- detection
- capacitors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 239000003990 capacitor Substances 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- 239000010703 silicon Substances 0.000 claims description 22
- 229920002120 photoresistant polymer Polymers 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- 244000126211 Hericium coralloides Species 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 claims 7
- 230000008569 process Effects 0.000 abstract description 13
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 7
- 238000013016 damping Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 2
- 238000009461 vacuum packaging Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本发明涉及一种水平轴微机械陀螺及其制备方法,其特征在于:它包括外框,内框,驱动电极,驱动反馈电极,驱动模态弹性梁,检测电极,检测模态弹性梁和锚点,所述驱动电极和驱动反馈电极均采用两组横向梳齿电容,所述外框通过驱动模态的弹性梁与所述固定在衬底上的锚点连接,所述驱动电极和驱动反馈电极的可动电极与所述外框连接,所述检测电极的可动电极与所述内框连接,所述检测电极为实现差分检测的两组不等高垂直梳齿电容,所述检测模态弹性梁为四组组合扭转梁,每组所述组合扭转梁的一端连接所述内框,另一端连接所述外框。本发明采用的制备方法采用常规MEMS工艺设备,可以实现大批量制造。工艺过程简单,与Z轴陀螺及加速度计工艺兼容,可用于实现单芯片的三轴陀螺或微型惯性测量单元(MIMU)。
The invention relates to a horizontal axis micromechanical gyro and its preparation method, which is characterized in that it includes an outer frame, an inner frame, a driving electrode, a driving feedback electrode, a driving mode elastic beam, a detection electrode, a detection mode elastic beam and an anchor point, the drive electrodes and the drive feedback electrodes both use two sets of transverse comb capacitors, the outer frame is connected to the anchor point fixed on the substrate through the elastic beam of the drive mode, the drive electrodes and the drive feedback electrodes The movable electrode of the electrode is connected to the outer frame, the movable electrode of the detection electrode is connected to the inner frame, and the detection electrode is two sets of unequal-height vertical comb capacitors for differential detection. The dynamic elastic beams are four groups of combined torsion beams, one end of each group of combined torsion beams is connected to the inner frame, and the other end is connected to the outer frame. The preparation method adopted in the present invention adopts conventional MEMS process equipment, which can realize mass production. The process is simple, compatible with Z-axis gyro and accelerometer technology, and can be used to realize a single-chip three-axis gyro or a miniature inertial measurement unit (MIMU).
Description
技术领域 technical field
本发明涉及一种电容式微机械陀螺及其制备方法,特别是关于一种采用垂直梳齿电容检测的水平轴微机械陀螺及其制备方法。The invention relates to a capacitive micromechanical gyroscope and a preparation method thereof, in particular to a horizontal axis micromechanical gyroscope adopting vertical comb capacitance detection and a preparation method thereof.
背景技术 Background technique
微机械陀螺是利用科利奥利力来测量物体转动角速率的一类惯性传感器。由于采用微机电系统(MEMS)技术制造,微机械陀螺具有体积小、重量轻、成本低等优点,在惯性导航、武器制导、汽车、消费类电子产品等领域有非常广泛的应用前景。为了获得物体转动的完整信息,需要同时检测三个轴向的角速度信号,这就需要三轴的陀螺。三轴的陀螺可以通过将三个单轴器件正交组装来实现,但组装时的误差使三个检测轴很难做到完全正交,限制了三轴陀螺的性能,同时也会增加加工成本。采用MEMS技术可以在单个芯片上同时加工出三个单轴的陀螺,各轴之间的正交对准通过结构设计自动实现,避免了装配问题,而且可以减小整个系统的体积和重量。采用这种技术实现的三轴陀螺中各单向轴的陀螺结构可以独立的做优化设计,因而可以获得较高的性能。Micromachined gyroscopes are a class of inertial sensors that use the Coriolis force to measure the angular rate of rotation of an object. Due to the use of micro-electromechanical system (MEMS) technology, micro-mechanical gyroscopes have the advantages of small size, light weight, and low cost. They have very broad application prospects in inertial navigation, weapon guidance, automobiles, and consumer electronics. In order to obtain the complete information of the object's rotation, it is necessary to detect the angular velocity signals of three axes at the same time, which requires a three-axis gyroscope. A three-axis gyro can be realized by assembling three single-axis devices orthogonally, but the error during assembly makes it difficult for the three detection axes to be completely orthogonal, which limits the performance of the three-axis gyro and increases the processing cost. . Using MEMS technology, three single-axis gyroscopes can be processed on a single chip at the same time. The orthogonal alignment between the axes is automatically realized through structural design, which avoids assembly problems and can reduce the volume and weight of the entire system. The gyro structure of each unidirectional axis in the three-axis gyroscope realized by this technology can be independently optimized, so that higher performance can be obtained.
将三个单轴陀螺集成在一个芯片上,一方面在选择设计方案时必须考虑Z轴陀螺和X、Y轴陀螺间工艺的兼容性,还应考虑能实现高深宽比结构的工艺方案,以增大陀螺的惯性质量和敏感电容;另一方面,为了提高陀螺驱动和检测模态的品质因数(Q值)以改进陀螺的性能,陀螺驱动和检测方向的运动应尽量减少空气压膜阻尼,如采用变面积型梳齿电极。工作在大气环境下能获得较高Q值的陀螺可以无需真空封装,减小陀螺的加工成本。Z轴陀螺由于驱动和检测模态都在平面内运动,很容易利用高深宽比MEMS工艺实现较高Q值的陀螺结构设计,如韩国Seong-HyokKim等人的陀螺设计方案(Proc.Transducers2001)。对于需要检测Z方向离面运动的X、Y轴陀螺,受MEMS工艺特点限制,很难实现变面积型敏感电容,现有的方案多采用变间隙型平行板电容,如德国的W.Geiger等人设计的陀螺结构(Sensors& Actuators A,95)。由于变间隙型平板电容的灵敏度与间隙成反比,为了保证较高的灵敏度,平板电极间隙不能太大,这样就要造成较大的空气阻尼,必须工作在低压或真空环境下,而且这类电容很难实现差分检测。美国的Huikai Xie等人设计了一种采用垂直梳齿电容进行检测的陀螺结构(Sensors and Actuatorsa-Physical),这种陀螺采用CMOS MEMS工艺实现,但它的敏感电容的大小取决于CMOS工艺中互连线的层数和厚度,很难获得较大的敏感电容,而且工艺中存在较大的应力,限制了器件的性能。Integrating three single-axis gyroscopes on one chip, on the one hand, the compatibility between the Z-axis gyroscope and the X-axis and Y-axis gyroscopes must be considered when selecting a design scheme, and the process scheme that can realize a high-aspect-ratio structure should also be considered. Increase the inertial mass and sensitive capacitance of the gyro; on the other hand, in order to improve the quality factor (Q value) of the gyro drive and detection mode to improve the performance of the gyro, the movement of the gyro drive and detection direction should minimize the air pressure film damping, Such as the use of variable area comb electrodes. A gyroscope that can obtain a higher Q value when working in an atmospheric environment can eliminate the need for vacuum packaging, reducing the processing cost of the gyroscope. Because the driving and detection modes of the Z-axis gyroscope move in the plane, it is easy to use the high aspect ratio MEMS process to realize the design of the gyroscope with a higher Q value, such as the gyroscope design scheme of Seong-HyokKim et al. (Proc.Transducers2001). For the X and Y axis gyroscopes that need to detect out-of-plane motion in the Z direction, it is difficult to realize variable area sensitive capacitors due to the limitations of MEMS technology. Existing solutions mostly use variable gap parallel plate capacitors, such as W. Geiger in Germany, etc. Human-designed gyro structure (Sensors & Actuators A, 95). Since the sensitivity of the variable-gap plate capacitor is inversely proportional to the gap, in order to ensure high sensitivity, the gap between the plate electrodes should not be too large, which will cause a large air damping, and must work in a low-voltage or vacuum environment, and this type of capacitor Difficult to achieve differential detection. Huikai Xie et al. in the United States designed a gyroscope structure (Sensors and Actuators-Physical) that uses vertical comb capacitance for detection. This gyroscope is implemented in a CMOS MEMS process, but its sensitive capacitance depends on the interconnection in the CMOS process. The number of layers and thickness of the wiring makes it difficult to obtain a large sensitive capacitance, and there is a large stress in the process, which limits the performance of the device.
发明内容 Contents of the invention
本发明的目的是提供一种灵敏度高,可实现差分检测Z方向垂直运动的水平轴微机械陀螺及其制备方法。The object of the present invention is to provide a horizontal-axis micromechanical gyroscope with high sensitivity and capable of differential detection of vertical motion in the Z direction and a preparation method thereof.
为实现上述目的,本发明采取以下技术方案:一种水平轴微机械陀螺,其特征在于:它包括外框,内框,驱动电极,驱动反馈电极,驱动模态弹性梁,检测电极,检测模态弹性梁和锚点,所述驱动电极和驱动反馈电极均采用两组横向梳齿电容,所述外框通过驱动模态的弹性梁与所述固定在衬底上的锚点连接,所述驱动电极和驱动反馈电极的可动电极与所述外框连接,所述检测电极的可动电极与所述内框连接,所述检测电极为实现差分检测的两组不等高垂直梳齿电容,所述检测模态弹性梁为四组组合扭转梁,每组所述组合扭转梁的一端连接所述内框,另一端连接所述外框。To achieve the above object, the present invention takes the following technical solutions: a horizontal axis micromachined gyroscope, characterized in that: it includes an outer frame, an inner frame, a drive electrode, a drive feedback electrode, a drive mode elastic beam, a detection electrode, a detection mode state elastic beams and anchor points, the driving electrodes and the driving feedback electrodes both use two sets of transverse comb capacitors, the outer frame is connected to the anchor points fixed on the substrate through the elastic beams in the driving mode, and the The movable electrodes of the drive electrodes and the drive feedback electrodes are connected to the outer frame, the movable electrodes of the detection electrodes are connected to the inner frame, and the detection electrodes are two sets of unequal-height vertical comb capacitors for differential detection , the detection mode elastic beams are four groups of combined torsion beams, one end of each group of combined torsion beams is connected to the inner frame, and the other end is connected to the outer frame.
所述检测电极的两组不等高垂直梳齿电容由相邻插设的单端具有高度差的可动电极和固定电极组成,且其中一组所述电容的可动电极比固定电极短,另一组所述电容的可动电极比固定电极长。The two sets of unequal-height vertical comb-tooth capacitors of the detection electrodes are composed of movable electrodes and fixed electrodes inserted adjacent to each other with a height difference, and the movable electrodes of one set of capacitors are shorter than the fixed electrodes, Another set of said capacitors has movable electrodes longer than the fixed electrodes.
所述检测电极的两组不等高垂直梳齿电容由相邻插设的双端具有高度差的可动电极和固定电极组成,且其中一组所述电容的可动电极位置比固定电极位置高,另一组所述电容的可动电极位置比固定电极位置低。The two sets of unequal-height vertical comb capacitors of the detection electrodes are composed of adjacently inserted movable electrodes and fixed electrodes with height differences at both ends, and the position of the movable electrodes of one set of capacitors is higher than that of the fixed electrodes. High, the position of the movable electrode of the other group of capacitors is lower than that of the fixed electrode.
所述检测模态弹性梁的四组组合扭转梁分别包括一钢性件和四支梁,所述四支梁的一端分别连接在所述钢性件的端部。The four groups of combined torsion beams for the detection mode elastic beam respectively include a rigid part and four beams, and one end of the four beams is respectively connected to the end of the rigid part.
一种水平轴微机械陀螺的制备方法,其包括以下步骤:(1)采用双抛N型硅片;(2)在硅片上形成光刻胶掩模和氧化硅组成的复合掩模,以光刻胶为掩模刻蚀深槽,深槽深度定出固定电极和可动电极的下端高度差;(3)去除光刻胶掩模,以氧化硅为掩模刻蚀浅槽,浅槽深度定出可动电极与衬底之间的间隙;(4)去除氧化硅,硅片表面采用离子注入或扩散工艺掺杂,以形成欧姆接触;(5)在玻璃衬底上制作金属电极,作为微机械陀螺的引线电极;(6)阳极键合,实现玻璃衬底和硅片的对准和粘合,并将硅片减薄到适当厚度;(7)掩模刻蚀释放结构,完成梳齿电容微机械陀螺制备。A method for preparing a horizontal-axis micromachined gyroscope, comprising the following steps: (1) using a double-polished N-type silicon wafer; (2) forming a photoresist mask and a composite mask composed of silicon oxide on the silicon wafer to The photoresist is used as a mask to etch deep grooves, and the depth of the deep grooves determines the height difference between the fixed electrode and the movable electrode; (3) Remove the photoresist mask, and use silicon oxide as a mask to etch shallow grooves, shallow grooves The depth determines the gap between the movable electrode and the substrate; (4) Remove silicon oxide, and the surface of the silicon wafer is doped by ion implantation or diffusion process to form an ohmic contact; (5) Make a metal electrode on the glass substrate, As the lead electrode of the micromechanical gyroscope; (6) anodic bonding, realize the alignment and bonding of the glass substrate and the silicon wafer, and thin the silicon wafer to an appropriate thickness; (7) mask etching release structure, complete Fabrication of comb-tooth capacitive micromachined gyroscope.
所述掩膜刻蚀释放结构为以铝掩模为掩模刻蚀释放结构,完成单端不等高梳齿微机械陀螺制备。The mask etching release structure is an etching release structure using an aluminum mask as a mask to complete the preparation of a single-end unequal-height comb micromechanical gyroscope.
所述掩膜刻蚀释放结构包括以下步骤:(1)在硅片表面形成光刻胶掩模和铝掩模构成的复合掩模,以光刻胶为掩模刻蚀深槽;(2)去除光刻胶掩模,以铝掩模为掩模刻蚀硅片,完成双端不等高梳齿电容微机械陀螺制备。The mask etching release structure includes the following steps: (1) forming a composite mask composed of a photoresist mask and an aluminum mask on the surface of the silicon wafer, and etching a deep groove with the photoresist as a mask; (2) Remove the photoresist mask, etch the silicon wafer with the aluminum mask as a mask, and complete the preparation of the double-terminal unequal-height comb capacitance micromechanical gyroscope.
本发明由于采取以上技术方案,其具有以下优点:1、本发明由于将驱动电极、驱动反馈电极和检测电极均采用变面积型梳齿电极实现,有效地减小驱动模态和检测模态的阻尼,提高了陀螺的灵敏度。2、本发明检测电极由于采用垂直梳齿电容,其灵敏度与可动电极与衬底间隙无关,故可通过增加可动电极与衬底间隙来进一步减小驱动和检测模态的空气阻尼。3、由于有效降低了空气阻尼,陀螺在大气环境下即可获得较高的Q值,无需真空封装即可工作,可以降低器件的加工成本。4、本发明的陀螺结构实现了高深宽比结构的垂直运动,使整个陀螺结构可由高深宽比工艺实现,陀螺可获得较大的惯性质量和敏感电容,有利于改进器件的性能。5、本发明采用常规MEMS工艺设备制作本发明产品,工艺过程简单,与Z轴陀螺及加速度计工艺兼容,可用于实现单芯片的三轴陀螺或微型惯性测量单元(MIMU),并可以实现大批量制造。Because the present invention adopts the above technical scheme, it has the following advantages: 1. The present invention effectively reduces the driving mode and detection mode due to the drive electrode, the drive feedback electrode and the detection electrode are all realized by variable-area comb-tooth electrodes. Damping, which increases the sensitivity of the gyro. 2. Since the detection electrode of the present invention adopts a vertical comb capacitor, its sensitivity has nothing to do with the gap between the movable electrode and the substrate, so the air damping of the driving and detection modes can be further reduced by increasing the gap between the movable electrode and the substrate. 3. Due to the effective reduction of air damping, the gyroscope can obtain a higher Q value in the atmospheric environment, and can work without vacuum packaging, which can reduce the processing cost of the device. 4. The gyro structure of the present invention realizes the vertical motion of the high aspect ratio structure, so that the entire gyro structure can be realized by a high aspect ratio process, and the gyro can obtain larger inertial mass and sensitive capacitance, which is beneficial to improving the performance of the device. 5. The present invention adopts conventional MEMS process equipment to produce the product of the present invention. The process is simple and compatible with Z-axis gyroscope and accelerometer process. It can be used to realize single-chip three-axis gyroscope or miniature inertial measurement unit (MIMU), and can realize large Mass manufacturing.
附图说明 Description of drawings
图1a、图1b为本发明单端不等高垂直梳齿电容截面示意图Figure 1a and Figure 1b are schematic cross-sectional views of single-ended unequal height vertical comb capacitors of the present invention
图2a、图2b为本发明双端不等高垂直梳齿电容截面示意图Figure 2a and Figure 2b are cross-sectional schematic diagrams of double-ended unequal height vertical comb capacitors of the present invention
图3为本发明组合扭转梁结构示意图Fig. 3 is the structure schematic diagram of combined torsion beam of the present invention
图4为本发明结构示意图Fig. 4 is a structural representation of the present invention
图5a~图5g为本发明制备过程示意图Fig. 5a~Fig. 5g are the schematic diagrams of the preparation process of the present invention
图6a、图6b为本发明制备过程另一实施例示意图Figure 6a and Figure 6b are schematic diagrams of another embodiment of the preparation process of the present invention
具体实施方式 Detailed ways
为描述本发明方便,首先对本发明中涉及到的单端不等高垂直梳齿电容、双端不等高垂直梳齿电容和组合扭转梁的结构加以说明。For the convenience of describing the present invention, the structure of the single-ended unequal-height vertical comb capacitor, the double-ended unequal-height vertical comb capacitor and the combined torsion beam involved in the present invention will be described first.
如图1a、1b所示,单端不等高垂直梳齿电容,包括间隔设置的可动电极1和固定电极2,可动电极1和固定电极2采用单端(上端或下端)不等高结构,构成两个敏感电容3、4。其中敏感电容3的可动电极1比固定电极2短(如图1a所示),敏感电容4的可动电极1比固定电极2长(如图1b所示),当可动电极1向上(或向下)垂直运动时,根据固定电极2和可动电极1的高度设置,敏感电容3的电极交叠面积减小(或保持不变),即敏感电容3减小(或保持不变);敏感电容4的电极交叠面积保持不变(或减小),即敏感电容4不变(或减小)。两个敏感电容3、4的差分结果与可动电极1的垂直位移成正比,故可用于垂直位移的检测。以上分析未考虑边缘电场对电容的影响。若计入边缘电场,单个电容的变化量有所变化且偏离线性,但电容的差分结果仍保持线性关系,故可用于实际检测。As shown in Figures 1a and 1b, the single-ended unequal-height vertical comb capacitor includes
如图2a、2b所示,双端不等高垂直梳齿电容,是在前述单端不等高梳齿电容结构的基础上做的改进,包括间隔设置的可动电极1和固定电极2,可动电极1和固定电极2采用双端不等高结构,构成两个敏感电容5、6。其中敏感电容5的固定电极2位置低于可动电极1(如图2a所示),敏感电容6的固定电极2位置高于可动电极1(如图2b所示)。如图2a、2b所示,当可动电极1向上(或向下)垂直运动时,敏感电容5的电极交叠面积减小(或增大),即敏感电容5减小(或增大);敏感电容6的电极交叠面积增大(或减小),即敏感电容6增大(或减小)。两个敏感电容5、6的差分结果与可动电极1的垂直位移成正比,固可用于垂直位移的检测。与前述单端不等高垂直梳齿电容相比,双端不等高垂直梳齿电容的检测灵敏度和线性度均有提高。As shown in Figures 2a and 2b, the double-ended unequal-height vertical comb capacitor is an improvement on the basis of the aforementioned single-ended unequal-height comb capacitor structure, including
如图3所示,组合扭转梁7由四个支梁71、72、73、74连接一个刚性件8组成,其中两个支梁71、72与固定点相连,另两个支梁73、74与惯性质量相连(惯性质量是陀螺中跟梁相连的结构,下面还要详述)。当惯性质量垂直运动时,组合扭转梁7以支梁71、72为轴扭转,从而实现高深宽比结构的垂直运动。组合扭转梁7可以降低惯性质量在Z方向的等效弹性刚度,提高Z方向位移灵敏度,在实际使用中,必须采用两个以上的组合扭转梁7才能保证惯性质量的垂直运动。As shown in Figure 3, the combined torsion beam 7 is composed of four
如图4所示,本发明采用垂直梳齿电容检测的水平轴微机械陀螺,它包括驱动电极9,驱动反馈电极10,检测电极11、12,驱动模态弹性梁13,检测模态弹性梁14及锚点15。陀螺的驱动电极9包括两组电极,采用推挽式驱动方式,驱动反馈电极10也包括两组电极,分别为两组驱动电极9提供反馈信号。驱动电极9和驱动反馈电极10可采用横向梳齿电极实现,以提高振动模态的幅度并减小空气阻尼。本发明采用双框架16、17结构,外框16通过驱动模态弹性梁13与锚点15相连,固定在器件的衬底上。本发明的内框17与检测电极11、12的可动电极及电极间的连接构成一体,通过检测模态弹性梁14与外框16相连。检测模态弹性梁14共有四组,每组检测模态弹性梁14的结构即为前述组合扭转梁7的结构和运动方式,其中陀螺的内框17和检测电极11、12的可动电极及电极间的连接部分,相当于组合扭转梁7中支梁73、74连接的惯性质量;其中陀螺的外框16相当于组合扭转梁7中支梁71、72连接的固定点。本发明的两组检测电极11、12采用前述单端或双端不等高垂直梳齿电容的结构形式,以实现差分检测。检测电极11位于中部,检测电极12对称位于两侧(图中灰色部分为固定电极),靠近中间固定电极两侧的可动电极的梳齿较长,靠近两侧固定电极的可动电极梳齿较短,两侧检测电极12中可动电极与固定电极之间的交叠面积的总和,与中间检测电极11中可动电极与固定电极之间的交叠面积的总和相等。其中,检测电极11采用电容3或5的结构形式(如图1a或图2a所示),检测电极12采用电容4或6的结构形式(如图1b或2b所示)。本发明微机械陀螺的驱动轴平行于衬底方向(Y轴),检测轴垂直于衬底(Z轴),角速度输入轴平行于衬底方向,与驱动轴和检测轴正交(X轴)。As shown in Figure 4, the present invention adopts the horizontal axis micromechanical gyroscope of vertical comb capacitance detection, and it comprises driving
本发明微机械陀螺利用科利奥利力来测量物体角速度,如图4所示,工作时Y轴驱动,使得整个结构沿Y轴振动,当系统有X方向角速度(以X方向为轴转动)时,内框17和检测电极11、12的可动电极及电极间的连接部分会在扭转梁7的约束下上下(沿Z轴)振动,从而引起电容变化,获得在Z轴运动的检测结果。The micromechanical gyroscope of the present invention uses the Coriolis force to measure the angular velocity of the object. As shown in Figure 4, the Y-axis is driven during work, so that the entire structure vibrates along the Y-axis. When the system has an X-direction angular velocity (rotating with the X direction as the axis) At this time, the
本发明水平轴微机械陀螺可以采取以下制备方法:The horizontal axis micromechanical gyroscope of the present invention can adopt the following preparation methods:
实施例1:制作单端不等高梳齿电容水平轴微机械陀螺时采用以下步骤:Embodiment 1: The following steps are adopted when making a single-ended unequal-height comb-tooth capacitance horizontal-axis micromechanical gyroscope:
1、起始材料采用双抛N型(100)硅片18(如图5a所示),厚度为400±10微米;1. The starting material is a double-polished N-type (100) silicon wafer 18 (as shown in FIG. 5a ), with a thickness of 400±10 microns;
2、首先在硅片18上形成氧化硅19掩膜,然后在硅片18上形成光刻胶20和氧化硅19组成的复合掩模(如图5b所示),然后以光刻胶20为掩模刻蚀深槽21,深槽21的深度定出固定电极2和可动电极1的下端高度差;2, at first
3、如图5C所示,去除光刻胶掩模20,以氧化硅19为掩模刻蚀浅槽22,浅槽22深度定出可动电极1与玻璃衬底之间的间隙;3. As shown in FIG. 5C, the
4、如图5d所示,去除氧化硅19,硅片18表面采用离子注入或扩散工艺掺杂23,以形成欧姆接触;4. As shown in FIG. 5d, the
5、如图5e所示,在玻璃衬底24上制作金属电极25,作为陀螺的引线电极;5. As shown in FIG. 5e,
6、如图5f所示,将玻璃衬底24和硅片18对准和粘合,实现阳极键合,并将硅片18减薄到适当厚度;6. As shown in FIG. 5f, align and bond the
7、如图5g所示,以铝掩模26为掩模刻蚀释放结构,形成电容的可动电极1和固定电极2,完成单端不等高梳齿电容水平轴微机械陀螺的制备(如图1b所示)。7. As shown in FIG. 5g, use the
实施例2:制作双端不等高梳齿电容水平轴微机械陀螺时采用以下步骤:Embodiment 2: The following steps are adopted when making a double-ended unequal-height comb capacitor horizontal axis micromechanical gyroscope:
1、初始工艺与上述单端不等高梳齿微机械陀螺工艺一致,即采用实例1中的步骤1~6,然后按以下步骤进行;1. The initial process is consistent with the above single-end unequal-height comb micromechanical gyroscope process, that is, steps 1 to 6 in Example 1 are used, and then the following steps are carried out;
2、如图6a所示,在硅片18表面形成光刻胶掩模27和铝掩模28构成的复合掩模,以光刻胶为掩模刻蚀深槽29;2. As shown in FIG. 6a, a composite mask composed of a
3、如图6b所示,去除光刻胶掩模27,以铝掩模28为掩模刻蚀硅片18,形成电容的可动电极1和固定电极2,完成双端不等高梳齿电容水平轴微机械陀螺的制备。3. As shown in FIG. 6b, remove the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100073978A CN100449265C (en) | 2005-02-28 | 2005-02-28 | A horizontal axis micromachined gyro and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100073978A CN100449265C (en) | 2005-02-28 | 2005-02-28 | A horizontal axis micromachined gyro and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1828223A CN1828223A (en) | 2006-09-06 |
CN100449265C true CN100449265C (en) | 2009-01-07 |
Family
ID=36946727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100073978A Expired - Fee Related CN100449265C (en) | 2005-02-28 | 2005-02-28 | A horizontal axis micromachined gyro and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100449265C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106535825A (en) * | 2014-06-17 | 2017-03-22 | 国家研究会议 | Method for producing a heart valve made of polymer material and heart valve obtained therefrom |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1948906B (en) * | 2006-11-10 | 2011-03-23 | 北京大学 | Capacitive type complete decoupling horizontal axis miniature mechanical gyro |
CN101319899B (en) * | 2008-07-24 | 2010-11-10 | 北京大学 | Capacitor type horizontal shaft micro-mechanical tuning fork gyroscope |
CN101876547B (en) * | 2009-12-08 | 2011-11-02 | 北京大学 | Horizontal shaft micro-mechanical tuning fork gyroscope adopting electrostatic balance comb tooth driver |
CN101719434B (en) * | 2009-12-08 | 2012-05-23 | 北京大学 | Micromechenical acceleration locking and saving switch |
US8516887B2 (en) * | 2010-04-30 | 2013-08-27 | Qualcomm Mems Technologies, Inc. | Micromachined piezoelectric z-axis gyroscope |
CN102155944B (en) * | 2011-03-08 | 2013-12-11 | 西安交通大学 | Six-axis microtype inertial sensor integrating accelerometer and gyroscope and application method thereof |
US8610222B2 (en) * | 2011-04-18 | 2013-12-17 | Freescale Semiconductor, Inc. | MEMS device with central anchor for stress isolation |
CN102798386A (en) * | 2011-05-25 | 2012-11-28 | 上海飞恩微电子有限公司 | Three-degree-of-freedom resonance silicon micromechanical gyroscope |
CN103086316B (en) * | 2011-10-28 | 2015-07-22 | 中国科学院上海微系统与信息技术研究所 | MEMS vertical comb micro-mirror surface driver manufacturing method |
TWI453371B (en) * | 2011-12-30 | 2014-09-21 | Ind Tech Res Inst | Micro-electro-mechanical-system device with oscillating assembly |
CN104614553A (en) * | 2015-01-30 | 2015-05-13 | 歌尔声学股份有限公司 | Z axis structure of accelerometer |
CN106546232B (en) * | 2015-11-05 | 2019-09-06 | 中国科学院地质与地球物理研究所 | A MEMS gyroscope and its manufacturing process |
CN106500732A (en) * | 2016-12-22 | 2017-03-15 | 四川纳杰微电子技术有限公司 | A kind of micro-mechanical gyroscope quadrature error collocation structure |
CN108946655B (en) * | 2017-05-23 | 2021-04-30 | 北京大学 | Process compatibility method for single-chip integrated inertial device |
CN108955663B (en) * | 2017-05-23 | 2022-03-25 | 北京大学 | Resonant double-shaft micro-mechanical wheel type gyroscope |
CN112284368A (en) * | 2020-09-21 | 2021-01-29 | 北京航天控制仪器研究所 | A fully differential high-precision X-axis silicon micro-gyroscope |
CN118566536A (en) * | 2024-07-29 | 2024-08-30 | 南京元感微电子有限公司 | Triaxial capacitive accelerometer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1277142A (en) * | 2000-07-21 | 2000-12-20 | 中国科学院上海冶金研究所 | Manufacture of integrated minuature movable silicon mechanical-structure on glass substrate |
US6257059B1 (en) * | 1999-09-24 | 2001-07-10 | The Charles Stark Draper Laboratory, Inc. | Microfabricated tuning fork gyroscope and associated three-axis inertial measurement system to sense out-of-plane rotation |
CN2516942Y (en) * | 2002-01-17 | 2002-10-16 | 东南大学 | Silicon micro-vibration gyroscope |
US20030084722A1 (en) * | 2000-01-27 | 2003-05-08 | Kim Yong-Kweon | Vibration-type micro-gyroscope |
-
2005
- 2005-02-28 CN CNB2005100073978A patent/CN100449265C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6257059B1 (en) * | 1999-09-24 | 2001-07-10 | The Charles Stark Draper Laboratory, Inc. | Microfabricated tuning fork gyroscope and associated three-axis inertial measurement system to sense out-of-plane rotation |
US20030084722A1 (en) * | 2000-01-27 | 2003-05-08 | Kim Yong-Kweon | Vibration-type micro-gyroscope |
CN1277142A (en) * | 2000-07-21 | 2000-12-20 | 中国科学院上海冶金研究所 | Manufacture of integrated minuature movable silicon mechanical-structure on glass substrate |
CN2516942Y (en) * | 2002-01-17 | 2002-10-16 | 东南大学 | Silicon micro-vibration gyroscope |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106535825A (en) * | 2014-06-17 | 2017-03-22 | 国家研究会议 | Method for producing a heart valve made of polymer material and heart valve obtained therefrom |
Also Published As
Publication number | Publication date |
---|---|
CN1828223A (en) | 2006-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100449265C (en) | A horizontal axis micromachined gyro and its preparation method | |
CN1948906B (en) | Capacitive type complete decoupling horizontal axis miniature mechanical gyro | |
CN102798734B (en) | MEMS triaxial accelerometer and manufacture method thereof | |
CN104807454B (en) | A kind of single-chip integration six degree of freedom micro inertial measurement unit and its processing method | |
CN106500682B (en) | A MEMS gyroscope | |
CN101786593B (en) | Processing method of differential type high-precision accelerometer | |
JP6448793B2 (en) | 3-axis MEMS gyro | |
US8656778B2 (en) | In-plane capacitive mems accelerometer | |
CN105137121A (en) | Preparation method of low-stress acceleration meter | |
CN106932609A (en) | A kind of axle inertial sensors of four mass MEMS of single anchor point six | |
CN104457726B (en) | A kind of three axis microelectromechanicdevice gyroscopes | |
CN104406579B (en) | Micro-electromechanical deformable structure and triaxial multi-degree of freedom micro-electromechanical gyroscope | |
US10612926B2 (en) | MEMS anti-phase vibratory gyroscope | |
US20140338452A1 (en) | Tri-axial mems accelerometer | |
CN107449423A (en) | The used group device of the centrifugal 3 axis MEMS of nanometer grating | |
CN111551161A (en) | MEMS vibrating gyroscope structure and manufacturing method thereof | |
CN114195089B (en) | A six-mass MEMS dual-axis gyroscope for suppressing common-mode interference signals | |
CN103901227A (en) | Silicon micro-resonant type accelerometer | |
CN101792108B (en) | Large capacitance micro inertial sensor based on slide-film damping and manufacturing method thereof | |
CN102602879B (en) | Two step corrosion manufacture methods of resonance type accelerometer resonance beam and brace summer | |
CN113607152A (en) | A three-axis microelectromechanical gyroscope and its preparation and packaging method | |
CN1291232C (en) | Minitype angular velocity sensor and its making method | |
CN111289772A (en) | Single-mass three-axis MEMS inertial accelerometer with low aspect ratio and preparation method thereof | |
CN109579811B (en) | Butterfly wing type micro gyroscope adopting polygonal vibrating beam and preparation method thereof | |
CN113566804A (en) | Four-mass optical-electromechanical three-axis gyroscope of three-dimensional photonic crystal and processing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090107 Termination date: 20150228 |
|
EXPY | Termination of patent right or utility model |