CN100447694C - A Large Stroke Nano-precision Positioning Control System - Google Patents
A Large Stroke Nano-precision Positioning Control System Download PDFInfo
- Publication number
- CN100447694C CN100447694C CNB2004100918202A CN200410091820A CN100447694C CN 100447694 C CN100447694 C CN 100447694C CN B2004100918202 A CNB2004100918202 A CN B2004100918202A CN 200410091820 A CN200410091820 A CN 200410091820A CN 100447694 C CN100447694 C CN 100447694C
- Authority
- CN
- China
- Prior art keywords
- control system
- control
- stroke
- stepper motor
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 230000003321 amplification Effects 0.000 claims description 18
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 18
- 238000001914 filtration Methods 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims 1
- 238000013341 scale-up Methods 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 14
- 238000002474 experimental method Methods 0.000 abstract description 10
- 238000012544 monitoring process Methods 0.000 abstract description 10
- 230000007812 deficiency Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 22
- 230000008859 change Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
本发明涉及在高精度测量或实验中使用的定位控制系统,目的在于克服现有技术中的不足,提供一种能够监控测量或实验仪器之间位置关系变化,并及时恢复的定位控制系统。本系统包括光源、两个半反半透镜、干涉仪、一个半波片、一个四分之一波片、一个检偏镜、分析控制系统,光路从光源出发入射到第一片半反半透镜后分成两束光,分别入射到干涉仪的两个臂,通过臂的光线通过半波片后与通过臂的光线在第二片半反半透镜汇合成一束光,通过四分之一波片之后射入分析控制系统的光感应器,为能够实现大行程的高精度定位,本发明将干涉仪其中的一个臂安装于多级精度的步进电机上,步进电机的最小行程精度为纳米级,控制端分析控制系统连接。
The invention relates to a positioning control system used in high-precision measurement or experiment. The purpose is to overcome the deficiencies in the prior art and provide a positioning control system capable of monitoring the positional relationship changes between measuring or experimental instruments and recovering them in time. The system includes a light source, two semi-reflective half-lenses, an interferometer, a half-wave plate, a quarter-wave plate, an analyzer, and an analysis control system. After that, it is divided into two beams of light, which are respectively incident on the two arms of the interferometer. The light passing through the arm passes through the half-wave plate and then merges with the light passing through the arm in the second semi-reflective half-lens to form a beam of light, which passes through the quarter-wave After the film is injected into the optical sensor of the analysis control system, in order to realize high-precision positioning of a large stroke, the present invention installs one arm of the interferometer on a multi-level precision stepping motor, and the minimum stroke accuracy of the stepping motor is Nanoscale, control side analysis control system connection.
Description
技术领域 technical field
本发明涉及在高精度测量或实验中使用的定位控制系统,更具体的说是一种可以进行纳米精度定位的控制系统。The invention relates to a positioning control system used in high-precision measurement or experiment, more specifically a control system capable of positioning with nanometer precision.
技术背景technical background
在高精度的测量或实验系统中,往往对整个系统的稳定性有很高的要求,特别是仪器之间的位置关系,即使是微小的干扰存在,也会导致测量或实验结果的截然不同。所以,在高精度的测量或实验系统中,对测量或实验的环境要求十分高,一般是需要在高度隔离的环境中进行,如超净实验室等。但是即使在高度隔离的环境中,由于人员的移动,仪器的运作,甚至是空气的流动都对测量或实验存在着干扰。而超净的真空实验室的建设成本很高,而且维护困难。由此,现有技术中也出现了各式各样的监控定位系统,用于跟踪测量或实验中仪器之间的位置关系,一旦仪器相对位置发生变化,监控定位系统可以及时的将系统恢复到初始位置,起到实时监控的作用。不过由于一般存在于高精度的测量或实验系统中的干扰是十分微弱的,所以如何能够测量到如此微弱的干扰,及时的反馈信息并且将微弱的干扰信号放大到能够推动系统恢复到初始位置是一个性能优秀的监控定位系统的重要指标。现有的监控定位系统均无法完全满足这些指标,只能通过数学方法来弥补其缺陷,而且在实现大干扰的高精度定位中更是无法胜任。In high-precision measurement or experimental systems, there are often high requirements for the stability of the entire system, especially the positional relationship between instruments, even if there is a small disturbance, it will lead to completely different measurement or experimental results. Therefore, in a high-precision measurement or experiment system, the requirements for the measurement or experiment environment are very high, and generally it needs to be carried out in a highly isolated environment, such as an ultra-clean laboratory. But even in a highly isolated environment, due to the movement of personnel, the operation of instruments, and even the flow of air, there are disturbances to measurements or experiments. Ultra-clean vacuum laboratories are expensive to build and difficult to maintain. Therefore, various monitoring and positioning systems have appeared in the prior art, which are used to track the positional relationship between the instruments in the measurement or experiment. Once the relative position of the instruments changes, the monitoring and positioning system can restore the system in time. The initial position plays the role of real-time monitoring. However, because the interference that generally exists in high-precision measurement or experimental systems is very weak, how to measure such weak interference, timely feedback information and amplify the weak interference signal to push the system back to the original position is a problem. An important indicator of a monitoring and positioning system with excellent performance. None of the existing monitoring and positioning systems can fully meet these indicators, and can only make up for its defects through mathematical methods, and it is even more incompetent in realizing high-precision positioning with large interference.
发明内容 Contents of the invention
本发明的目的在于克服现有技术中的不足,提供一种能够监控测量或实验仪器之间位置关系变化,并及时恢复的定位控制系统,特别是一种能够实现大行程高精度定位的定位控制系统。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide a positioning control system capable of monitoring changes in the positional relationship between measuring or experimental instruments and recovering them in time, especially a positioning control system capable of realizing large-stroke and high-precision positioning system.
本发明通过以下技术方案实现其发明目的。The present invention realizes its object of invention through the following technical solutions.
本发明设计了一种大行程纳米精度定位控制系统,采用光感应的方式进行系统定位,包括光源、两个半反半透镜、干涉仪、一个半波片、一个四分之一波片、一个检偏镜、分析控制系统,光路从光源出发入射到第一片半反半透镜后分成两束光,分别入射到干涉仪的两个臂,通过第一臂的光线通过半波片后与通过第二臂的光线在第二片半反半透镜汇合成一束光,通过四分之一波片和检偏镜之后射入分析控制系统的光感应器,为能够实现大行程的高精度定位,本发明将干涉仪其中的一个臂安装于多级精度的步进电机上,步进电机的最小行程精度为纳米级,控制端分析控制系统连接。本发明采用的干涉仪为迈克尔逊干涉仪,通过监控光线通过迈克尔逊干涉仪的两个臂所引起的两束圆偏振光的位相差来监控两臂之间的位置变化,并通过多级精度的步进电机移动其中一个臂来跟踪另一个臂,以达到控制两臂之间位置不变的目的。本发明采用多级精度的步进电机来实现大行程的高精度控制,一般多级精度的步进电机由一个小行程步进电机和一个大行程步进电机构成,小行程步进电机和大行程步进电机的控制端分别与分析控制系统连接。当所需行程达到小行程步进电机的最大行程时候,可以移动大行程电机进行补充,再通过小行程步进电机调节具体位置,由此大行程步进电机的行程精度不能大于小行程步进电机最大行程的2倍。要能够在纳米的精度范围调整迈克尔逊干涉仪的一个臂的长度,并且响应速度也要能够达到毫秒量级,要达到这样的要求小行程步进电机就只能够用采用压电微行程器。The present invention designs a large-stroke nanometer-precision positioning control system, which uses light sensing to perform system positioning, including a light source, two semi-reflective half-lenses, an interferometer, a half-wave plate, a quarter-wave plate, and a Analytical mirror, analysis and control system, the light path starts from the light source and enters the first half-mirror, and then is divided into two beams of light, which are respectively incident on the two arms of the interferometer. The light passing through the first arm passes through the half-wave plate and passes through the The light from the second arm is merged into a beam of light by the second semi-reflective lens, and then enters the optical sensor of the analysis and control system after passing through the quarter-wave plate and the analyzer, in order to achieve high-precision positioning with a large stroke. , the present invention installs one of the arms of the interferometer on a multi-level precision stepping motor, the minimum travel precision of the stepping motor is nanometer level, and the control terminal is connected to an analysis control system. The interferometer used in the present invention is a Michelson interferometer, which monitors the position change between the two arms by monitoring the phase difference between the two beams of circularly polarized light caused by the light passing through the two arms of the Michelson interferometer. The stepper motor moves one of the arms to track the other, so as to achieve the purpose of controlling the position between the two arms. The present invention adopts the multi-level precision stepping motor to realize the high-precision control of the large stroke. Generally, the multi-level precision stepping motor is composed of a small-stroke stepping motor and a large-stroke stepping motor. The small-stroke stepping motor and the large stroke The control ends of the stroke stepper motors are respectively connected with the analysis control system. When the required stroke reaches the maximum stroke of the small-stroke stepping motor, the large-stroke motor can be moved to supplement, and then the specific position can be adjusted through the small-stroke stepping motor, so the stroke accuracy of the large-stroke stepping motor cannot be greater than that of the small-
为实现对整个系统的控制,本发明的分析控制系统包括:用于探测微弱的光信号并将其转换成相应的数字信号的反馈模块;用于调整干涉仪臂位置的执行模块;和用于实现中心控制和数据传送的控制模块;控制模块分别与反馈模块和执行模块连接。反馈模块包括:用于光强度信号提取和放大的光二极管放大滤波部分;将放大后电压转换成频率的V/F转换部分;和负责处理控制模块传来的命令,控制第一和第二数字电位器,以及将频率转换成数字传给控制模块的控制及数据传输部分。In order to realize the control of the whole system, the analysis control system of the present invention includes: a feedback module for detecting weak optical signals and converting them into corresponding digital signals; an execution module for adjusting the position of the interferometer arm; and The control module realizes the central control and data transmission; the control module is connected with the feedback module and the execution module respectively. The feedback module includes: a photodiode amplification and filtering part for light intensity signal extraction and amplification; a V/F conversion part that converts the amplified voltage into a frequency; and is responsible for processing commands from the control module to control the first and second digital Potentiometer, and the control and data transmission part that converts the frequency into a number and transmits it to the control module.
为了能够将探测到的微弱光信号放大并将其转换成相应的数字信号,本发明的光二极管放大滤波部分的放大电路包括由光二极管同第一运放组成的电流放大型放大电路,由第一数字电位器和缓冲器组成的数字调零电路和由第二数字电位器和第二运放组成的有反向放大功能的加法器;光二极管放大滤波部分的滤波电路采用二阶高通滤波器。In order to be able to amplify the detected weak light signal and convert it into a corresponding digital signal, the amplifying circuit of the photodiode amplifying and filtering part of the present invention includes a current amplifying amplifying circuit composed of a photodiode and a first operational amplifier. A digital zeroing circuit composed of a digital potentiometer and a buffer, and an adder with reverse amplification function composed of a second digital potentiometer and a second operational amplifier; the filter circuit of the photodiode amplification and filtering part adopts a second-order high-pass filter .
为达到推动压电微行程器移动并响应速度也要能够达到毫秒量级,执行模块必须包括用DA转换器,负责同控制模块之间的通讯以及控制DA转换器的微控制器,用于放大DA转换器输出电压的高电压扩展电路三部分。In order to push the piezoelectric micro-stroke device to move and the response speed can reach the order of milliseconds, the execution module must include a DA converter, which is responsible for communication with the control module and a microcontroller that controls the DA converter for amplification. There are three parts of the high-voltage expansion circuit of the output voltage of the DA converter.
用计算机来担任控制模块的优势是很明显的,可以非常轻松地实现各种算法、界面友好、易于调试、数据可以存储、同时还有大量的其他数据处理软件可供使用。本发明的计算机采用PID控制方法来实时控制小行程步进电机和大行程步进电机的运行。PID控制法是一种被长期采用的电子控制方法,这种方法存在着很多优点:它是连续系统中技术最为成熟,且应用最为广泛的一种方法。它的结构灵活,不仅可以用常规的PID调节,而且可以根据系统的要求,采用各种PID的变种,如PI、PD控制,不完全微分控制,积分分离式PID控制,带死区的PID控制,变速积分PID控制,比例PID控制等等。在PID控制系统中,系统参数整定方便,而且在大多数工业生产过程中效果比较好。功能强大,是一种可以应用于比较模糊的对象的控制方法。到目前为止,仍有许多工业对象得不到或很难得到精确的数学模型,因此,应用直接数字控制方法比较困难甚至根本不可能,这时就只能求助于PID算法。简单实用,PID控制法的使用过程最为关键地就是对其各个参数进行调整,调整过程是一个经验积累的过程,现在已经可以熟练掌握了各个参数的范围。控制效果比较好,虽然计算机控制是离散的,但对于时间常数比较大的系统来说其近似于连续变化。因此,用数字PID完全可以代替模拟调节器,而且可以得到比较满意的效果。The advantages of using a computer as a control module are obvious. Various algorithms can be implemented very easily, the interface is friendly, easy to debug, data can be stored, and a large number of other data processing software are available. The computer of the invention adopts the PID control method to control the operation of the small stroke stepping motor and the large stroke stepping motor in real time. PID control method is an electronic control method that has been used for a long time. This method has many advantages: it is the most mature and widely used method in continuous systems. Its structure is flexible, not only can be adjusted by conventional PID, but also various PID variants can be used according to the requirements of the system, such as PI, PD control, incomplete differential control, integral separation PID control, PID control with dead zone , Variable speed integral PID control, proportional PID control and so on. In the PID control system, the system parameter setting is convenient, and the effect is relatively good in most industrial production processes. Powerful and a control method that can be applied to objects that are more obscure. So far, there are still many industrial objects that cannot or are difficult to obtain accurate mathematical models. Therefore, it is difficult or even impossible to apply direct digital control methods. At this time, we can only turn to the PID algorithm. Simple and practical, the key to the use of PID control method is to adjust its various parameters. The adjustment process is a process of accumulating experience, and now you can master the range of each parameter proficiently. The control effect is better, although the computer control is discrete, but for the system with relatively large time constant, it is close to continuous change. Therefore, the analog regulator can be completely replaced by a digital PID, and more satisfactory results can be obtained.
本发明可以应用于各种测量和实验系统中,控制两个仪器之间的相对位置,相对于现有技术本发明具有以下突出的实质性效果和显著的进步:The present invention can be applied in various measuring and experimental systems, controls the relative position between two instruments, has following outstanding substantive effect and remarkable progress with respect to prior art present invention:
1.采用光干涉的原理来设计定位控制系统,能够感应到系统的微小变化,灵敏度高;1. The positioning control system is designed using the principle of light interference, which can sense small changes in the system and has high sensitivity;
2.可以实现大行程的纳米精度定位,保证了测量或实验系统在一般的干扰下能够保持位置之间的稳定;2. It can realize the nano-precision positioning of a large stroke, which ensures that the measurement or experiment system can maintain the stability between the positions under general interference;
3.可以放大检测到微弱的干扰信号到足够的强度,并且步进电机响应速度也要能够达到毫秒量级;3. It can amplify the detection of weak interference signals to a sufficient strength, and the response speed of the stepping motor should also be able to reach the order of milliseconds;
4.用计算机来担任控制模块,能够灵活控制系统的运作,并且处理速度迅速;4. Using a computer as the control module can flexibly control the operation of the system, and the processing speed is fast;
5.采用PID控制法能够很好的实现对非线性的控制对象的控制,因此能够控制测量或实验系统中各种外界干扰;5. The use of PID control method can well realize the control of nonlinear control objects, so it can control various external disturbances in the measurement or experimental system;
6.整体结构简单,应用方便,大大降低了测量或实验环境的建设成本。6. The overall structure is simple, the application is convenient, and the construction cost of the measurement or experiment environment is greatly reduced.
附图说明 Description of drawings
图1为本发明系统的光路图;Fig. 1 is the optical path diagram of the system of the present invention;
图2为本发明的控制流程图;Fig. 2 is the control flowchart of the present invention;
图3为本发明分析控制系统的系统模块图;Fig. 3 is the system block diagram of analysis control system of the present invention;
图4为图3的控制系统框图;Fig. 4 is the control system block diagram of Fig. 3;
图5为光二极管放大滤波部分的放大电路的电路图;Fig. 5 is the circuit diagram of the amplifying circuit of photodiode amplifying and filtering part;
图6为光二极管放大滤波部分的滤波电路的电路图;Fig. 6 is the circuit diagram of the filter circuit of photodiode amplification filter part;
图7为V/F转换部分的电路图;Fig. 7 is the circuit diagram of V/F conversion part;
图8为高电压扩展电路的电路图;Fig. 8 is a circuit diagram of a high voltage extension circuit;
图9为采用本发明的实验系统在受冲击时光感电流的变化曲线图。Fig. 9 is a graph showing the variation of the photosensitive current when the experimental system of the present invention is impacted.
具体实施方式 Detailed ways
以下结合附图对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
本发明提供了一种用于监控系统稳定的大行程纳米精度定位控制系统,本系统是采用光强来反映光程差信息的控制方法,这种方法的光路图如图1所示。用一水平偏振的He-Ne激光光源1,可以加一个起偏镜获得线偏振光,从左边入射到第一片半反半透镜2后分成两束光a、b,分别入射到迈克尔逊干涉仪的两个臂91、92,在光路中增加一个半波片4和一个四分之一波片5,如图所示,那么在两束光经过四分之一波片5后就会分别变成一个左旋圆偏振光和一个右旋圆偏振光,射入分析控制系统8的光感应器7,可以将这两个圆偏振光分别用矢量表示成为:The present invention provides a long-stroke nano-precision positioning control system for monitoring system stability. This system uses light intensity to reflect the control method of optical path difference information. The optical path diagram of this method is shown in Figure 1. With a horizontally polarized He-Ne
其中δ为由迈克尔逊干涉仪的两个臂91、92所引起的两束圆偏振光的光程差,δ值由干涉仪可动臂91的位置控制。这两个圆偏振光叠加以后,其合矢量的x方向与y方向的分量可以写成:Where δ is the optical path difference between two beams of circularly polarized light caused by the two
Ex=E1cosωt+E2sin(ωt+δ) (1-3)E x =E 1 cosωt+E 2 sin(ωt+δ) (1-3)
Ey=E1sinωt+E2cos(ωt+δ) (1-4)E y =E 1 sinωt+E 2 cos(ωt+δ) (1-4)
再通过一检偏镜6,其透振方向与x方向的夹角为则两个分量在透振方向上的投影可以写成:Then through an
把(1-5)式和(1-6)式按矢量相加,就可以得到通过检偏镜后光波的电场矢量: Add the formula (1-5) and formula (1-6) vectorially to get the electric field vector of the light wave after passing through the analyzer:
故光感应器7可以接收到的光强为:Therefore, the light intensity that the
由于光感应器7实际接收到的是对时间积分的信号,把(1-8)式对时间积分,考虑所有含ωt的项都为零,并且把δ换成-δ,探测器接收到的信号表示成:Because what the
最后我们得到它们关系为:Finally we get their relationship as:
从关系式(1-9)可以看出,光感应器7探测得到的光强I是由两部分组成,第一部分是一个直流电压。强度I的第二部分是一同麦克尔逊干涉仪的两臂91、92间的光程差δ和最后的检偏镜的取向角有关的一余弦函数的平方。假设检偏镜是保持静止的,这样就可以认为I就只同光程差δ有关。由于外界的干扰使光程差在瞬间的变化很难跳出某一个单调区间,所以只考虑余弦函数某一个增区间或者减区间,就可以根据光强I的变化来判断光程差的变化。It can be seen from the relationship (1-9) that the light intensity I detected by the
如图1所示,本发明干涉仪的臂91安装于多级精度的步进电机上,多级精度的步进电机由一个小行程步进电机10和一个大行程步进电机11构成,大行程步进电机11的行程精度不大于小行程步进电机10最大行程的2倍,小行程步进电机10和大行程步进电机11的控制端分别与分析控制系统8连接。通过如图2所示的控制方法来监控系统,让臂91能够实时跟踪臂92的位置变化,保持系统的稳定。启动本定位控制系统后,先设定系统所需的锁定状态,然后进入实时监控,通过判定光强I是否变化来监控臂91与92之间的位置关系变化。如果发现光强I发生变化,那么就调整小行程步进电机10来使其恢复锁定状态,如果调整的范围超出了小行程步进电机10的最大行程,则调整大行程步进电机11来补充,然后继续调节小行程步进电机10进行精确定位,直至臂91与92之间的位置关系恢复到锁定状态位置。As shown in Figure 1, the
为实现如图2所示的控制,本发明设计了如图3系统模块图所示的分析控制系统。控制模块83分别与反馈模块81和执行模块82连接,光信号由光感应器7接收并传送至光二极管放大滤波部分811进行放大和滤波,由V/F转换部分812转换成频率信号,再由控制及数据传输部分813反馈到控制模块83。控制模块83可以采用计算机来实现。控制模块83通过微控制器822与DA转换器821建立通讯以及控制DA转换器,高电压扩展电路823用于放大DA转换器输出的信号,使其足以推动小行程步进电机10和大行程步进电机11的运作。结合图4的控制框图可见由光二极管检测得到的光强信号由反馈模块81进行放大、滤波、V/f转换由RS232发送数据给控制模块83,由控制模块83根据一定的算法进行处理,然后再发令给执行模块82。执行模块82执行后将会改变光程差,这样又改变了反馈光强,反馈的光强再由光二极管检测,反馈模块81、执行模块82和控制模块83构成一个闭环控制。In order to realize the control as shown in Figure 2, the present invention designs an analysis control system as shown in the system block diagram of Figure 3. The
具体到实际的电路实现,为了将光强信号转换成为电信号,光感应器7采用光二极管,但是光二极管输出的电压非常低,只有毫伏级,并且信噪比很低,这么小的信号不能直接进行AD转换,必须经过放大。为此设计了图5所示的光二极管放大滤波部分811的放大电路的电路图,光二极管是一种将入射光照强度转换成同其成正比的电流的一种光电转换器件,光二极管在工作过程中往往需要反向偏置,如图5中提供给光二极管的偏置电压为-15伏。由于光二极管输出的电流非常小,因此需要进一步放大,光二极管的放大部分由三部分组成,首先是光二极管同运放U1组成的电流放大型放大电路。R1取56欧姆是为了使得光二极管工作在线性区域内,即输出电流Io同光照强度成正比。电容C1可以滤掉由光电二极管出来的高频噪声信号。经过第一级放大后输出的电压为:Specific to the actual circuit implementation, in order to convert the light intensity signal into an electrical signal, the
其次是由数字电位器X9C503和缓冲器OP07,图中U3,组成的数字调零电路,其作用是输出一个负的电压-Vref(Vref>0),然后Vo和Vref一起输入到最后一级由Secondly, it is a digital zero-adjustment circuit composed of digital potentiometer X9C503 and buffer OP07, U3 in the figure. Its function is to output a negative voltage -V ref (V ref > 0), and then V o and V ref are input together to The last level consists of
数字电位器X9C104和运放U2组成的有反向放大功能的加法器中。输出电压为:In the adder with reverse amplification function composed of digital potentiometer X9C104 and operational amplifier U2 . The output voltage is:
其中Rx9c104是数字电位器X9C104的电阻值。Where R x9c104 is the resistance value of digital potentiometer X9C104.
在所要实现的闭环控制中,要对两束经过特殊偏振处理的激光的干涉信号强度进行采集,进而作为闭环控制的判据。所要采集的干涉光信号强度Itotal的同所要控制的两束光的相位差的关系为:In the closed-loop control to be realized, it is necessary to collect the interference signal intensity of two laser beams that have undergone special polarization processing, and then use it as a criterion for closed-loop control. The phase difference between the intensity I total of the interference light signal to be collected and the two beams of light to be controlled The relationship is:
Itotal=Iconst+I(φ)-----(1-12)I total =I const +I(φ)-----(1-12)
其中Iconst是由于实验光路中的光分束镜不能够等强度分束而产生的一个光强度常量,是同相位差有关的光强度变化部分。为了提高控制的灵敏度和精度,我们希望同Iconst的比值越大越好,而上面的电路可以帮助我们比较完美地解决这个问题。Among them, I const is a light intensity constant generated because the light beam splitter in the experimental light path cannot split the beams with equal intensity. is the same phase difference Sections related to light intensity changes. In order to improve the sensitivity and precision of the control, we hope The larger the ratio to I const, the better, and the above circuit can help us solve this problem perfectly.
由(1-12)式我们可以认为光二极管所转换的光电流经放大后的电压Vo由两部分组成Vconst和即:From formula (1-12), we can think that the amplified voltage V o of the photocurrent converted by the photodiode is composed of two parts V const and Right now:
Vo=Vconst+V(φ)-----(1-13)V o =V const +V(φ)-----(1-13)
将(1-13)式代入(1-11)式我们可以得到:Substituting formula (1-13) into formula (1-11), we can get:
适当地调节数字电位器X9C503改变调零电压Vref可以使得上式第一个括号内Properly adjusting the digital potentiometer X9C503 to change the zeroing voltage V ref can make the first bracket in the above formula
的第一项和第三项抵消而几乎只对进行放大。即:The first and third terms of the offset and almost only for to zoom in. Right now:
按照上面的参数,适当调整数字电位器Rx9c503将光信号中的恒定光强部分Iconst抵消再选择合适的Rx9c104阻值正好将光信号中的变化部分正好放大成为0~-10V范围,可以充分利用V/F转换的精度。According to the above parameters, properly adjust the digital potentiometer R x9c503 to offset the constant light intensity part I const in the optical signal, and then select the appropriate resistance value of R x9c104 to just amplify the changing part of the optical signal into the range of 0 ~ -10V, which can be Make full use of the precision of V/F conversion.
由于系统受到的外界微振动所造成的干扰而造成的反馈光的强度的变化是低频的,因此经过放大后的电压需要进一步进行滤波处理,本系统使用了二阶高通滤波器,其原理图如图6所示。Due to the interference caused by the external micro-vibration of the system, the change of the intensity of the feedback light is low-frequency, so the amplified voltage needs to be further filtered. This system uses a second-order high-pass filter. The schematic diagram is as follows Figure 6 shows.
V/F转换即将电压转换成与其成正比的频率,是一种特殊的AD转换方法,这种转换方法有很多优点,在采集光信号的时候用这种方法的最大的理由是:V/F转换过程是对输入信号不断积分,具有使光信号中的噪声引起的随机或高频变量达到平衡的优点。V/F转换部分812的电路如图7所示,该电路的输入模拟电压范围为0~-10V,输出频率为0~200KHz,非线性度为0.03%。主要由芯片LM331和TL082组成,在使用过程中适当调整上面的2K的变阻器的阻值可以调节满度频率。为了获得最好的线性度,应当调节变阻器R16尽量使得TL082的第二脚的电位为0。如果更改积分电容C4的电容量或者电阻R14的阻值,可以调节转换增益,积分电容C4应该使用高稳定度的聚酯烯电容。如果希望获得更高的满度频率,可以用AD652作为V/F转换器件,其满度输出频率可以达到2M的,并且此时的非线性误差只有0.02%。V/F conversion is to convert the voltage into a frequency proportional to it. It is a special AD conversion method. This conversion method has many advantages. The biggest reason for using this method when collecting optical signals is: V/F The conversion process is to continuously integrate the input signal, which has the advantage of balancing random or high-frequency variables caused by noise in the optical signal. The circuit of the V/
由于控制模块83采用计算机来实现,因此控制及数据传输部分813采用由单片机89C2051、MAX232构成,这是一种非常传统的同计算机联机的硬件组合方式。由89C2051的计数器T0对V/F转换器输出的频率进行周期性计数完成AD转换。事实上改变对频率测量的周期,就会改变AD转换的精度,测量周期可以由计算机向单片机发送命令来设置,因此很容易通过适当的单片机和计算机程序编写来完成自由改变AD转换精度。VF转换的精度提高以降低转换速度为代价,因此如果能够在实验过程中自由改变转换精度则可以找到精度满足要求而转换速度也尽量高的最佳结合点。在实验过程中,当只需要知道激光光功率的稳定情况的时候,可以将转换分辨率提高,使转换模块工作于类似于高精度的光功率计的状态;如果需要对激光实现某种控制的时候,可以适当调低分辨率而提高转换速度来实现控制。此外,由计算机命令89C2051实现两个数字电位器的值的改变也是非常容易达到的。一种比较简单的软件实现方法是使单片机处于不断地V/F转换循环中,用串行中断的方法来执行计算机的命令。Since the
作为本系统小行程步进电机10的压电微位移器是从德国PI公司购买的,压电陶瓷的开环精度为1纳米,最大伸长量为60微米,电压100伏特,其电容量为7.6μf。其电容量是相当大的,对这么大的电容进行快速充放电,要求驱动电路能够提供足够大的电流。驱动电路必须能够满足驱动要求的上限,上限假设为:在1毫秒压电陶瓷伸长60微米。这样所需要的电流为The piezoelectric micro-displacement device used as the small
I=Q/T=CU/T=0.76(A) (1-16)I=Q/T=CU/T=0.76(A) (1-16)
目前的商用器件很难直接这样的参数。此外驱动电路所能够提供的电流也必须能够达到100伏特,这个电压值是现有运算放大器远远不能达到的一个电压幅度。这样驱动电路的上限瞬间功率要求能够达到76瓦特,且这必须是一个数控电源,其电压的步长精度必须能够满足进行纳米量级的调整,也就是其步长精度应该达到100/(60000)=0.0016伏特,这样DA转换器821要求是16位的。由此可见驱动电路要满足以下三个条件:It is difficult for current commercial devices to directly measure such parameters. In addition, the current that the driving circuit can provide must also be able to reach 100 volts, which is a voltage range that is far beyond the reach of existing operational amplifiers. In this way, the upper limit instantaneous power requirement of the driving circuit can reach 76 watts, and this must be a digitally controlled power supply, and its voltage step accuracy must be able to meet nanometer level adjustments, that is, its step accuracy should reach 100/(60000) =0.0016 volts, so the
1.峰值电流能够达到0.76安培;1. The peak current can reach 0.76 amperes;
2.电压摆幅能够达到100伏特;2. The voltage swing can reach 100 volts;
3.电压步长精度能够达到0.0016伏特,即DA转换的精度能够有16位。3. The accuracy of the voltage step can reach 0.0016 volts, that is, the accuracy of DA conversion can be 16 bits.
16位精度的DA转换器为已有的,但是DA转换器821输出的电压幅度一般是5伏特,最大电流不超过10毫安。因此我们必须对DA转换出来的电压进行再放大,这就需要用到高电压扩展电路823。高电压扩展电路823用普通的运算放大器作为放大核心,用两对三极管对管TIP41C、TIP42C、MJ15025、MJ15024来增大它的电压扩展它的电压输出幅度和放大电流,其提供的电流可以高达一安培,电压幅度可以超过一百伏。DA converters with 16-bit precision are available, but the voltage amplitude output by the
执行模块82实际上就是一个数控电源,数控电源的结构是由微控制器89c51、DA转换器、高电压扩展电路组成。其中微控制器822负责同计算机之间的通讯以及控制DA转换器821;DA转换器821输出的电压在0到5V的范围内,电流也只有几个毫安,需要进一步放大,才能够达到上百伏。高电压扩展电路823的原理图如图8所示。这是由一个普通的运算放大器同两套三极管对管组成。运算放大器的电压由三极管T1和T2的发射极提供,加在其两端的电源的电压的值的大小由R2/R7与R1/R6决定。可以计算出加在放大器两端的电压大小为:The
V+=(60*3.6k/(3.6k+10k)-Vbe)≈15V (1-17)V + =(60*3.6k/(3.6k+10k)-V be )≈15V (1-17)
这是在普通运算放大器的正常工作电压范围内。当运算放大器的的输出电流变化时,其供电电压V+和V-的电流随之变化,于是晶体管T3和T4的集电极电流也将产生相应的变化。此变化电流在R5和R4集电极1K电阻上的电压降分别加在T3和T4的基极和发射极之间。由于T3,T4的发射极分别接到+60V和-60V电源,所以负载两端的电压变化接近正负60V,此处为正负59V。从理论上讲,这种电路的输出电压幅度的扩展程度是不受组件的限制的。由于Q3,Q4亦具有电流放大作用,所以电路的输出功率增大。电容器C有改善电路高频响应的作用,并能提高电路的动态稳定度。This is within the normal operating voltage range of common op amps. When the output current of the operational amplifier changes, the currents of its power supply voltages V + and V- change accordingly, so the collector currents of transistors T3 and T4 will also change accordingly. The voltage drop of this changing current on the collector 1K resistance of R5 and R4 is added between the base and emitter of T3 and T4 respectively. Since the emitters of T3 and T4 are respectively connected to +60V and -60V power supplies, the voltage change at both ends of the load is close to plus or minus 60V, here it is plus or minus 59V. Theoretically speaking, the expansion of the output voltage range of this circuit is not limited by the components. Since Q3 and Q4 also have the effect of current amplification, the output power of the circuit increases. Capacitor C has the effect of improving the high frequency response of the circuit, and can improve the dynamic stability of the circuit.
本发明的计算机采用PID控制方法来实时控制小行程步进电机和大行程步进电机的运行。如果没有进行PID控制,则获取的数据是毫无规则的,因为相位差是随着外界的干扰无规则地变化的,因此理应获得一个毫无规则的光强随时间变化的图。但是如果进行了PID控制,相位差就会被锁定,这样反馈光强也会基本不变化,测量得到的数据就应该是一条直线。如图9所示,如果给一个外界突然的撞击,造成相位差偏离平衡值,由PID控制的作用,系统会很快回到平衡位置,由图可见系统在不到一秒钟的时间内就回到了完全的平衡。The computer of the invention adopts the PID control method to control the operation of the small stroke stepping motor and the large stroke stepping motor in real time. If no PID control is performed, the acquired data will be irregular, because the phase difference changes irregularly with external interference, so it is reasonable to obtain a graph of irregular light intensity changing with time. But if PID control is performed, the phase difference will be locked, so the feedback light intensity will basically not change, and the measured data should be a straight line. As shown in Figure 9, if a sudden impact from the outside causes the phase difference to deviate from the equilibrium value, the system will quickly return to the equilibrium position under the action of PID control. Back to full balance.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100918202A CN100447694C (en) | 2004-12-31 | 2004-12-31 | A Large Stroke Nano-precision Positioning Control System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100918202A CN100447694C (en) | 2004-12-31 | 2004-12-31 | A Large Stroke Nano-precision Positioning Control System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1758167A CN1758167A (en) | 2006-04-12 |
CN100447694C true CN100447694C (en) | 2008-12-31 |
Family
ID=36703582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100918202A Expired - Fee Related CN100447694C (en) | 2004-12-31 | 2004-12-31 | A Large Stroke Nano-precision Positioning Control System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100447694C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460857C (en) * | 2006-04-13 | 2009-02-11 | 中山大学 | A Fourier Spectrometer Based on Dynamically Stable Scanning Technology |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3934187A (en) * | 1973-03-02 | 1976-01-20 | Thomson-Csf | Device for the accurate positioning of an object holder in relation to the elements of a particle-type optical system, and a particle-type optical system equipped with said device |
CN1168967A (en) * | 1996-02-29 | 1997-12-31 | 波音公司 | Fiber-Coupled Interferometric Displacement Sensors |
CN1439864A (en) * | 2003-03-05 | 2003-09-03 | 北方交通大学 | Laser multiple degree-of-freedom measuring system and method |
-
2004
- 2004-12-31 CN CNB2004100918202A patent/CN100447694C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3934187A (en) * | 1973-03-02 | 1976-01-20 | Thomson-Csf | Device for the accurate positioning of an object holder in relation to the elements of a particle-type optical system, and a particle-type optical system equipped with said device |
CN1168967A (en) * | 1996-02-29 | 1997-12-31 | 波音公司 | Fiber-Coupled Interferometric Displacement Sensors |
CN1439864A (en) * | 2003-03-05 | 2003-09-03 | 北方交通大学 | Laser multiple degree-of-freedom measuring system and method |
Non-Patent Citations (1)
Title |
---|
超短脉冲激光测量的标定方法. 刘天夫,佘卫龙,丘志仁,彭文基.中国激光,第31卷第1期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1758167A (en) | 2006-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4177434A (en) | Constant amplitude control of electromechanical oscillators | |
CN101384882A (en) | Physical quantity sensor | |
CN204535644U (en) | Based on the displacement measurement system of differential transformer transducer | |
CN103884355A (en) | Three-floating gyro calibration test system | |
CN102252700B (en) | Micro-cantilever beam piezoresistive bridge type sensor detecting instrument | |
CN112834815A (en) | A Fluxgate Digital Current Sensor Based on Pulse Amplitude Detection | |
CN109813341A (en) | An online self-calibration system for driving force coupling error of silicon micromachined gyroscope | |
CN107132406A (en) | A non-contact current measuring device based on giant magnetostrictive material | |
CN100447694C (en) | A Large Stroke Nano-precision Positioning Control System | |
CN107688048A (en) | Reverse addition type potentiostat and IV converted measurement circuit available for electrochemical measurement | |
CN203550961U (en) | Low-cost flexible gyroscopic force balancing circuit | |
CN102347758A (en) | Slope compensation and summing circuit with configurable slope | |
US5293042A (en) | Servo circuit of scanning probe microscope | |
CN111273203B (en) | A feedback control device with magnetic gradient measurement and position of suspended superconducting ball | |
CN101806582B (en) | Automatic gauge block calibrating device based on stepper motor | |
JPS6126240B2 (en) | ||
CN115308896B (en) | A piezoelectric ceramic fast reflector drive control circuit | |
JPH02186284A (en) | Magnetic flux sensor used in magnetic field for detecting flux density | |
CN218381385U (en) | High-precision pressure transmitter | |
CN104165595A (en) | Ultraprecise displacement positioning and detecting method based on combined fringe displacement and fringe subdivision control | |
Bing et al. | Modeling and control of a novel piezoelectric actuated precision fast positioningsystem | |
CN208282768U (en) | A kind of capacitance displacement sensor of real-time optimization signal-to-noise ratio | |
Oubrich et al. | Readout System of Piezoelectric Sensor Used for High Speed Weigh in Motion Application | |
CN221926961U (en) | Linear variable difference sub-sensing simulator | |
CN2337573Y (en) | A kind of electrostatic feedback apparatus for precision gravity meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081231 Termination date: 20101231 |