CN100445377C - Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase - Google Patents
Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase Download PDFInfo
- Publication number
- CN100445377C CN100445377C CNB2006101304940A CN200610130494A CN100445377C CN 100445377 C CN100445377 C CN 100445377C CN B2006101304940 A CNB2006101304940 A CN B2006101304940A CN 200610130494 A CN200610130494 A CN 200610130494A CN 100445377 C CN100445377 C CN 100445377C
- Authority
- CN
- China
- Prior art keywords
- solution
- alginic acid
- protamine
- microcapsule
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003094 microcapsule Substances 0.000 title claims abstract description 57
- 229920000615 alginic acid Polymers 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000000783 alginic acid Substances 0.000 title abstract description 35
- 229960001126 alginic acid Drugs 0.000 title abstract description 35
- 239000011664 nicotinic acid Substances 0.000 title 1
- 235000010443 alginic acid Nutrition 0.000 claims abstract description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 102000007327 Protamines Human genes 0.000 claims abstract description 21
- 108010007568 Protamines Proteins 0.000 claims abstract description 21
- 102000053187 Glucuronidase Human genes 0.000 claims abstract description 19
- 108010060309 Glucuronidase Proteins 0.000 claims abstract description 19
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims abstract description 14
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 12
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 229950008679 protamine sulfate Drugs 0.000 claims abstract description 12
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 12
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 11
- 229940048914 protamine Drugs 0.000 claims abstract description 9
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000661 sodium alginate Substances 0.000 claims abstract description 7
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 7
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 7
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 11
- 229940072056 alginate Drugs 0.000 claims description 8
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 claims 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 claims 1
- 238000010790 dilution Methods 0.000 claims 1
- 239000012895 dilution Substances 0.000 claims 1
- 150000004781 alginic acids Chemical class 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 8
- 230000003592 biomimetic effect Effects 0.000 abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 6
- 239000001768 carboxy methyl cellulose Substances 0.000 abstract description 5
- 230000003100 immobilizing effect Effects 0.000 abstract description 5
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 abstract description 5
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 abstract description 5
- 230000008961 swelling Effects 0.000 abstract description 5
- 108010093096 Immobilized Enzymes Proteins 0.000 abstract description 3
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 9
- IPQKDIRUZHOIOM-UHFFFAOYSA-N Oroxin A Natural products OC1C(O)C(O)C(CO)OC1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 IPQKDIRUZHOIOM-UHFFFAOYSA-N 0.000 description 9
- IKIIZLYTISPENI-ZFORQUDYSA-N baicalin Chemical compound O1[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 IKIIZLYTISPENI-ZFORQUDYSA-N 0.000 description 9
- 229960003321 baicalin Drugs 0.000 description 9
- AQHDANHUMGXSJZ-UHFFFAOYSA-N baicalin Natural products OC1C(O)C(C(O)CO)OC1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 AQHDANHUMGXSJZ-UHFFFAOYSA-N 0.000 description 9
- 239000007853 buffer solution Substances 0.000 description 9
- 239000002775 capsule Substances 0.000 description 8
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 229940101006 anhydrous sodium sulfite Drugs 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000206761 Bacillariophyta Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000002579 anti-swelling effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明公开了一种仿生制备用于固定化β-葡萄糖醛酸苷酶的二氧化硅—海藻酸微囊的方法。该方法过程为:将β-葡萄糖醛酸苷酶溶液、氯化钙溶液和羧甲基纤维素钠溶液按一定比例混合后滴加到海藻酸钠溶液中,得到海藻酸微囊;将微囊浸入氯化钙溶液中固化;将固化后的海藻酸微囊浸入硫酸鱼精蛋白或鱼精蛋白溶液中一段时间,得到鱼精蛋白包覆的海藻酸微囊;将包覆有鱼精蛋白的海藻酸微囊浸入硅酸钠溶液中,合成二氧化硅壳层,得到二氧化硅—海藻酸微囊。本发明提供的微囊制备方法简便易行,有效抑制了海藻酸微囊的溶胀,所得的固定化酶活性高,重复使用性好。
The invention discloses a method for biomimetic preparation of silicon dioxide-alginic acid microcapsules for immobilizing β-glucuronidase. The process of the method is as follows: mix β-glucuronidase solution, calcium chloride solution and sodium carboxymethyl cellulose solution in a certain proportion and then drop them into sodium alginate solution to obtain alginic acid microcapsules; Immerse in calcium chloride solution for curing; immerse the cured alginic acid microcapsules in protamine sulfate or protamine solution for a period of time to obtain alginic acid microcapsules coated with protamine; The alginic acid microcapsules are immersed in the sodium silicate solution to synthesize the silica shell to obtain the silica-alginic acid microcapsules. The preparation method of the microcapsule provided by the invention is simple and easy, effectively inhibits the swelling of the alginic acid microcapsule, and the obtained immobilized enzyme has high activity and good reusability.
Description
技术领域 technical field
本发明涉及一种仿生制备用于固定化β-葡萄糖醛酸苷酶的二氧化硅-海藻酸微囊的方法,属于酶的固定化技术。The invention relates to a method for biomimetic preparation of silicon dioxide-alginic acid microcapsules for immobilizing β-glucuronidase, which belongs to the enzyme immobilization technology.
背景技术 Background technique
海藻酸微囊是一种常用的固定化酶载体,它由含酶的高分子溶液液芯和海藻酸囊壁构成,类似自然界中游离酶的存在状态,具有酶活力维持率高,包埋量大,传质性能好等优点。但由于所采用的海藻酸高分子材料在水溶液中易溶胀,机械强度差,大大限制了此类固定化酶的重复使用性能。在海藻酸囊壁外包覆二氧化硅外壳可有效解决海藻酸微囊的溶胀问题。Alginic acid microcapsules are a commonly used immobilized enzyme carrier. It is composed of an enzyme-containing polymer solution liquid core and an alginic acid capsule wall, which is similar to the existence of free enzymes in nature. Large, good mass transfer performance and other advantages. However, because the alginic acid polymer material used is easy to swell in aqueous solution and has poor mechanical strength, the reusability of this type of immobilized enzyme is greatly limited. Coating the silica shell on the alginic acid capsule wall can effectively solve the swelling problem of the alginic acid microcapsule.
目前普遍采用溶胶-凝胶法,利用有机硅烷前驱体的水解和缩聚制备二氧化硅外壳。该溶胶-凝胶过程需要在酸或碱的催化下进行,同时会产生醇类副产物,这些物质的存在对生物酶活力的维持大多有不利影响,导致酶活力降低甚至失活。此外,溶胶-凝胶法形成的二氧化硅壳层的形态和结构均很难控制。在制备条件下,凝胶化过程产生的二氧化硅低聚物荷负电,与海藻酸微囊表面的电性相同,二者之间存在静电排斥作用,因此在海藻酸微囊表面直接沉积的二氧化硅壳层与海藻酸囊壁的结合作用并不理想。At present, the sol-gel method is widely used to prepare the silica shell by hydrolysis and polycondensation of organosilane precursors. The sol-gel process needs to be carried out under the catalysis of acid or alkali, and alcohol by-products will be produced at the same time. The existence of these substances has a negative impact on the maintenance of biological enzyme activity, resulting in reduced or even inactivated enzyme activity. In addition, the morphology and structure of the silica shell formed by the sol-gel method are difficult to control. Under the preparation conditions, the silica oligomer produced in the gelation process is negatively charged, which is the same as the surface of alginic acid microcapsules, and there is electrostatic repulsion between the two, so the direct deposition on the surface of alginic acid microcapsules The binding effect between the silica shell and the alginic acid capsule wall is not ideal.
自然界中的硅藻是单细胞藻类植物,其柔软的原生质体被坚硬的硅质细胞壁支持和保护,并长成具有一定形状的个体。研究表明,这类硅藻植物都是通过有机质参与下的生物硅化作用来构建细胞壁的,即由一定的有机模板通过静电吸引作用促进和调控二氧化硅的沉积,而模板本身最终被包裹在所形成的二氧化硅网络内部,形成有机-无机杂化结构。已有的仿生硅化研究表明,利用天然的或有机合成的模板,如silaffins、聚赖氨酸、聚乙烯亚胺等,可在室温和中性条件下调控二氧化硅的快速聚合,形成兼备有机材料和无机材料优点的仿生杂化材料。Diatoms in nature are single-celled algae plants, whose soft protoplasts are supported and protected by hard siliceous cell walls, and grow into individuals with a certain shape. Studies have shown that this type of diatom plants build cell walls through biosilicification with the participation of organic matter, that is, a certain organic template promotes and regulates the deposition of silica through electrostatic attraction, and the template itself is finally wrapped in the organic template. Inside the formed silica network, an organic-inorganic hybrid structure is formed. Existing biomimetic silicification studies have shown that the use of natural or organically synthesized templates, such as silaffins, polylysine, polyethyleneimine, etc., can regulate the rapid polymerization of silica at room temperature and neutral conditions to form organic compounds. Biomimetic hybrid materials with advantages of materials and inorganic materials.
发明内容 Contents of the invention
本发明的目的在于提供一种仿生制备用于固定化β-葡萄糖醛酸苷酶的二氧化硅-海藻酸微囊的方法。该方法所制得的微囊用于固定化酶,其酶活力高,重复使用性好。The purpose of the present invention is to provide a method for biomimetic preparation of silica-alginic acid microcapsules for immobilizing β-glucuronidase. The microcapsule prepared by the method is used for immobilizing enzymes, and has high enzyme activity and good reusability.
本发明是通过如下技术方案实现的,一种仿生制备用于固定化β-葡萄糖醛酸苷酶的二氧化硅-海藻酸微囊的方法,其特征在于包括以下步骤:The present invention is achieved through the following technical scheme, a method for biomimetic preparation of silica-alginic acid microcapsules for immobilizing β-glucuronidase, characterized in that it comprises the following steps:
(1)海藻酸微囊的制备:将浓度为0.5mg/ml的β-葡萄糖醛酸苷酶溶液,浓度为0.6mol/L的氯化钙溶液和浓度为3.0%w/v的羧甲基纤维素钠溶液按10∶8∶32的体积比混合均匀,滴加到1.0%w/v的海藻酸钠溶液中,搅拌30~60min,去离子水稀释后过滤,再浸入0.1mol/L的氯化钙溶液中固化10min,得到直径2.5~3.5mm左右的海藻酸微囊。(1) Preparation of alginic acid microcapsules: beta-glucuronidase solution with concentration of 0.5mg/ml, calcium chloride solution with concentration of 0.6mol/L and carboxymethyl solution with concentration of 3.0%w/v The sodium cellulose solution was mixed evenly at a volume ratio of 10:8:32, added dropwise to 1.0% w/v sodium alginate solution, stirred for 30-60 minutes, diluted with deionized water, filtered, and then immersed in 0.1mol/L alginate solution. Solidify in calcium chloride solution for 10 minutes to obtain alginic acid microcapsules with a diameter of about 2.5-3.5 mm.
(2)鱼精蛋白在海藻酸微囊外表面的包覆:将步骤(1)得到的海藻酸微囊浸入2~20mg/ml的硫酸鱼精蛋白或鱼精蛋白溶液中,浸泡30~120min后过滤,得到鱼精蛋白包覆的海藻酸微囊。(2) Coating of protamine on the outer surface of alginic acid microcapsules: immerse the alginic acid microcapsules obtained in step (1) in 2-20 mg/ml protamine sulfate or protamine solution, soak for 30-120 min After filtration, protamine-coated alginic acid microcapsules are obtained.
(3)鱼精蛋白调控下的二氧化硅壳层的仿生合成:将步骤(2)得到的微囊浸入30~80mmol/L,pH为5~7的硅酸钠溶液中,浸泡60~120min,过滤,得到二氧化硅-海藻酸微囊。(3) Biomimetic synthesis of silica shell under the control of protamine: immerse the microcapsules obtained in step (2) in 30-80 mmol/L sodium silicate solution with a pH of 5-7 for 60-120 min , and filtered to obtain silica-alginic acid microcapsules.
本发明提出的制备方法的优点在于:制备条件温和,所得胶囊具有很好的抗溶胀性能,所含的β-葡萄糖醛酸苷酶的酶活力维持率高,重复使用稳定性好。The preparation method proposed by the invention has the advantages of mild preparation conditions, good anti-swelling performance of the obtained capsule, high enzyme activity maintenance rate of the contained β-glucuronidase, and good repeated use stability.
附图说明 Description of drawings
图1为实施例三制备的二氧化硅-海藻酸微囊表面的能量分散光谱(EDS)谱图。Fig. 1 is the energy dispersive spectroscopy (EDS) spectrogram of the surface of the silica-alginic acid microcapsule prepared in Example 3.
图2为实施例三制备的二氧化硅-海藻酸微囊的扫描电镜(SEM)照片。Fig. 2 is a scanning electron microscope (SEM) photo of the silica-alginic acid microcapsule prepared in Example 3.
图3为实施例三制备的二氧化硅-海藻酸微囊表面的扫描电镜(SEM)照片。3 is a scanning electron microscope (SEM) photo of the surface of the silica-alginic acid microcapsule prepared in Example 3.
图4为实施例三制备的二氧化硅-海藻酸微囊断面的扫描电镜(SEM)照片。Fig. 4 is a scanning electron microscope (SEM) photo of the section of the silica-alginic acid microcapsule prepared in Example 3.
具体实施方式 Detailed ways
实施例一Embodiment one
准确称取β-葡萄糖醛酸苷酶1.0mg,溶解于30mmol/L Tris-HCl(三羟甲基氨基甲烷-盐酸)缓冲溶液中,定容至10ml,得到0.5mg/ml酶液。称取160mg硫酸鱼精蛋白,溶解于30mmol/L Tris-HCl缓冲溶液中,定容至80ml,得到2mg/ml硫酸鱼精蛋白溶液。用去离子水溶解硅酸钠,并用2mol/L HCl调节溶液的pH至7.0,制备50mmol/L硅酸钠溶液。Accurately weigh 1.0mg of β-glucuronidase, dissolve it in 30mmol/L Tris-HCl (trishydroxymethylaminomethane-hydrochloric acid) buffer solution, and dilute to 10ml to obtain 0.5mg/ml enzyme solution. Weigh 160mg protamine sulfate, dissolve in 30mmol/L Tris-HCl buffer solution, and set the volume to 80ml to obtain 2mg/ml protamine sulfate solution. Sodium silicate was dissolved in deionized water, and the pH of the solution was adjusted to 7.0 with 2mol/L HCl to prepare a 50mmol/L sodium silicate solution.
吸取0.40ml酶液,加入0.6mol/L的氯化钙溶液0.32ml,再加入3.0%w/v的羧甲基纤维素钠溶液1.28ml,用磁力搅拌器混合至形成均一溶液,然后将溶液吸入注射器内,通过内径0.45mm的针头滴加入40ml搅拌着的浓度为1.0%w/v的海藻酸钠溶液中,继续搅拌30min,加入160ml去离子水稀释,滤出微囊,去离子水洗涤。用滤纸吸干微囊表面的水分,加入10ml浓度为0.1mol/L的氯化钙溶液,磁力搅拌10min,过滤,水洗。Draw 0.40ml of enzyme solution, add 0.32ml of 0.6mol/L calcium chloride solution, then add 1.28ml of 3.0% w/v sodium carboxymethylcellulose solution, mix with a magnetic stirrer until a uniform solution is formed, and then dissolve the solution Inhale into the syringe, drop into 40ml of stirred sodium alginate solution with a concentration of 1.0% w/v through a needle with an inner diameter of 0.45mm, continue stirring for 30min, add 160ml of deionized water to dilute, filter out the microcapsules, and wash with deionized water . Blot the moisture on the surface of the microcapsules with filter paper, add 10 ml of calcium chloride solution with a concentration of 0.1 mol/L, stir magnetically for 10 min, filter, and wash with water.
用滤纸吸干微囊表面的水分并投入到35ml浓度为2mg/ml的硫酸鱼精蛋白溶液中,静置60min,滤出,再投入70ml浓度为50mmol/L的硅酸钠溶液中,静置120min,滤出,水洗,即得二氧化硅-海藻酸微囊(1)。经EDS分析,微囊表面硅元素的质量百分比为13.6%,微囊在水中的溶胀度为55%。Dry the moisture on the surface of the microcapsules with filter paper and put it into 35ml of protamine sulfate solution with a concentration of 2mg/ml, let it stand for 60min, filter it out, then put it into 70ml of sodium silicate solution with a concentration of 50mmol/L, let it stand After 120 minutes, filter out and wash with water to obtain silica-alginic acid microcapsules (1). According to EDS analysis, the mass percentage of silicon element on the surface of the microcapsule is 13.6%, and the swelling degree of the microcapsule in water is 55%.
实施例二Embodiment two
准确称取β-葡萄糖醛酸苷酶1.0mg,溶解于30mmol/L Tris-HCl缓冲溶液中,定容至10ml,得到0.5mg/ml酶液。称取400mg硫酸鱼精蛋白,溶解于30mmol/L Tris-HCl缓冲溶液中,定容至80ml,得到5mg/ml硫酸鱼精蛋白溶液。用去离子水溶解硅酸钠,2mol/LHCl调节pH至7.0,制备50mmol/L硅酸钠溶液。Accurately weigh 1.0mg of β-glucuronidase, dissolve it in 30mmol/L Tris-HCl buffer solution, and dilute to 10ml to obtain 0.5mg/ml enzyme solution. Weigh 400mg protamine sulfate, dissolve in 30mmol/L Tris-HCl buffer solution, and set the volume to 80ml to obtain 5mg/ml protamine sulfate solution. Dissolve sodium silicate with deionized water, adjust the pH to 7.0 with 2mol/L HCl, and prepare a 50mmol/L sodium silicate solution.
吸取0.40ml酶液,加入0.6mol/L的氯化钙溶液0.32ml,再加入3.0%w/v的羧甲基纤维素钠溶液1.28ml,用磁力搅拌器混合至形成均一溶液,然后将溶液吸入注射器内,通过内径0.45mm的针头滴加入40ml搅拌着的浓度为1.0%w/v的海藻酸钠溶液中,继续搅拌30min,加入160ml去离子水稀释,滤出微囊,去离子水洗涤。用滤纸吸干微囊表面的水分,加入10ml浓度为0.1mol/L的氯化钙溶液,磁力搅拌10min,过滤,水洗。Draw 0.40ml of enzyme solution, add 0.32ml of 0.6mol/L calcium chloride solution, then add 1.28ml of 3.0% w/v sodium carboxymethylcellulose solution, mix with a magnetic stirrer until a uniform solution is formed, and then dissolve the solution Inhale into the syringe, drop into 40ml of stirred sodium alginate solution with a concentration of 1.0% w/v through a needle with an inner diameter of 0.45mm, continue stirring for 30min, add 160ml of deionized water to dilute, filter out the microcapsules, and wash with deionized water . Blot the moisture on the surface of the microcapsules with filter paper, add 10 ml of calcium chloride solution with a concentration of 0.1 mol/L, stir magnetically for 10 min, filter, and wash with water.
用滤纸吸干微囊表面的水分并投入35ml浓度为5mg/ml的硫酸鱼精蛋白溶液中,静置30min,滤出,再投入70ml浓度为50mmol/L的硅酸钠溶液中,静置120min,滤出,水洗,即得二氧化硅-海藻酸微囊(2)。经EDS分析,微囊表面硅元素的质量百分比为28.2%,微囊在水中的溶胀度为11%。Blot the moisture on the surface of the microcapsules with filter paper and put it into 35ml of protamine sulfate solution with a concentration of 5mg/ml, let it stand for 30min, filter it out, then put it into 70ml of a sodium silicate solution with a concentration of 50mmol/L, let it stand for 120min , filtered out, and washed with water to obtain silica-alginic acid microcapsules (2). According to EDS analysis, the mass percentage of silicon element on the surface of the microcapsule is 28.2%, and the swelling degree of the microcapsule in water is 11%.
实施例三Embodiment Three
准确称取β-葡萄糖醛酸苷酶1.0mg,溶解于30mmol/L Tris-HCl缓冲溶液中,定容至10ml,得到0.5mg/ml酶液。称取400mg硫酸鱼精蛋白,溶解于30mmol/L Tris-HCl缓冲溶液中,定容至80ml,得到5mg/ml硫酸鱼精蛋白溶液。用去离子水溶解硅酸钠,2mol/LHCl调节pH至7.0,制备50mmol/L硅酸钠溶液。Accurately weigh 1.0mg of β-glucuronidase, dissolve it in 30mmol/L Tris-HCl buffer solution, and dilute to 10ml to obtain 0.5mg/ml enzyme solution. Weigh 400mg protamine sulfate, dissolve in 30mmol/L Tris-HCl buffer solution, and set the volume to 80ml to obtain 5mg/ml protamine sulfate solution. Dissolve sodium silicate with deionized water, adjust the pH to 7.0 with 2mol/L HCl, and prepare a 50mmol/L sodium silicate solution.
吸取0.40ml酶液,加入0.6mol/L的氯化钙溶液0.32ml,再加入3.0%w/v的羧甲基纤维素钠溶液1.28ml,用磁力搅拌器混合至形成均一溶液,然后将溶液吸入注射器内,通过内径0.45mm的针头滴加入40ml搅拌着的浓度为1.0%w/v的海藻酸钠溶液中,继续搅拌30min,加入160ml去离子水稀释,滤出微囊,去离子水洗涤。用滤纸吸干微囊表面的水分,加入10ml浓度为0.1mol/L的氯化钙溶液,磁力搅拌10min,过滤,水洗。Draw 0.40ml of enzyme solution, add 0.32ml of 0.6mol/L calcium chloride solution, then add 1.28ml of 3.0% w/v sodium carboxymethylcellulose solution, mix with a magnetic stirrer until a uniform solution is formed, and then dissolve the solution Inhale into the syringe, drop into 40ml of stirred sodium alginate solution with a concentration of 1.0% w/v through a needle with an inner diameter of 0.45mm, continue stirring for 30min, add 160ml of deionized water to dilute, filter out the microcapsules, and wash with deionized water . Blot the moisture on the surface of the microcapsules with filter paper, add 10 ml of calcium chloride solution with a concentration of 0.1 mol/L, stir magnetically for 10 min, filter, and wash with water.
用滤纸吸干胶囊表面的水分并投入35ml浓度为5mg/ml的硫酸鱼精蛋白溶液中,静置60min,滤出,再投入70ml浓度为50mmol/L的硅酸钠溶液中,静置120min,滤出,水洗,即得二氧化硅-海藻酸微囊(3)。经EDS分析,胶囊表面硅元素的质量百分比为34.2%,微囊在水中基本不溶胀。Blot the moisture on the surface of the capsule with filter paper and put it into 35ml of protamine sulfate solution with a concentration of 5mg/ml, let it stand for 60min, filter it out, then put it into 70ml of sodium silicate solution with a concentration of 50mmol/L, let it stand for 120min, Filter out and wash with water to obtain silica-alginic acid microcapsules (3). According to EDS analysis, the mass percentage of silicon element on the surface of the capsule is 34.2%, and the microcapsule basically does not swell in water.
实施例四Embodiment Four
将黄芩苷和无水亚硫酸钠溶解到30mmol/L Tris-HCl缓冲溶液中,配成黄芩苷浓度为0.09mol/L,无水亚硫酸钠浓度为0.1%w/v的溶液,加入实施例三制备的含β-葡萄糖醛酸苷酶的二氧化硅-海藻酸微囊,在37℃,搅拌条件下进行黄芩苷的转化反应,在一定的时间间隔内,取出100μl反应液,用高效液相色谱确定黄芩素的生成量,得到固定化β-葡萄糖醛酸苷酶的酶活力。Dissolve baicalin and anhydrous sodium sulfite into a 30mmol/L Tris-HCl buffer solution to form a solution with a baicalin concentration of 0.09mol/L and anhydrous sodium sulfite concentration of 0.1% w/v, and add the solution containing The silicon dioxide-alginic acid microcapsules of β-glucuronidase are used to carry out the conversion reaction of baicalin under stirring conditions at 37°C. Within a certain time interval, 100 μl of the reaction solution is taken out, and the baicalin is determined by high performance liquid chromatography. The production amount of β-glucuronidase was obtained to obtain the enzyme activity of immobilized β-glucuronidase.
对比例一Comparative example one
准确称取β-葡萄糖醛酸苷酶1.0mg,溶解于30mmol/L Tris-HCl缓冲溶液中,定容至10ml,得到0.5mg/ml酶液。吸取0.40ml酶液,加入0.6mol/L的氯化钙溶液0.32ml,再加入3.0%w/v的羧甲基纤维素钠溶液1.28ml,用磁力搅拌器混合至形成均一溶液,然后将溶液吸入注射器内,通过内径0.45mm的针头滴加入40ml搅拌着的浓度为1.0%w/v的海藻酸钠溶液中,继续搅拌30min,加入160ml去离子水稀释,滤出胶囊,去离子水洗涤。用滤纸吸干胶囊表面的水分,加入10ml浓度为0.1mol/L的氯化钙溶液,磁力搅拌10min,过滤,水洗,既得海藻酸微囊。经测定,微囊在水中的溶胀度为114%。Accurately weigh 1.0mg of β-glucuronidase, dissolve it in 30mmol/L Tris-HCl buffer solution, and dilute to 10ml to obtain 0.5mg/ml enzyme solution. Draw 0.40ml of enzyme solution, add 0.32ml of 0.6mol/L calcium chloride solution, then add 1.28ml of 3.0% w/v sodium carboxymethylcellulose solution, mix with a magnetic stirrer until a uniform solution is formed, and then dissolve the solution Inhale into the syringe, drop into 40ml of stirred sodium alginate solution with a concentration of 1.0% w/v through a needle with an inner diameter of 0.45mm, continue stirring for 30min, add 160ml of deionized water to dilute, filter out the capsule, and wash with deionized water. Blot the moisture on the capsule surface with filter paper, add 10ml of calcium chloride solution with a concentration of 0.1mol/L, stir for 10min with magnetic force, filter and wash with water to obtain alginic acid microcapsules. It was determined that the swelling degree of the microcapsules in water was 114%.
对比例二Comparative example two
将黄芩苷和无水亚硫酸钠溶解到30mmol/L Tris-HCl缓冲溶液中,配成黄芩苷浓度为0.09mol/L,无水亚硫酸钠浓度为0.1%w/v的溶液,加入对比例一制备的含β-葡萄糖醛酸苷酶的海藻酸微囊,在37℃,搅拌的条件下进行黄芩苷的转化反应,在一定的时间间隔内,取出100μl反应液,用高效液相色谱确定黄芩素的生成量,得到固定化β-葡萄糖醛酸苷酶的酶活力。Dissolve baicalin and anhydrous sodium sulfite in 30mmol/L Tris-HCl buffer solution, make the baicalin concentration be 0.09mol/L, the solution that anhydrous sodium sulfite concentration is 0.1%w/v, add the preparation containing The alginic acid microcapsules of β-glucuronidase, at 37°C, carry out the conversion reaction of baicalin under the condition of stirring, and take out 100 μl of the reaction solution within a certain time interval, and use high performance liquid chromatography to determine the formation of baicalin The amount of enzyme activity of immobilized β-glucuronidase was obtained.
表1所示为实施例四和对比例二测定的含β-葡萄糖醛酸苷酶的微囊进行黄芩苷转化反应的酶活力和酶活力未见降低的重复使用次数。Table 1 shows the enzymatic activity of the baicalin conversion reaction of the microcapsules containing β-glucuronidase as determined in Example 4 and Comparative Example 2 and the number of repeated uses where the enzymatic activity did not decrease.
表1Table 1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101304940A CN100445377C (en) | 2006-12-21 | 2006-12-21 | Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101304940A CN100445377C (en) | 2006-12-21 | 2006-12-21 | Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1986787A CN1986787A (en) | 2007-06-27 |
CN100445377C true CN100445377C (en) | 2008-12-24 |
Family
ID=38183731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101304940A Expired - Fee Related CN100445377C (en) | 2006-12-21 | 2006-12-21 | Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100445377C (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101182511B (en) * | 2007-11-21 | 2010-06-09 | 天津大学 | Method for preparing nanoparticles of biomimetic silica immobilized β-glucuronidase |
CN101429503B (en) * | 2008-12-04 | 2010-09-15 | 天津大学 | Silicon oxide-protamine-PSS hybrid microcapsules and preparation method |
CN103060306B (en) * | 2013-01-07 | 2013-12-18 | 河北工业大学 | Bionic process for preparing silicon oxide nano-microcapsule immobilized enzyme |
CN103100089B (en) * | 2013-01-23 | 2015-02-18 | 四川大学 | Oral pH responsive intestinal targeting vector as well as preparation method and applications thereof |
CN104195128A (en) * | 2014-08-15 | 2014-12-10 | 山东西王糖业有限公司 | Method and application of immobilized glucoamylase by using sodium alginate silicon dioxide hybridized gel |
CN105176963B (en) * | 2015-09-16 | 2018-10-26 | 齐鲁工业大学 | The bio-microcapsule and preparation method of a kind of calcium alginate-sodium carboxymethylcellulose co-immobilization whiterot fungi and its ectoenzyme |
CN107540732B (en) * | 2017-08-31 | 2020-07-14 | 青海省畜牧兽医科学院 | Biomimetic mineralization processing method and application of D-type botulinum toxin |
KR102173580B1 (en) * | 2017-12-18 | 2020-11-03 | 포항공과대학교 산학협력단 | Preparation method of encapsulated seaweed spores |
CN110257364B (en) * | 2019-06-28 | 2021-07-27 | 福州大学 | A kind of method for expanding the internal void volume of sodium alginate microcapsules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797358A (en) * | 1983-12-05 | 1989-01-10 | Kikkoman Corporation | Microorganism or enzyme immobilization with a mixture of alginate and silica sol |
JPH0265782A (en) * | 1988-08-29 | 1990-03-06 | Hitachi Chem Co Ltd | Production of microorganism-immobilized granular gel |
WO1996035780A1 (en) * | 1995-05-12 | 1996-11-14 | United States Environmental Protection Agency | New hydrogel compositions for use in bioreactors |
CN1844381A (en) * | 2006-04-07 | 2006-10-11 | 清华大学 | A method for inhibiting water-soluble swelling of polyvinyl alcohol-immobilized microbial particles |
-
2006
- 2006-12-21 CN CNB2006101304940A patent/CN100445377C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797358A (en) * | 1983-12-05 | 1989-01-10 | Kikkoman Corporation | Microorganism or enzyme immobilization with a mixture of alginate and silica sol |
JPH0265782A (en) * | 1988-08-29 | 1990-03-06 | Hitachi Chem Co Ltd | Production of microorganism-immobilized granular gel |
WO1996035780A1 (en) * | 1995-05-12 | 1996-11-14 | United States Environmental Protection Agency | New hydrogel compositions for use in bioreactors |
CN1844381A (en) * | 2006-04-07 | 2006-10-11 | 清华大学 | A method for inhibiting water-soluble swelling of polyvinyl alcohol-immobilized microbial particles |
Non-Patent Citations (2)
Title |
---|
ALG-SiO2杂化凝胶固定化多酶体系催化CO2转化甲醇研究. 许松伟,陆杨,苑伟康,吴洪,姜忠义.生物加工过程,第3卷第3期. 2005 |
ALG-SiO2杂化凝胶固定化多酶体系催化CO2转化甲醇研究. 许松伟,陆杨,苑伟康,吴洪,姜忠义.生物加工过程,第3卷第3期. 2005 * |
Also Published As
Publication number | Publication date |
---|---|
CN1986787A (en) | 2007-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100445377C (en) | Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase | |
CN104860320B (en) | A kind of preparation method of modified manometer silicon dioxide | |
CN102275936B (en) | Preparation method of mesoporous spherical Sio2 nanoparticles | |
CN102616795A (en) | Method for preparing pure silicon-based mesoporous silica nanoparticles | |
CN101235368A (en) | Preparation method of immobilized enzyme biocatalyst | |
Shi et al. | Synthesis of organic–inorganic hybrid microcapsules through in situ generation of an inorganic layer on an adhesive layer with mineralization-inducing capability | |
CN102703411B (en) | Paramagnetic epoxy-based mesoporous molecular sieve immobilized with biological enzyme and preparation method thereof | |
CN108478541A (en) | A kind of hollow Prussian blue analogue and mesoporous silicon oxide composite nano materials and preparation method thereof | |
CN117338636A (en) | A material for sustained release of essential oils and its application | |
CN109810969A (en) | A method for constructing artificial polyenzyme system based on lanthanide nucleotide complexes and DNA-directed immobilization technology | |
CN101429503B (en) | Silicon oxide-protamine-PSS hybrid microcapsules and preparation method | |
CN112391376B (en) | Immobilized lipase hybrid nanoflower and preparation method and application thereof | |
Jiang et al. | Structured interlocked-microcapsules: A novel scaffold for enzyme immobilization | |
CN115710581B (en) | A method for constructing protein vesicle aggregates for improving enzyme utilization | |
CN104342430B (en) | A hollow liquid core microencapsulated cell loaded with ionic liquid and its application | |
CN103060306B (en) | Bionic process for preparing silicon oxide nano-microcapsule immobilized enzyme | |
Shchipunov | Entrapment of biopolymers into sol-gel-derived silica nanocomposites | |
CN102796724A (en) | A method for preparing immobilized glucose oxidase with PDDA-Fe3O4 nanoparticles as carrier | |
CN103146675B (en) | Preparation method of immobilized lipase regarding red halloysite as carrier | |
CN105255199A (en) | Silk protein glue/silicon dioxide composite material of hollow structure and preparation method thereof | |
KR101694585B1 (en) | Immobilization of methanotrophs onto macro-porous Fe2O3 carrier and its application | |
CN106732224A (en) | A kind of preparation method of the acid-base property Janus grading-hole micro-capsules with hatch frame | |
CN101182511B (en) | Method for preparing nanoparticles of biomimetic silica immobilized β-glucuronidase | |
CN105293505A (en) | Nano silica sol with novel structure | |
CN102795787B (en) | Super-hydrophobic silica coating is prepared with water glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081224 Termination date: 20101221 |