CN100442645C - Method and device for measuring reflected voltage of transformer - Google Patents
Method and device for measuring reflected voltage of transformer Download PDFInfo
- Publication number
- CN100442645C CN100442645C CNB2005101318050A CN200510131805A CN100442645C CN 100442645 C CN100442645 C CN 100442645C CN B2005101318050 A CNB2005101318050 A CN B2005101318050A CN 200510131805 A CN200510131805 A CN 200510131805A CN 100442645 C CN100442645 C CN 100442645C
- Authority
- CN
- China
- Prior art keywords
- mentioned
- signal
- transformer
- discharge time
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电源转换器的控制电路,且特别涉及一种切换模式电源转换器的切换控制电路。The invention relates to a control circuit of a power converter, and in particular to a switching control circuit of a switching mode power converter.
背景技术 Background technique
电源转换器已经广泛用来提供稳定的输出电压。为了安全,一个离线的电源转换器必须在初级侧和次级侧之间提供电气的绝缘。并需要光耦合器和次级侧调整器来调节离线的电源转换器的输出电压。为了减少组件的数量和从电源转换器的次级侧去除反馈电路,伦道夫.D·W·谢利(Randolph D.W.Shel1y)在专利号为4,302,803的美国专利“带多路反馈转换器的整流器-转换器电源”中披露过一种初级侧的控制技术。在较新的技术中,则有杨大勇(Ta-yung Yang)等人的6,721,192号美国专利“调节初级侧的输出电压和输出电流的PWM(脉宽调制)控制器”,杨大勇(Ta-yung Yang)等人的6,836,415号美国专利“有改进的载荷调整的初级侧稳定脉宽调制控制器”,杨大勇(Ta-yung Yang)等人的6,853,563号美国专利“初级侧控制反馈电源转换器”,以及杨大勇(Ta-yung Yang)等人的6,862,194号美国专利“初级侧PWM控制下具有恒定电压和恒定电流输出的反馈电源转换器”。然而,为了测量来自变压器的信号,前面的技术不能获得准确的结果。Power converters have been widely used to provide a stable output voltage. For safety, an off-line power converter must provide electrical isolation between the primary and secondary sides. An optocoupler and a secondary-side regulator are required to regulate the output voltage of the off-line power converter. In order to reduce the number of components and remove the feedback circuit from the secondary side of the power converter, Randolph D.W. Shelly (Randolph D.W. Shelly) in U.S. Patent No. 4,302,803 "Rectifier with Multiple Feedback Converter- A primary-side control technique is disclosed in "Converter Power". Among the newer technologies, there is Ta-yung Yang et al. US Patent No. 6,721,192 "PWM (Pulse Width Modulation) Controller for Regulating Output Voltage and Output Current on the Primary Side", Ta-yung Yang (Ta-yung Yang) et al. yung Yang et al., US Patent No. 6,836,415 "Primary Side Stable Pulse Width Modulation Controller with Improved Load Regulation," and Ta-yung Yang et al. ", and US Patent No. 6,862,194 "Fedback Power Converter with Constant Voltage and Constant Current Output Under Primary Side PWM Control" by Ta-yung Yang et al. However, for measuring the signal from the transformer, the previous techniques cannot obtain accurate results.
发明内容 Contents of the invention
本发明的目的就是要为电源转换器的切换控制电路提供用以测量反射电压信号和变压器的放电时间的精确取样电路。经由使用取样自变压器的信号,可以不使用光耦合器和次级侧调整器而能够调节电源转换器的输出。除此之外,变压器的放电时间能够用于准谐振电源转换器,以跟低谷电压同步和达到柔性切换的效果。The object of the present invention is to provide an accurate sampling circuit for measuring the reflected voltage signal and the discharge time of the transformer for the switching control circuit of the power converter. By using a signal sampled from the transformer, the output of the power converter can be regulated without the use of optocouplers and secondary side regulators. In addition, the discharge time of the transformer can be used in the quasi-resonant power converter to synchronize with the valley voltage and achieve the effect of flexible switching.
多次取样电路耦接并从变压器线圈接收反射电压信号。多次取样电路包括信号产生器,其目的是接收切换信号和反射电压信号,用以产生放电时间信号和多个取样信号。当切换信号禁用时,多个取样信号顺序产生,其中上述多个取样信号用VSP1...VSPN来表示,其中N为大于或者等于2的整数,其中首先生成取样信号VSPN,......,最后才生成取样信号VSP1。切换信号经由开关切换变压器,即上述切换信号用于导通或者关闭上述开关,当导通上述开关时,在上述变压器的初级侧产生初级侧切换电流,当关闭上述开关时,在上述变压器的次级侧产生次级侧切换电流,从而调节变压器的输出。取样保持电路包括多个保持电容器以及缓冲电路,其中所述取样保持电路接收多个取样信号,以对反射电压信号进行取样。被多个取样信号多次取样的反射电压信号分别被储存在多个保持电容器中。因此,多个保持电容器根据多个取样信号的取样操作以产生多个保持电压。缓冲电路与多个保持电容器相耦接,根据多个保持电压的最高电压,产生缓冲信号。比较电路透过比较缓冲信号和电平位移信号来产生停止信号。电平位移信号的产生是经由反射电压信号加上门限信号。一旦电平位移信号低于缓冲信号,停止信号便启用。A multi-sampling circuit is coupled to receive the reflected voltage signal from the transformer coil. The multi-sampling circuit includes a signal generator whose purpose is to receive switching signals and reflected voltage signals to generate discharge time signals and multiple sampling signals. When the switching signal is disabled, a plurality of sampling signals are generated sequentially, wherein the above-mentioned plurality of sampling signals are represented by V SP1 ...V SPN , where N is an integer greater than or equal to 2, wherein the sampling signals V SPN are generated first, .. ..., the sampling signal V SP1 is generated at last. The switching signal switches the transformer through the switch, that is, the switching signal is used to turn on or off the switch. When the switch is turned on, a primary side switching current is generated on the primary side of the transformer. When the switch is turned off, the secondary side of the transformer is The primary side generates the secondary side switching current, which regulates the output of the transformer. The sample and hold circuit includes a plurality of holding capacitors and a buffer circuit, wherein the sample and hold circuit receives a plurality of sampling signals to sample the reflected voltage signal. Reflected voltage signals sampled a plurality of times by the plurality of sampling signals are respectively stored in a plurality of holding capacitors. Accordingly, a plurality of holding capacitors operates according to sampling of a plurality of sampling signals to generate a plurality of holding voltages. The buffer circuit is coupled to the plurality of holding capacitors, and generates a buffer signal according to the highest voltage of the plurality of holding voltages. The comparison circuit generates a stop signal by comparing the buffer signal with the level shift signal. The level-shifted signal is generated by adding a threshold signal to the reflected voltage signal. Once the level-shifted signal is lower than the buffered signal, the stop signal is enabled.
当切换信号禁用时,放电时间信号被启用。当停止信号启用时,放电时间信号被禁用。因此,放电时间信号的启用时间等于变压器的放电时间。另外,在停止信号产生后,反馈信号系根据缓冲信号而产生。停止信号更决定多个取样信号的动作。反馈信号从而与变压器的输出电压成比例。When the toggle signal is disabled, the discharge time signal is enabled. When the stop signal is enabled, the discharge time signal is disabled. Therefore, the enable time of the discharge time signal is equal to the discharge time of the transformer. In addition, after the stop signal is generated, the feedback signal is generated according to the buffer signal. The stop signal further determines the actions of multiple sampling signals. The feedback signal is thus proportional to the output voltage of the transformer.
前面的概要说明和下面的详细说明仅仅是举例性的描述,并且其目的是对权利要求中的发明作进一步的说明。看了后面的说明和附图,更多的目的和优点将更为清楚。The foregoing general description and the following detailed description are exemplary descriptions only and are intended to further explain the invention as claimed. Further purposes and advantages will become clearer after reading the following description and drawings.
附图说明 Description of drawings
附图是用来进一步理解本发明的,与说明书不可分割,是说明书组成的一部分。附图表示了本发明的实施例,与说明书一起用来解释本发明的原理。The accompanying drawings are used to further understand the present invention, and are inseparable from the description, and are a part of the description. The drawings illustrate the embodiments of the invention and together with the description serve to explain the principles of the invention.
图1为切换电路的示意图。Figure 1 is a schematic diagram of a switching circuit.
图2A表示功率开关打开时切换电路的信号流。Figure 2A shows the signal flow of the switching circuit when the power switch is turned on.
图2B表示功率开关关闭时切换电路的信号流。Figure 2B shows the signal flow of the switching circuit when the power switch is turned off.
图2C表示功率开关关闭时切换电路的信号流。FIG. 2C shows the signal flow of the switching circuit when the power switch is turned off.
图3表示每一个切换周期中切换电路的各种波形。Figure 3 shows various waveforms of the switching circuit in each switching cycle.
图4为本发明的多次取样电路的方块图。FIG. 4 is a block diagram of the multi-sampling circuit of the present invention.
图5为根据本发明的一个实施例的多次取样电路。FIG. 5 is a multi-sampling circuit according to an embodiment of the present invention.
图6表示本发明的多次取样电路的主要波形。Fig. 6 shows the main waveforms of the multi-sampling circuit of the present invention.
图7表示根据本发明的一个实施例的脉宽调制遮没单元。Figure 7 shows a pulse width modulation blanking unit according to one embodiment of the present invention.
图8表示根据本发明的一个实施例的振荡单元。Fig. 8 shows an oscillating unit according to an embodiment of the present invention.
具体实施方式 Detailed ways
图1表示切换电路,包括变压器10,其有辅助线圈NA,初级线圈NP,和次级线圈NS。初级线圈NP耦接至输入电压VIN。由电阻器51和52构成的分压器连接于辅助线圈NA,目的是从辅助线圈NA的电压信号获取反射电压信号VDET。为了调节切换电路的输出电压VO和输出电流IO,切换信号VPWM经由功率开关,例如晶体管20,以切换变压器10。Figure 1 shows a switching circuit comprising a
参照图1和图2A,当切换信号VPWM启用(逻辑高电平),即产生初级侧切换电流IP,以将能量储存在变压器10中。在这个阶段的切换电路的各种波形显示在图3的周期T1中。初级侧切换电流IP的峰值IP1可由下式给出:Referring to FIG. 1 and FIG. 2A , when the switching signal V PWM is enabled (logic high level), the primary side switching current I P is generated to store energy in the
这里LP是变压器10的初级线圈NP的电感TON是切换信号VPWM的导通时间。Here L P is the inductance of the primary coil N P of the
参照图1和图2B,当切换信号VPWM禁用(逻辑低电平),储存在变压器10中的能量释放到变压器10的次级侧,并且经由整流器40释放到切换电路的输出端。从而产生次级侧切换电流IS。这个阶段的各种波形显示在图3的周期T2中。次级侧切换电流IS的峰值IS1可由下式给出:Referring to FIGS. 1 and 2B , when the switching signal V PWM is disabled (logic low level), the energy stored in the
这里VO是切换电路的输出电压;VF是整流器40的正向压降;LS是变压器10的次级线圈NS的电感;TDS是变压器10的放电时间,其也代表次级侧切换电流Is的放电时间。Here V O is the output voltage of the switching circuit; V F is the forward voltage drop of the
同时,在变压器10的辅助线圈NA上产生电压信号VAUX。图3中显示的电平VAUX1可由下式给出:At the same time, a voltage signal V AUX is generated at the auxiliary winding N A of the
同时,储存在变压器10中的能量将给晶体管20的寄生电容CJ充电,以在晶体管20的寄生电容CJ的两端产生电压VDS。电压VDS可由下式给出:At the same time, the energy stored in the
这里VIN是切换电路的输入电压;TNA,TNP和TNS分别是变压器10的辅助线圈NA,初级线圈NP,和次级线圈NS的线圈匝数。Here V IN is the input voltage of the switching circuit; T NA , T NP and T NS are the coil turns of the auxiliary coil NA , the primary coil NP , and the secondary coil NS of the
参照图1和图2C,当储存在变压器10中的能量被完全释放时,次级侧切换电流IS下降为零。同时,因为电压VDS高于输入电压VIN,电压VDS开始给输入电压VIN回充。这个阶段的各种波形显示在图3的周期T3中。电压VDS在周期TQ结束时减少到谷底电压。电压VDS的减量斜率决定于谐振频率fR。谐振频率fR和周期TQ分别由式(5)和(6)给出:Referring to FIG. 1 and FIG. 2C, when the energy stored in the
这里CJJ是晶体管20的寄生电容器CJ的电容。Here C JJ is the capacitance of the parasitic capacitor C J of the
当电压VDS开始下降时,电压信号VAUX开始减少。电压信号VAUX跟电压VDS相关,其可由下式给出:When the voltage V DS starts to drop, the voltage signal V AUX starts to decrease. The voltage signal V AUX is related to the voltage V DS which can be given by:
因此,如图6所示,可以从切换信号VPWM的下降边到电压信号VAUX的下降角测出式(2)中的放电时间TDS。Therefore, as shown in FIG. 6 , the discharge time T DS in formula (2) can be measured from the falling edge of the switching signal V PWM to the falling angle of the voltage signal V AUX .
参照图1,电阻器51和52构成分压器,其连接在变压器10的辅助线圈NA和接地参考之间,目的是产生反射电压信号VDET,其可由下式给出:Referring to Figure 1,
这里R51和R52分别是电阻器51和52的电阻。Here R51 and R52 are the resistances of
图4为本发明的多次取样电路700。多次取样电路700连接到脉宽调制遮没单元500,振荡单元600,和透过分压器连接到变压器10的辅助线圈NA。多次取样电路700包括取样单元100,信号产生单元200,和延时单元300。FIG. 4 is a
进一步参照图4,延时单元300连接于脉宽调制遮没单元500,以接收切换信号VPWM。延时单元300通过延时单元300的反相器产生反相切换信号/VPWM。当切换信号VPWM禁用时,延时单元300产生延时信号VDL。信号产生单元200连接到延时单元300,以接收延时信号VDL,反相切换信号/VPWM和反射电压信号VDET。信号产生单元200产生放电时间信号SDS,和多个取样信号VSPN...VSP1。取样单元100连接于振荡单元600,脉宽调制遮没单元500,和信号产生单元200,用来接收多个取样信号VSPN...VSP1,反射电压信号VDET,振荡单元600产生的脉冲信号PLS,和脉宽调制遮没单元500产生的消除信号CLR。多个取样信号VSPN...VSP1顺序控制取样单元100,以对反射电压信号VDET进行取样,产生缓冲信号VHD和电压反馈信号VV。Further referring to FIG. 4 , the
本发明的主要目的是提供测量电压信号和变压器放电时间的精确取样电路。另外,本发明可以不使用光耦合器和次级侧调整器来调节输出。The main object of the present invention is to provide an accurate sampling circuit for measuring the voltage signal and the discharge time of the transformer. In addition, the present invention can regulate the output without the use of optocouplers and secondary side regulators.
请参照图1和图5所示,根据本发明的一个实施例的多次取样电路700如图5所示。在反射电压信号VDET的多次取样操作期间,产生电压反馈信号VV和放电时间信号SDS。电压反馈信号VV与输出电压VO成精确比例。放电时间信号SDS代表次级侧切换电流IS的放电时间TDS。在次级侧切换电流IS下降为零之前,反射电压信号VDET即被取样和测量。因此,次级侧切换电流IS的变化不影响整流器40正向压降VF。Please refer to FIG. 1 and FIG. 5 . A
信号产生单元200包括第一信号产生器,第二信号产生器,门限信号156,和脉冲产生器190。脉冲产生器190产生取样脉冲信号供多次取样操作。反射电压信号VDET加上门限信号156以产生电平位移反射信号。第一信号产生器包括计数器171,与门165和与门166以产生多个取样信号VSPN...VSP1。第二信号产生器包括D触发器170,与非门163,与门164和比较器155,以产生放电时间信号SDS。The
进一步参阅图5和图6所示,延时单元300包括反相器161,反相器162,电流源180,晶体管181,和电容器182,以当切换信号VPWM禁用时产生延迟时间Td。反相器161的输入端输入切换信号VPWM。反相器161的输出端连接于反相器162的输入端,与门164的第一输入端,和D触发器170的时钟输入端。反相器162的输出控制晶体管181的导通与截止。电容器182跟晶体管181并联。电流源180用来给电容器182充电。因此,电源180的电流和电容器182的电容决定延时单元300的延迟时间Td。电容器182还产生延时信号VDL。Referring further to FIG. 5 and FIG. 6 , the
供给电压VCC拉升了D触发器170的D端输入。D触发器170的输出端连接与门164的第二输入端。与门164输出放电时间信号SDS。从而当切换信号VPWM禁用时,放电时间信号SDS为启用。与非门163的输出端连接于D触发器170的复位输入端。与非门163的第一输入端连接于电容器182,以接收延时信号VDL。与非门163的第二输入端连接于比较器155的输出端。电平位移反射信号供给比较器155的负极输入端。比较器155的正极输入端由缓冲信号VHD所提供。因此,在延迟时间Td之后,一旦电平位移反射信号低于缓冲信号VHD,放电时间信号SDS将为禁用。另外,当切换信号VPWM启用时,放电时间信号SDS也为禁用。The supply voltage V CC pulls up the D terminal input of the D flip-
取样脉冲信号被送至计数器171的时钟输入端和与门165和166的第三输入端。计数器171的输出端分别连接于与门165和166的第二输入端。与门165和166的第一输入端由所提供放电时间信号SDS所提供。与门165和166的第四输入端由延时信号VDL所提供。因此,依据取样脉冲信号多个取样信号VSPN...VSP1将顺序产生。另外,于放电时间信号SDS的启用期,多个取样信号VSPN...VSP1将顺序产生。然而,在放电时间信号SDS的始端插入了延迟时间Td以阻止多个取样信号VSPN...VSP1的产生。这样,在延迟时间Td,多个取样信号VSPN...VSP1将被禁用。The sampling pulse signal is supplied to the clock input terminal of the
多个取样信号VSPN...VSP1从而用来对反射电压信号VDET进行取样。多个取样信号VSPN...VSP1控制开关例如121...122以分别于多个保持电容器例如110...111上获取多个保持电压。为了给保持电容器110放电,开关123跟保持电容器110并联。为了给保持电容器111放电,开关124跟保持电容器111并联。A plurality of sampling signals V SPN . . . V SP1 are thus used to sample the reflected voltage signal V DET . A plurality of sampling signals V SPN . . . V SP1 control switches such as 121 . In order to discharge the holding
取样单元100的缓冲电路包括多个运算放大器例如150...151,二极管130...131,和电流源135,以产生缓冲信号VHD。运算放大器150...151的正极输入端分别连接于多个保持电容器110...111。运算放大器150...151的负极输入端连接于缓冲电路的输出端。二极管130连接在运算放大器150的一个输出端与缓冲电路的输出端之间。二极管131连接在运算放大器151的一个输出端,与缓冲电路的输出端之间。这样,便可从多个保持电压的最高电压获取缓冲信号VHD。电流源135用来进行终止。由脉冲信号PLS控制导通/截止的开关125连接于缓冲电路。开关125周期性地将缓冲信号VHD传送至电容器115,以产生电压反馈信号VV。因此,电压反馈信号VV跟切换电路的输出电压VO成比例。多个取样信号VSPN...VSP1在延迟时间Td之后开始产生多个保持电压,从而避免电压信号VAUX的尖峰干扰(spikeinterference)。当切换信号VPWM禁用使得晶体管20截止时,将产生电压信号VAUX的峰值。The buffer circuit of the
请参阅图6所示,当次级侧切换电流IS下降到零时,电压信号VAUX开始减少,然后这由比较器155检测到,使放电时间信号SDS禁用。因此,放电时间信号SDS的脉冲宽度跟次级侧切换电流IS的放电时间TDS相关。同时,当放电时间信号SDS禁用时,多个取样信号VSPN...VSP1禁用,并且多次取样操作停止。这时,产生于缓冲电路输出端的缓冲信号VHD代表终止电压。因此,一旦次级侧切换电流IS下降到零,终止电压将跟取样到的电压信号VAUX有关。缓冲信号VHD从多个保持电压的较高电压获取,其中当电压信号VAUX已经开始减少时,其将忽略所取样的电压。Referring to FIG. 6 , when the secondary side switching current I S drops to zero, the voltage signal V AUX starts to decrease, which is then detected by the
另外,一旦切换信号VPWM启用,就确保了切换信号VPWM的导通时间TON的最小值。切换信号VPWM的导通时间TON的最小值进一步确保了放电时间TDS的最小值,其确保了在多次取样电路700中取样电压信号VAUX的适切的多次取样操作。放电时间TDS跟切换信号VPWM的导通时间TON相关。参照式(1),(2),和(3)和式(9)给出的次级侧电感LS,放电时间TDS可以由式(10)表达。In addition, once the switching signal V PWM is enabled, a minimum value of the on-time T ON of the switching signal V PWM is ensured. The minimum value of the on-time T ON of the switching signal V PWM further ensures the minimum value of the discharge time T DS , which ensures proper multi-sampling operation of the voltage signal V AUX in the
图7表示根据本发明的一个实施例的脉宽调制遮没单元500。脉宽调制遮没单元500包括PWM电路和遮没电路520。PWM电路包含与非门511,D触发器515,与门519,反相器512,反相器518,和电压回路误差放大器513。参照图4和图6,反相器512连接于振荡单元600,以接收脉冲信号PLS。反相器512的输出端连接于D触发器515的时钟输入端,使切换信号VPWM启用。供给电压VCC拉升D触发器515的D端输入。D触发器515的输出端连接于与门519的第一输入端。与门519的第二输入端连接于反相器512的输出端。与门519产生切换信号VPWM。D触发器515的复位输入端连接于与非门511的输出端。为了周期地关闭切换信号VPWM,与非门511的第一输入端由复位信号RST所提供。电压回路误差放大器513依据电压反馈信号VV产生复位信号RST。与非门511的第二输入端连接于遮没电路520的输出端,以接收遮没信号VBLK。FIG. 7 shows a pulse width
参照图7,遮没电路520包括与非门523,电流源525,晶体管526,反相器521,电容器527,和反相器522。切换信号VPWM提供至反相器521的输入端和与非门523的第一输入端。反相器521的输出端用以导通/截止晶体管526。反相器522的输出端连接于与非门523的第二输入端。电流源525的电流和电容器527的电容决定遮没信号VBLK的脉冲宽度。反相器518接收遮没信号VBLK并且产生消除信号CLR。参照图6,消除信号CLR和遮没信号VBLK互为反相。消除信号CLR控制开关123和124的导通与截止。当切换信号VPWM启用时,遮没电路520输出遮没信号VBLK,目的是使VPWM禁用,防止D触发器515被复位。Referring to FIG. 7 , the blanking
由于当切换信号VPWM关闭时,电压信号VAUX从变压器10反射而得,因此VPWM必须维持最小切换频率,以多次取样电压信号VAUX确保变压器10的切换。Since the voltage signal V AUX is reflected from the
图8表示根据本发明的一个实施例的振荡单元600。运算放大器201,电阻器210,晶体管250构成了第一电压电流转换器。第一电压电流转换器产生参考电流I250以响应参考电压VREF。多个晶体管,例如251,252,253,254和255构成了电流镜,其目的是响应参考电流I250以产生充电电流I253和放电电流ID。第一开关230连接在晶体管253的漏极和电容器215之间。第二开关231连接在电容器215和晶体管255的漏极之间。第一比较器205产生脉冲信号PLS以决定切换频率。第三开关232的第一端由高门限(high-threshold)电压VH所供应。第四开关233的第一端由低门限(low-threshold)电压VL所供应。第三开关232的第二终端和第四开关233的第二终端连接于比较器205的负极端。反相器260的输入端连接于比较器205的输出端。反相器260的输出端产生反相脉冲信号/PLS。脉冲信号PLS控制第二开关231和第四开关233的导通与截止。反相脉冲信号/PLS控制第一开关230和第三开关232的导通与截止。Fig. 8 shows an
如上所述,本发明提供了电源转换器的切换控制器中的精确多次取样电路。为调节电源转换器的输出电压和输出电流,多次取样电路能够使得电源转换器在不使用光耦合器和次级侧调整器下来测量变压器的电压信号和其放电时间。As described above, the present invention provides an accurate multi-sampling circuit in a switching controller of a power converter. To regulate the output voltage and output current of the power converter, the multi-sampling circuit enables the power converter to measure the voltage signal of the transformer and its discharge time without using an optocoupler and a secondary-side regulator.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的结构及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, may use the structure and technical content disclosed above to make some changes or modifications to equivalent embodiments with equivalent changes, but if they do not depart from the technical solution of the present invention, Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still fall within the scope of the technical solution of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101318050A CN100442645C (en) | 2005-12-15 | 2005-12-15 | Method and device for measuring reflected voltage of transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101318050A CN100442645C (en) | 2005-12-15 | 2005-12-15 | Method and device for measuring reflected voltage of transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1983783A CN1983783A (en) | 2007-06-20 |
CN100442645C true CN100442645C (en) | 2008-12-10 |
Family
ID=38166091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101318050A Active CN100442645C (en) | 2005-12-15 | 2005-12-15 | Method and device for measuring reflected voltage of transformer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100442645C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100499340C (en) * | 2007-08-09 | 2009-06-10 | 周重甫 | Winding Voltage Sampling Control Power Converter |
CN102377414B (en) * | 2010-08-11 | 2014-05-07 | 聚积科技股份有限公司 | Circuit regulator and its synchronous clock pulse generating circuit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302803A (en) * | 1980-01-16 | 1981-11-24 | Sperry Corporation | Rectifier-converter power supply with multi-channel flyback inverter |
US5841643A (en) * | 1997-10-01 | 1998-11-24 | Linear Technology Corporation | Method and apparatus for isolated flyback regulator control and load compensation |
US6256210B1 (en) * | 1999-05-26 | 2001-07-03 | U.S. Philips Corporation | Converter for conversion of an input voltage into an output voltage |
WO2002017467A1 (en) * | 2000-08-18 | 2002-02-28 | Infineon Technologies Ag | Circuit arrangement for generating a switching signal for a current controlled switched mode power supply |
US6721192B1 (en) * | 2003-03-24 | 2004-04-13 | System General Corp. | PWM controller regulating output voltage and output current in primary side |
WO2004051834A1 (en) * | 2002-11-27 | 2004-06-17 | Iwatt, Inc. | Digital regulation of power converters using primary-only feedback |
-
2005
- 2005-12-15 CN CNB2005101318050A patent/CN100442645C/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302803A (en) * | 1980-01-16 | 1981-11-24 | Sperry Corporation | Rectifier-converter power supply with multi-channel flyback inverter |
US5841643A (en) * | 1997-10-01 | 1998-11-24 | Linear Technology Corporation | Method and apparatus for isolated flyback regulator control and load compensation |
US6256210B1 (en) * | 1999-05-26 | 2001-07-03 | U.S. Philips Corporation | Converter for conversion of an input voltage into an output voltage |
WO2002017467A1 (en) * | 2000-08-18 | 2002-02-28 | Infineon Technologies Ag | Circuit arrangement for generating a switching signal for a current controlled switched mode power supply |
WO2004051834A1 (en) * | 2002-11-27 | 2004-06-17 | Iwatt, Inc. | Digital regulation of power converters using primary-only feedback |
US6721192B1 (en) * | 2003-03-24 | 2004-04-13 | System General Corp. | PWM controller regulating output voltage and output current in primary side |
Also Published As
Publication number | Publication date |
---|---|
CN1983783A (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7426120B2 (en) | Switching control circuit having a valley voltage detector to achieve soft switching for a resonant power converter | |
CN106849675B (en) | The control circuit and its method of Switching Power Supply | |
CN1926751B (en) | power mode control circuit for power converter | |
US7778051B2 (en) | Output current control circuit for power converter with a changeable switching frequency | |
USRE44228E1 (en) | Switching mode power supply and driving method | |
US7054170B2 (en) | Power-mode controlled power converter | |
CN100421340C (en) | Flyback Power Converter | |
TWI404308B (en) | Control apparatus and methods for primary-side-regulation power converters | |
US10574145B2 (en) | BJT driver with dynamic adjustment of storage time versus input line voltage variations | |
JP3371962B2 (en) | DC-DC converter | |
US8526203B2 (en) | Systems and methods for constant voltage mode and constant current mode in flyback power converter with primary-side sensing and regulation | |
JP7378495B2 (en) | Power converters and respective control devices with active non-dissipative clamp circuits | |
US20160336861A1 (en) | Current converter with current control on the primary winding side and compensation of the propagation delay | |
US9343971B2 (en) | Synchronous VCC generator for switching voltage regulator | |
TWI398087B (en) | Switching circuit for primary-side regulated resonant power converters | |
US9318965B2 (en) | Method to control a minimum pulsewidth in a switch mode power supply | |
CN100454740C (en) | Control circuit of power converter with adaptive bias | |
US7466569B2 (en) | Power converter having phase lock circuit for quasi-resonant soft switching | |
CN100559690C (en) | Switching regulator with primary side control | |
CN101243602B (en) | Closed Loop Pulse Width Modulation Controller for Primary Side Control of Power Converters | |
US7151681B2 (en) | Multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer | |
CN102570834B (en) | The control circuit switched for the interval of power converter and method | |
CN100442645C (en) | Method and device for measuring reflected voltage of transformer | |
JP2002119053A (en) | Switching regulator | |
US7564903B2 (en) | Method and apparatus for measuring reflected voltage of transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |