CN100441839C - Direct Injection Spark Ignition Internal Combustion Engine - Google Patents
Direct Injection Spark Ignition Internal Combustion Engine Download PDFInfo
- Publication number
- CN100441839C CN100441839C CNB2006100043322A CN200610004332A CN100441839C CN 100441839 C CN100441839 C CN 100441839C CN B2006100043322 A CNB2006100043322 A CN B2006100043322A CN 200610004332 A CN200610004332 A CN 200610004332A CN 100441839 C CN100441839 C CN 100441839C
- Authority
- CN
- China
- Prior art keywords
- ignition
- fuel
- internal combustion
- combustion engine
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 129
- 238000002347 injection Methods 0.000 title claims description 76
- 239000007924 injection Substances 0.000 title claims description 76
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 239000000446 fuel Substances 0.000 claims description 76
- 230000003197 catalytic effect Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 55
- 239000007921 spray Substances 0.000 abstract description 14
- 239000003595 mist Substances 0.000 description 16
- 238000009841 combustion method Methods 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种直喷式火花点火内燃机,特别是涉及一种利用喷雾引导方法和壁引导方法实施分层充气燃烧的技术。The invention relates to a direct-injection spark ignition internal combustion engine, in particular to a technique for implementing stratified charge combustion by using a spray guiding method and a wall guiding method.
背景技术 Background technique
在燃料被直接喷射入燃烧室的直喷式火花点火内燃机中,已知一种称作喷雾引导方法的技术,在这种技术中,喷射器安装在燃烧室上壁的中央区域并且将火花塞设置成其电极部分位于燃料喷射区域内或附近,因此能通过直接点燃由喷射器喷射以及部份汽化的燃料形成的燃料雾实施分层充气燃烧。In a direct-injection spark-ignition internal combustion engine in which fuel is directly injected into the combustion chamber, a technique called a spray-guiding method is known, in which the injector is installed in the central area of the upper wall of the combustion chamber and the spark plug is set Because the electrode part is located in or near the fuel injection area, stratified charge combustion can be implemented by directly igniting the fuel mist formed by the injector injection and partially vaporized fuel.
在通过该喷雾引导方法的分层充气稀薄燃烧(lean combustion)中,尤其在低负荷运转中,燃料喷射量少并且喷射时间短,使得能够实施点火的时间周期短。因此,在低负荷运转中产生稳定燃烧区域窄以及燃烧的稳定性不充分的问题。In stratified-charge lean combustion by this spray introduction method, especially in low-load operation, the fuel injection amount is small and the injection time is short, so that the time period in which ignition can be performed is short. Therefore, problems arise in that the stable combustion region is narrow and the stability of combustion is insufficient during low-load operation.
为了在直喷式火花点火内燃机中实施稳定的分层充气燃烧,通过形成在活塞顶面上的空腔使通过进气口流入的进气上升为翻滚气流并且燃料向翻滚气流朝其上升的一侧喷射的技术得到发展(日本未审查专利公报No.Hei 11-210472)。In order to implement stable stratified charge combustion in a direct-injection spark ignition internal combustion engine, the intake air flowing in through the intake port rises into a tumble flow and the fuel rises toward the tumble flow through a cavity formed on the top surface of the piston. The technology of side injection has been developed (Japanese Unexamined Patent Publication No. Hei 11-210472).
然而,在包括使用翻滚气流的类型的壁引导方法中,燃烧条作(燃料喷射时刻、点火时刻等)取决于内燃机的发动机转速和负荷发生很大变化。因此,如果发动机转速或负荷突然地以及出乎意料地变化,由于不匹配的燃料喷射时刻、点火时刻等原因会发生发动机熄火。因此,通常为了保持稳定燃烧,在内燃机处于过渡期时实施普通的均匀充气燃烧。However, in the wall-guided method including the type using the tumble air flow, the combustion behavior (fuel injection timing, ignition timing, etc.) varies greatly depending on the engine speed and load of the internal combustion engine. Therefore, if the engine speed or load changes suddenly and unexpectedly, engine stalling can occur due to mismatched fuel injection timing, ignition timing, etc. Therefore, in order to maintain stable combustion, ordinary homogeneous charge combustion is usually carried out when the internal combustion engine is in a transition period.
如上所述,尽管分层充气燃烧具有诸如改善燃料经济性的优点,由于其取决于内燃机的运转状态往往不稳定,因此分层充气燃烧仅限于规定的运转状态下被实施。As described above, although stratified charge combustion has advantages such as improvement in fuel economy, since it tends to be unstable depending on the operating state of the internal combustion engine, stratified charge combustion is only carried out under prescribed operating states.
此外,在喷雾引导方法中,油雾在移动中逐渐离开火花塞,并且通过火花塞点火产生的火焰随着油雾在燃烧室内扩散。因而,燃烧进行得相对比较慢。因此,废气温度相对比较低,这导致设置在排气通道上的催化转化器的转化效率的降低。In addition, in the spray-guided method, the oil mist gradually leaves the spark plug while moving, and the flame generated by the ignition of the spark plug spreads in the combustion chamber along with the oil mist. Thus, combustion proceeds relatively slowly. Therefore, the temperature of the exhaust gas is relatively low, which leads to a decrease in the conversion efficiency of the catalytic converter provided on the exhaust passage.
发明内容 Contents of the invention
本发明已经被创造来解决上述问题。本发明的目的是提供一种根据内燃机的运转状态能够稳定实施分层充气燃烧并且在分层充气燃烧过程中能够保持催化转化器的最佳温度而使催化转化器能够实现满意的废气净化功能的直喷式火花点火内燃机。The present invention has been created to solve the above-mentioned problems. The object of the present invention is to provide a device that can stably implement stratified charge combustion according to the operating state of the internal combustion engine and can maintain the optimum temperature of the catalytic converter during the stratified charge combustion process so that the catalytic converter can realize a satisfactory exhaust gas purification function Direct injection spark ignition internal combustion engine.
为了获得上述目的,本发明提供一种直喷式火花点火内燃机,该内燃机包括将燃料直接喷入燃烧室的安装到燃烧室上壁中央区域的喷射器;电极部分位于喷射器喷射的燃料在其中扩散的燃料喷射区域内或附近的火花塞;形成在活塞顶面上的将喷射器喷射的燃料引导到火花塞的电极部分附近的空腔;检测内燃机运转状态的运转状态检测装置;以及控制火花塞点火时刻的点火时刻控制装置,其中点火时刻控制装置取决于由运转状态检测装置检测的运转状态控制点火时刻,至少在喷射器喷射燃料期间或燃料刚喷射完后、或者在由喷射器喷射的燃料通过所述空腔引导到达电极部分附近时实施点火。In order to achieve the above objects, the present invention provides a direct-injection spark ignition internal combustion engine comprising an injector which injects fuel directly into the combustion chamber and which is mounted to the central region of the upper wall of the combustion chamber; A spark plug in or near a diffused fuel injection area; a cavity formed on the top surface of a piston near an electrode portion that guides fuel injected by an injector to a spark plug; an operating state detecting device that detects an operating state of an internal combustion engine; and controlling ignition timing of a spark plug The ignition timing control device, wherein the ignition timing control device controls the ignition timing depending on the operation state detected by the operation state detection device, at least during or immediately after fuel injection by the injector, or when the fuel injected by the injector passes through the The ignition is carried out when the cavity guide reaches the vicinity of the electrode portion.
此外,本发明提供一种直喷式火花点火内燃机,该内燃机包括将燃料直接喷入燃烧室的安装在燃烧室上壁中央区域的喷射器;电极部分位于喷射器喷射的燃料在其中扩散的燃料喷射区域内或附近的火花塞;形成在活塞顶面上的将喷射器喷射的燃料引导到火花塞的电极部分附近的空腔;设置在与燃烧室连接的排气通道中的转化包含在流经排气通道的废气中的有害物质的废气催化转化器;检测废气催化转化器温度的催化剂温度检测装置;控制喷射器喷射时刻的喷射时刻控制装置;以及控制火花塞点火时刻的点火时刻控制装置,其中取决于通过催化剂温度检测装置检测的废气催化转化器的温度,喷射时刻控制装置和点火时刻控制装置能够在喷射器喷射燃料期间或燃料刚喷射完后实施点火的运转模式和在由喷射器喷射的燃料通过所述空腔引导到达电极部分附近时实施点火的运转模式之间选择。In addition, the present invention provides a direct-injection spark ignition internal combustion engine comprising an injector installed in the central region of the upper wall of the combustion chamber for injecting fuel directly into the combustion chamber; The spark plug in or near the injection area; the cavity formed on the top surface of the piston that guides the fuel injected by the injector to the electrode portion of the spark plug; the conversion that is arranged in the exhaust passage connected to the combustion chamber Exhaust gas catalytic converter for harmful substances in the exhaust gas of the gas channel; catalyst temperature detection device for detecting the temperature of the exhaust gas catalytic converter; injection timing control device for controlling the injection timing of the injector; and ignition timing control device for controlling the ignition timing of the spark plug, which depends on Based on the temperature of the exhaust gas catalytic converter detected by the catalyst temperature detection device, the injection timing control device and the ignition timing control device can perform ignition during or immediately after fuel injection by the injector and in the fuel injected by the injector. A selection is made between modes of operation in which ignition is effected upon reaching the vicinity of the electrode portion guided through the cavity.
附图说明 Description of drawings
本发明的特性以及其它目的和优点将在下文中参照附图被说明,所有附图中相同的参考符号标识相同或相似的部件,其中:The nature of the invention, together with other objects and advantages, will hereinafter be elucidated with reference to the accompanying drawings, in which like reference characters identify like or similar parts throughout, wherein:
图1是显示根据本发明的直喷式火花点火内燃机的示意性结构的示意图;1 is a schematic diagram showing a schematic structure of a direct injection spark ignition internal combustion engine according to the present invention;
图2是沿图1中线A-A的剖面图;Fig. 2 is a sectional view along line A-A in Fig. 1;
图3是图1的活塞的顶视图;Figure 3 is a top view of the piston of Figure 1;
图4是燃烧室的剖面图,显示在根据本发明的直喷式火花点火内燃机中燃料喷射过程中油雾的分布;4 is a cross-sectional view of a combustion chamber showing the distribution of oil mist during fuel injection in a direct-injection spark ignition internal combustion engine according to the present invention;
图5是沿图4中线B-B的剖而图;Fig. 5 is a sectional view along line B-B in Fig. 4;
图6是燃烧室的剖面图,显示在根据本发明的直喷式火花点火内燃机中燃料喷射后油雾的分布;6 is a cross-sectional view of a combustion chamber showing the distribution of oil mist after fuel injection in a direct-injection spark ignition internal combustion engine according to the present invention;
图7是沿图6中线C-C的剖面图;Fig. 7 is a sectional view along line C-C in Fig. 6;
图8A、8B和8C是显示在根据本发明的直喷式火花点火内燃机中负荷状态变化时喷雾引导方法和壁引导方法的稳定燃烧区域怎样变化的图表;8A, 8B and 8C are graphs showing how the stable combustion regions of the spray guidance method and the wall guidance method change when the load state changes in the direct injection spark ignition internal combustion engine according to the present invention;
图9A、9B和9C是显示在喷雾引导方法被采用和壁引导方法被采用时根据本发明的直喷式火花点火内燃机的废气特性的图表;9A, 9B and 9C are graphs showing the exhaust gas characteristics of the direct injection spark ignition internal combustion engine according to the present invention when the spray guiding method is adopted and the wall guiding method is adopted;
图10是显示在根据本发明的直喷式火花点火内燃机中由ECU50实施的确定燃烧方法的控制程序的流程图。FIG. 10 is a flowchart showing a control routine for determining the combustion method implemented by the
具体实施方式 Detailed ways
下文将基于附图说明本发明的实施例。Embodiments of the present invention will be described below based on the drawings.
图1是显示根据本发明的直喷式火花点火内燃机的示意性结构的示意图,图2是沿图1中线A-A的燃烧室的剖面图,以及图3是图1的活塞的顶视图。下文将基于图1到图3进行说明。1 is a schematic diagram showing a schematic structure of a direct injection spark ignition internal combustion engine according to the present invention, FIG. 2 is a sectional view of a combustion chamber along line A-A in FIG. 1 , and FIG. 3 is a top view of a piston of FIG. 1 . The following description will be made based on FIGS. 1 to 3 .
如图1所示,发动机1(内燃机)的燃烧室2由形成在气缸体3中的圆柱形气缸4,被安装成能够在气缸4中上下滑动的活塞6的顶面以及安装在气缸体3上的气缸盖8的底面限定。As shown in Figure 1, the
形成燃烧室2的上壁的气缸盖8的底面呈由交汇成钝角的两个斜面10a,10b组成的所谓的单斜面屋顶形。The bottom surface of the
喷射器12安装到燃烧室2上壁的中心区域中的斜面10a上,而火花塞14安装到另一个斜面10b上。The
喷射器12被设置成不是直接向下而是略朝向火花塞14的电极部分14a喷射燃料。此外,喷射器12被设置成使由喷射器12喷射的燃料向火花塞14一侧扩散得更多。The
同样,火花塞14被设置成不是直接向下而是略朝向喷射器12产生放电。此外,火花塞14被设置成使电极部分14a位于由喷射器12喷射的燃料在其中扩散的燃料喷射区域内或附近,或换句话说,位于产生的油雾15内或附近。Likewise, the
在斜面10a一侧,两个进气阀16a、16b被设置成位于喷射器12的相对两侧。在斜面10b一侧,两个排气阀18a、18b被设置成位于火花塞14的相对两侧。On the side of the
进气阀16a、16b和排气阀18a、18b被设计成在形成在气缸盖8中的进气口20和排气口22内上下滑动,从而使每个进气口20或排气口22与燃烧室2连接和断开。The
在下面的说明中,包含喷射器12的末端和火花塞14的末端以及在燃烧室2内延伸的平面将称为平面P,喷射器12和进气阀16a,16b被设置在其上的燃烧室2的斜面10a一侧将被称为进气侧,火花塞14和排气阀18a,18b被设置在其上的燃烧室2的斜面10b一侧将被称为排气侧。In the following description, the plane containing the end of the
空腔30在形成燃烧室2的底面的活塞6的顶面上形成。A
空腔30为由底面32和壁面34构成的凹形。The
具体地,空腔30的底面32总体上从进气侧向排气侧向下倾斜。底面32包括高于它的周围的上升部32a,该上升部32a沿平面P从靠近底面32的中心向进气侧的壁面34延伸。因此,上升部32a被凹部32b环绕,该凹部32b从上看几乎为U形。Specifically, the
如图3所示,空腔30具有从进气侧向排气侧逐渐逼近平面P的相对的边缘,使得空腔的开口从进气侧向排气侧变得更窄。As shown in FIG. 3 , the
空腔30的壁面34从底面32的周边平滑地向上倾斜。The
排气口22通过排气歧管40连接到排气管42(排气通道)。废气催化转化器44被设置在排气管42中。废气催化转化器44是例如能够氧化HC和CO并减少NOx的三元催化转化器。The
催化剂温度传感器46(催化剂温度检测装置)被附接到废气催化转化器44上。催化剂温度传感器46被电接到ECU(电子控制单元)50(喷射时刻控制装置,点火时刻控制装置)上。A catalyst temperature sensor 46 (catalyst temperature detection means) is attached to the exhaust gas
ECU50还与检测加速器踏板压低的APS(加速器位置传感器)52(运转状态检测装置),检测节气门开度的TPS(节气门位置传感器)54(运转状态检测装置),检测发动机1的转速的发动机转速传感器56(运转状态检测装置),检测车速的车速传感器58(运转状态检测装置)以及包括喷射器12和火花塞14的各种装置电连接并实施各种控制。The ECU 50 also cooperates with an APS (accelerator position sensor) 52 (running state detection device) that detects the depression of the accelerator pedal, a TPS (throttle position sensor) 54 (running state detection device) that detects the throttle opening, and an engine that detects the rotational speed of the
下文将说明具有上述结构的根据本发明的直喷式火花点火内燃机怎样工作。Hereinafter, it will be explained how the direct injection type spark ignition internal combustion engine according to the present invention having the above structure works.
图4是燃烧室的剖面图,显示在根据本发明的直喷式火花点火内燃机中燃料喷射过程中油雾的分布;图5是沿图4中线B-B的剖面图;图6是同图4相似的剖面图,显示在根据本发明的直喷式火花点火内燃机中燃料喷射后通过燃料汽化形成的空气燃料混合物的分布;以及图7是沿图6中线C-C的剖面图。下文将基于图4到图7进行说明。Fig. 4 is a cross-sectional view of a combustion chamber, showing the distribution of oil mist during fuel injection in a direct-injection spark ignition internal combustion engine according to the present invention; Fig. 5 is a cross-sectional view along line B-B in Fig. 4; Fig. 6 is similar to Fig. 4 A cross-sectional view showing the distribution of air-fuel mixture formed by fuel vaporization after fuel injection in a direct-injection spark ignition internal combustion engine according to the present invention; and FIG. 7 is a cross-sectional view along line C-C in FIG. 6 . The following description will be made based on FIGS. 4 to 7 .
如图4和5所示,当活塞6在后压缩冲程中时,燃料从喷射器12的末端向火花塞14一侧喷射。在火花塞14的电极部分14a近旁通过并进入活塞6的顶面中的空腔30的喷射燃料主要在排气一侧变成油雾15。在此,理想的配置是使由喷射器12的燃料喷射形成的油雾15为中空形分布,例如,中空锥形分布,当然不仅限于此种分布。As shown in FIGS. 4 and 5, fuel is injected from the tip of the
由于空腔30的底面32从进气侧到排气侧向下倾斜并且油雾15向火花塞14一侧扩散得更多,已经进入空腔30并与空腔30的底面32发生碰撞的油雾15以良好的方式被引导到排气侧,同时被更多地汽化。在此,已经与底面32的上升部32a发生碰撞的油雾15被扩散到上升部32a的两侧以及排气侧。然后,如图6和7所示,沿着排气侧的壁面34引导的油雾15向上移动,同时被进一步汽化,并且作为空气-燃料混合物15a脱离空腔30。Since the
像这样已经从空腔30脱离的空气-燃料混合物15a曲线上升并环绕火花塞14的电极部分14a。结果,在电极部分14a的周围存在相对较丰富的空气-燃料混合物。The air-
具体地,由于在燃烧室2中具有中空形分布的油雾15被空腔30的底面32的上升部32a扩散到两侧,向底面32的周边移动并曲线上升,因此在它的中心区域所形成的空气-燃料混合物中包含的燃料数量较少。这样,空气-燃料混合物15a不会在电极部分14a的周围变得过浓。Specifically, since the
假定燃料以上述的方式被喷射器12喷射,可以设想两种点火方法:如图4和5所示在燃料喷射过程中形成的油雾15被直接点火的所谓的喷雾引导方法,以及如图6和7所示已经从空腔30脱离并聚集在电极部分14a周围的空气-燃料混合物15a被点火的所谓壁引导方法。对于壁引导方法,空气-燃料混合物不取决于诸如翻滚气流的进气流而是基于燃料喷射力经引导后环绕电极部分14a的类型最好。这是因为由进气形成的翻滚气流等相对比较弱并取决于发动机的运转状态变化,因此,不足以引导油雾达到稳定的分层充气燃烧。Assuming that the fuel is injected by the
图8是显示在根据本发明的直喷式火花点火内燃机中负荷状态变化时喷雾引导方法和壁引导方法的稳定燃烧区域怎样变化的图表;以及图9是显示在喷雾引导方法被采用和壁引导方法被采用时根据本发明的直喷式火花点火内燃机的废气特性的图表。喷雾引导方法和壁引导方法的特征将基于图8和9说明。Fig. 8 is a graph showing how the stable combustion regions of the spray guiding method and the wall guiding method change when the load state changes in the direct injection spark ignition internal combustion engine according to the present invention; Graph of exhaust gas characteristics of a direct-injection spark-ignition internal combustion engine according to the invention when the method is employed. Features of the spray guidance method and the wall guidance method will be explained based on FIGS. 8 and 9 .
图8A、8B、8C分别显示在低负荷、中负荷以及高负荷中喷雾引导方法和壁引导方法的稳定燃烧区域,其中点火时刻由纵轴表示,喷射时刻由横轴表示。8A, 8B, and 8C show the stable combustion regions of the spray-guided method and the wall-guided method at low load, medium load, and high load, respectively, where the ignition timing is represented by the vertical axis and the injection timing is represented by the horizontal axis.
从这些图可知,关于壁引导方法,当负荷变化时稳定燃烧区域发生变化。因此,在壁引导方法中,在负荷变化的过渡期必须取决于发动机1的转速和负荷改变喷射时刻和点火时刻。As can be seen from these figures, with the wall-guided method, the stable combustion area changes when the load changes. Therefore, in the wall-guided method, the injection timing and the ignition timing must be changed depending on the rotation speed and the load of the
同时,关于喷雾引导方法,由于点火在喷射器12的燃料喷射期间或燃料喷射后立即实施,不管负荷怎样变化,稳定燃烧区域保持相对恒定。因此,发动机能够以恒定的燃料喷射时刻和点火时刻运转,而不取决于发动机1的转速和负荷。Meanwhile, with respect to the spray guiding method, since ignition is performed during or immediately after fuel injection by the
因此,喷雾引导方法具有在过渡期燃烧稳定的特征。Therefore, the spray-guided method is characterized by stable combustion during the transition period.
图9A,9B和9C分别显示HC排出量,NOx排出量和CO排出量,其中各个排出量由纵轴表示,喷射时刻由横轴表示。9A, 9B and 9C show the HC emission amount, NOx emission amount and CO emission amount, respectively, wherein each emission amount is indicated by the vertical axis and the injection timing is indicated by the horizontal axis.
从这些图可以看出,壁引导方法与喷射引导方法比较具有产生较多HC排放,较多CO排放和较少NOx排放的特征。From these figures it can be seen that the wall-guided method is characterized by producing more HC emissions, more CO emissions and less NOx emissions compared to the injection-guided method.
图10是显示在根据本发明的直喷式火花点火内燃机中ECU50实施的确定燃烧方法的控制程序的流程图。下文将基于该流程图进行说明。FIG. 10 is a flowchart showing a control routine for determining the combustion method implemented by the
首先,在步骤S1中,读取各种检测数据,包括来自发动机转速传感器56的发动机转速N、来自APS52的加速器压低Acc、来自TPS54的节气门开度θ、来自车速传感器58的车速V、来自催化剂温度传感器46的催化剂温度T。First, in step S1, various detection data are read, including the engine speed N from the
然后在步骤S2中,基于从节气门开度θ计算的发动机转速N和发动机负荷L确定发动机1的运转状态是否满足分层充气燃烧的条件。具体地,确定发动机转速N是否小于预先确定的分层充气燃烧的最大发动机转速N1和是否大于预先确定的分层充气燃烧的最小发动机转速N2(N2<N<N1),以及确定发动机负荷L是否小于预先确定的分层充气燃烧的最大负荷L1和是否大于预先确定的分层充气燃烧的最小负荷L2(L2<L<L1)。如果在步骤S2中确定的结果为否(No),采用步骤S20来实施均匀充气燃烧且程序的实施在此结束。如果在步骤S2中确定的结果为是(Yes),采用步骤S3。Then in step S2, it is determined whether the operating state of the
在步骤S3中通过分别确定单位时间发动机转速的变化|ΔN|、单位时间车速的变化|ΔV|,单位时间节气门开度的变化|Δθ|是否小于预先为它们确定的规定值来确定发动机1是否稳定运转。如果在步骤S3中确定的结果为否(No),即,发动机1处于发动机转速N,车速V和节气门开度θ单位时间中的任何一项的变化为规定值或大于规定值的过渡运转状态,采用步骤S10来通过喷雾引导方法实施燃烧并且程序的实施在此结束。这时,即使发动机1处于过渡运转状态,分层充气燃烧也能够被稳定实施。In step S3, the
同时,如果在步骤S3中确定的结果为是(Yes),即,发动机1处于稳定运转状态,采用步骤S4。Meanwhile, if the result of the determination in step S3 is Yes (Yes), that is, the
在步骤S4中,确定催化剂温度T是否低于预先确定的最大规定温度T1(第二规定温度)。如果在步骤S4中确定的结果为否(No),也就是说催化剂的温度T高,即等于或高于最高规定温度T1,采用步骤S10通过喷雾引导方法来实施燃烧。像这样,在催化剂温度高时通过采用喷雾引导方法实施燃烧,HC排放量和CO排放量能够被减少,使催化剂温度的升高,以及由于氧化产生的催化剂变质以及催化剂毒化能够被抑制。In step S4, it is determined whether or not the catalyst temperature T is lower than a predetermined maximum prescribed temperature T1 (second prescribed temperature). If the result of the determination in step S4 is negative (No), that is, the temperature T of the catalyst is high, ie, equal to or higher than the maximum specified temperature T1, step S10 is adopted to carry out combustion by the spray induction method. As such, by performing combustion using the spray-guided method when the catalyst temperature is high, HC emissions and CO emissions can be reduced, so that a rise in catalyst temperature, and catalyst deterioration and catalyst poisoning due to oxidation can be suppressed.
同时,如果在步骤S4中的确定结果为是(Yes),采取步骤S5。在步骤S5中,确定催化剂温度T是否高于预先确定的最小规定温度T2(第一规定温度)。如果在步骤S5中确定的结果为否(No),也就是说催化剂的温度T低,即等于或低于最小规定温度T2,采用步骤S8通过壁引导方法来实施燃烧并且程序的实施在此结束。像这样,在催化剂温度低时通过采用壁引导方法实施燃烧,HC排放量和CO排放量能够增加,使催化氧化反应能够被促进,并且在氧化反应中产生的热能够导致催化剂的温度升高,从而激发废气净化功能。Meanwhile, if the determined result in step S4 is Yes (Yes), step S5 is taken. In step S5, it is determined whether the catalyst temperature T is higher than a predetermined minimum prescribed temperature T2 (first prescribed temperature). If the result of determination in step S5 is negative (No), that is to say the temperature T of the catalyst is low, that is, equal to or lower than the minimum specified temperature T2, step S8 is adopted to carry out combustion by the wall-guided method and the execution of the program ends here . Like this, by performing combustion by employing the wall-guiding method when the catalyst temperature is low, the HC emission amount and the CO emission amount can be increased, the catalytic oxidation reaction can be promoted, and the heat generated in the oxidation reaction can cause the temperature of the catalyst to rise, Thereby stimulating the exhaust gas purification function.
同时,如果在步骤S5中的确定结果为是(Yes),采取步骤S6。Meanwhile, if the determined result in step S5 is Yes (Yes), step S6 is taken.
在步骤S6中,确定在上述步骤S3中识别稳定运转的条件被满足后预先确定的规定时间(例如2秒)是否已经过去。如果在步骤S6中确定的结果为否(No),再次采用步骤S1。如果在步骤S6中确定的结果为是(Yes),即在发动机处于稳定运转状态后一段时间已经过去,采用步骤S7。In step S6, it is determined whether or not a predetermined time (for example, 2 seconds) has elapsed after the condition for recognizing stable operation in the above-mentioned step S3 is satisfied. If the result of the determination in step S6 is negative (No), step S1 is adopted again. If the result of the determination in step S6 is Yes (Yes), ie a period of time has elapsed after the engine has been in a steady state, step S7 is adopted.
在步骤S7中,基于发动机转速N和发动机负荷L确定发动机1的运转状态是否满足壁引导方法的条件。具体地,发动机转速N是否小于预先确定的分层充气燃烧的最大发动机转速N3以及是否大于预先确定的分层充气燃烧的最小发动机转速N4(N4<N<N3),并且确定发动机负荷L是否小于预先确定的分层充气燃烧的最大发动机负荷L3以及是否大于预先确定的分层充气燃烧的最小发动机负荷L4(L4<L<L3)。如果在步骤S7中确定的结果为是(Yes),采用步骤S8通过壁引导方法实施燃烧并且程序的实施在此结束。同时,如果在步骤S7中确定的结果为否(No),采用步骤S10通过喷雾引导方法实施燃烧并且程序的实施在此结束。。In step S7, it is determined based on the engine speed N and the engine load L whether the operating state of the
如上所述,当发动机1的运转状态满足分层充气燃烧的条件以及发动机1处于过渡运转期时,通过喷雾引导方法实施燃烧,能够达到不易受发动机转速N和发动机负荷L变化影响的稳定燃烧。As mentioned above, when the operating state of the
此外,当发动机1处于稳定运转状态时,取决于发动机转速N和负荷L,通过选择燃料经济性等中更好的一种,实施在喷雾引导方法和壁引导方法之间的转换。取决于催化剂温度T实施在喷雾引导方法和壁引导方法之间的转换,使废气催化转化器44总是处于最佳温度,使废气催化转化器能够满意地实施废气净化的功能。结果,废气中包含的有害物质能够充分地被减少。In addition, when the
此外,即使通过喷雾引导方法的点火失败或通过喷雾引导方法点火后火焰偶然停止蔓延,通过壁引导方法继续实施点火燃烧最终也能够完成。In addition, even if ignition by the spray-introduction method fails or the flame accidentally stops spreading after ignition by the spray-introduction method, continued ignition and combustion by the wall-introduction method can eventually be completed.
具体地,在根据本发明的直喷式火花点火内燃机中,壁引导方法能够仅通过与喷雾引导方法相比延迟点火时刻而被实施。因此,例如,通过设置熄火检测装置,就能够容易地配置成即使通过喷雾引导方法点火失败,熄火也被检测到并且很快在其后通过壁引导方法完成点火。Specifically, in the direct-injection spark ignition internal combustion engine according to the invention, the wall-guided method can be implemented only by retarding the ignition timing compared to the spray-guided method. Therefore, for example, by providing misfire detection means, it is possible to easily configure that even if ignition fails by the spray-guided method, misfire is detected and ignition is completed by the wall-guided method soon thereafter.
也能够配置成实施所谓的两次点火,无论在什么时候通过喷雾引导方法进行燃烧,通过喷雾引导方法的点火后都跟随通过壁引导方法的点火。It can also be configured to implement a so-called double ignition, where ignition by the spray-guided method is followed by an ignition by the wall-guided method whenever combustion is carried out by the spray-guided method.
通过这样的方式,稳定燃烧区域能够被扩大,使得分层充气燃烧的稳定性能够被进一步改善。In this way, the stable combustion area can be enlarged, so that the stability of stratified charge combustion can be further improved.
上文是对于本发明的一个实施例的直喷式火花点火内燃机的说明。然而,本发明不限于上面说明的实施例。The above is the description of the direct injection type spark ignition internal combustion engine which is one embodiment of the present invention. However, the present invention is not limited to the above-described embodiments.
例如,在上面的实施例中,被采用的燃烧方法基于发动机1的运转状态和催化剂温度而确定。然而,可以只基于这些因素中的一个因素来确定,或另外的因素也可以被考虑来确定被采用的燃烧方法。For example, in the above embodiments, the combustion method to be employed is determined based on the operating state of the
此外,在上例实施例中,APS52,TPS54,发动机转速传感器56和车速传感器58被用作运转状态检测装置。然而,运转状态检测装置不限于这些装置。发动机1的运转状态可以通过使用其它装置从其它因素被检测。Furthermore, in the above embodiment, the
此外,在上述实施例中,废气催化转化器44为三元催化转化器。然而,废气催化转化器不限于此而可以是其它的类型。Furthermore, in the above embodiments, the exhaust gas
本发明在本文中被如此说明,但很明显本发明还可以有许多方式的变化。这些变化不认为是背离了本发明的精神和范围,并且,所有对于本领域的熟练技术人员很明显的所有这样的修改都将被包括在附后的权利要求的范围内。The invention thus described herein, it will be obvious that the invention may be varied in many ways. Such changes are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to a person skilled in the art are intended to be included within the scope of the appended claims.
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005027768 | 2005-02-03 | ||
JP2005027767A JP4214410B2 (en) | 2005-02-03 | 2005-02-03 | In-cylinder injection type spark ignition internal combustion engine |
JP2005027767 | 2005-02-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1814996A CN1814996A (en) | 2006-08-09 |
CN100441839C true CN100441839C (en) | 2008-12-10 |
Family
ID=36907336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100043322A Active CN100441839C (en) | 2005-02-03 | 2006-01-24 | Direct Injection Spark Ignition Internal Combustion Engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4214410B2 (en) |
CN (1) | CN100441839C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5884701B2 (en) * | 2012-02-01 | 2016-03-15 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11210472A (en) * | 1998-01-28 | 1999-08-03 | Fuji Heavy Ind Ltd | Structure of combustion chamber in cylinder injection type spark ignition engine |
US5967113A (en) * | 1996-12-12 | 1999-10-19 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust-gas temperature raising system for an in-cylinder injection type internal combustion engine |
US6032650A (en) * | 1997-05-12 | 2000-03-07 | Mecel Ab | Method for closed-loop control of injection timing in combustion engines |
EP1098080A1 (en) * | 1998-07-10 | 2001-05-09 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US6386173B1 (en) * | 1999-04-28 | 2002-05-14 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | In-cylinder injection type internal combustion engine |
US6691669B2 (en) * | 2002-06-04 | 2004-02-17 | Ford Global Technologies, Llc | Overall scheduling of a lean burn engine system |
-
2005
- 2005-02-03 JP JP2005027767A patent/JP4214410B2/en not_active Expired - Lifetime
-
2006
- 2006-01-24 CN CNB2006100043322A patent/CN100441839C/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5967113A (en) * | 1996-12-12 | 1999-10-19 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust-gas temperature raising system for an in-cylinder injection type internal combustion engine |
US6032650A (en) * | 1997-05-12 | 2000-03-07 | Mecel Ab | Method for closed-loop control of injection timing in combustion engines |
JPH11210472A (en) * | 1998-01-28 | 1999-08-03 | Fuji Heavy Ind Ltd | Structure of combustion chamber in cylinder injection type spark ignition engine |
EP1098080A1 (en) * | 1998-07-10 | 2001-05-09 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US6386173B1 (en) * | 1999-04-28 | 2002-05-14 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | In-cylinder injection type internal combustion engine |
US6691669B2 (en) * | 2002-06-04 | 2004-02-17 | Ford Global Technologies, Llc | Overall scheduling of a lean burn engine system |
Also Published As
Publication number | Publication date |
---|---|
JP2006214343A (en) | 2006-08-17 |
CN1814996A (en) | 2006-08-09 |
JP4214410B2 (en) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7231901B2 (en) | Direct-injection engine, method of controlling the same, piston used in the same and fuel injection valve used in the same | |
US6644019B2 (en) | Combustion control apparatus for engine | |
JP3741494B2 (en) | In-cylinder injection engine | |
JP6206364B2 (en) | Internal combustion engine | |
JP2005214102A (en) | Control device of cylinder injection internal combustion engine | |
JP3937874B2 (en) | Ignition control in a direct injection internal combustion engine. | |
US7104249B2 (en) | Direct fuel injection/spark ignition engine control device | |
JP2005220839A (en) | Compression auto-ignition gasoline engine and control method of fuel injection | |
WO2006072983A1 (en) | Cylinder injection spark ignition type internal combustion engine | |
CN100441839C (en) | Direct Injection Spark Ignition Internal Combustion Engine | |
US7331325B2 (en) | Direct-injection spark-ignition internal combustion engine | |
JP3781536B2 (en) | Combustion chamber structure of in-cylinder injection engine | |
JP5498353B2 (en) | Spark ignition internal combustion engine | |
CN100416059C (en) | In-cylinder injection spark ignition internal combustion engine | |
JP4428275B2 (en) | Direct injection internal combustion engine and method of forming mixture | |
EP4063636B1 (en) | Engine system | |
JP3741209B2 (en) | In-cylinder internal combustion engine | |
JP4632032B2 (en) | In-cylinder injection type spark ignition internal combustion engine | |
JP4311300B2 (en) | In-cylinder direct injection spark ignition internal combustion engine controller | |
JP5067566B2 (en) | In-cylinder injection type spark ignition internal combustion engine | |
JP4389831B2 (en) | In-cylinder direct injection spark ignition internal combustion engine controller | |
CN116733651A (en) | internal combustion engine | |
JP2020037897A (en) | Premixed compression ignition engine | |
JP2007198324A (en) | Cylinder direct-injection type spark ignition internal combustion engine | |
JP2020037894A (en) | Premixed compression ignition engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: No.21, No.3, Dingmu, No.1, Zhipu, Tokyo, Japan Patentee after: Mitsubishi Jidosha Kogyo Kabushiki Kaisha Address before: Tokyo Capital of Japan Patentee before: Mitsubishi Jidosha Kogyo Kabushiki Kaisha |