CN100439929C - Method and system for measuring transverse piezoelectric strain constant of piezoelectric material by quasi-static method - Google Patents
Method and system for measuring transverse piezoelectric strain constant of piezoelectric material by quasi-static method Download PDFInfo
- Publication number
- CN100439929C CN100439929C CNB2005101262252A CN200510126225A CN100439929C CN 100439929 C CN100439929 C CN 100439929C CN B2005101262252 A CNB2005101262252 A CN B2005101262252A CN 200510126225 A CN200510126225 A CN 200510126225A CN 100439929 C CN100439929 C CN 100439929C
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- force
- sample
- tested sample
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明涉及一种压电材料横向压电应变常数(简称d31压电常数)的测量方法及系统,该方法采用准静态法(区别于以往的动态法和静态法)测量d31压电常数,通过对被测试样施加一低频交变作用力和测量被测试样由于正压电效应所产生出的低频交变电压而获得被测试样的d31压电常数,该系统主要由施力装置和电路装置两部分组成,施力装置通过专用的加力附件对被测试样提供测量所需作用力,电路装置一方面提供施力装置产生低频交变作用力所需的电驱动信号,另一方面将被测试样在低频交变作用力下由于正压电效应所产生出的低频交变电压信号进行放大和处理,最后将得到的被测试样d31压电常数进行显示输出,测量操作简单、快捷,测量结果准确可靠。
The invention relates to a method and system for measuring the transverse piezoelectric strain constant of a piezoelectric material (referred to as the d 31 piezoelectric constant). The method uses a quasi-static method (different from the previous dynamic method and static method) to measure the d 31 piezoelectric constant , by applying a low-frequency alternating force to the tested sample and measuring the low-frequency alternating voltage generated by the tested sample due to the positive piezoelectric effect, the d 31 piezoelectric constant of the tested sample is obtained. The system is mainly composed of a force-applying device It is composed of two parts: the force applying device and the circuit device. The force applying device provides the force required for measurement to the sample to be tested through a special force-applying attachment. On the one hand, the low-frequency alternating voltage signal generated by the positive piezoelectric effect of the tested sample under the low-frequency alternating force is amplified and processed, and finally the obtained tested sample d 31 piezoelectric constant is displayed and output, and the measurement operation is simple , fast, accurate and reliable measurement results.
Description
技术领域 technical field
本发明涉及一种压电材料压电常数的测量方法,特别是涉及压电材料横向压电应变常数(简称d31压电常数)的一种测量方法和测量系统。The present invention relates to a method for measuring the piezoelectric constant of piezoelectric materials, in particular to a method and system for measuring the transverse piezoelectric strain constant of piezoelectric materials (abbreviated as d31 piezoelectric constant).
技术背景technical background
压电常数是表征压电材料压电性能的重要参数,主要包括有纵向压电应变常数d33(测量方法可参考本申请人在99年2月6日被授权的专利“准静态法纵向压电应变常数测量仪,专利号为:ZL97231420.2),横向压电应变常数d31,切向压电应变常数d15以及等静压压电常数dh等。对于横向压电应变常数d31的测量,以往采用动态法和静态法进行,动态法测量横向压电应变常数d31,是通过测量被测试样的谐振和反谐振频率后经过计算而得到,是目前国际上公认的测量精度较高的一种d31压电常数测量方法,但动态法测试过程烦琐,测量中要求满足一定的边界条件和屏蔽要求,局限性大,只能测量满足特定形状、规格和尺寸要求的标准试样(例如:薄长条或薄圆片),实用性差。静态法测量d31压电常数,是利用压电材料所具有的正压电效应通过对被测试样施加一单方向作用力后测量其压电电压值来得到d31值,但在测量中为保证测量灵敏度所施加的静态作用力较大,由于压电材料所具有的非线性和热释电漂移现象,导致了测量误差大和重复性差。Piezoelectric constant is the important parameter that characterizes the piezoelectric performance of piezoelectric material, mainly comprises longitudinal piezoelectric strain constant d 33 (measurement method can refer to the patent " quasi-static method longitudinal compression method that the applicant was authorized on February 6, 99 Electrical strain constant measuring instrument, patent number: ZL97231420.2), transverse piezoelectric strain constant d 31 , tangential piezoelectric strain constant d 15 and isostatic piezoelectric constant d h , etc. For transverse piezoelectric strain constant d 31 In the past, the dynamic method and the static method were used to measure the transverse piezoelectric strain constant d 31 , which was calculated by measuring the resonant and anti-resonant frequencies of the tested sample. It is currently internationally recognized that the measurement accuracy is relatively high A high d 31 piezoelectric constant measurement method, but the test process of the dynamic method is cumbersome, and certain boundary conditions and shielding requirements are required to be met during the measurement, which has great limitations and can only measure standard samples that meet specific shape, specification and size requirements (For example: thin strips or thin discs), poor practicability. Static method to measure the d 31 piezoelectric constant is to use the positive piezoelectric effect of the piezoelectric material to measure its force after applying a unidirectional force to the tested sample. The value of d 31 can be obtained by using the piezoelectric voltage value, but in the measurement, the static force applied to ensure the measurement sensitivity is relatively large, due to the nonlinearity and pyroelectric drift of the piezoelectric material, resulting in large measurement errors and poor repeatability .
发明内容 Contents of the invention
本发明的目的在于解决以往动态法测量压电材料d31压电常数测试过程烦琐,实用性差的缺陷,以及解决静态法测量d31压电常数误差大和重复性差的问题,从而提供一种适于对各种形状的压电材料都可以测量的、简单实用的、且能满足测量精确度要求的d31压电常数准静态测量方法及系统。The purpose of the present invention is to solve the previous dynamic method to measure the piezoelectric material d 31 piezoelectric constant test process is cumbersome, the defect of poor practicability, and to solve the static method to measure the d 31 piezoelectric constant error and poor repeatability, thereby providing a suitable The d 31 piezoelectric constant quasi-static measurement method and system can measure piezoelectric materials of various shapes, are simple and practical, and can meet the measurement accuracy requirements.
根据d31压电常数定义:According to the definition of d 31 piezoelectric constant:
此处,D3,E3分别为电位移及电场强度,T1,S1为与极化方向相垂直的应力和应变,当对被测试样提供的作用力是一个低频正弦波交变力,其频率远低于该试样的固有谐振频率时,试样中的应力和应变基本上是分布均匀的,因而被看作是准静态,式(1)可化简为:Here, D 3 , E 3 are electric displacement and electric field intensity respectively, T 1 , S 1 are stress and strain perpendicular to the polarization direction, when the force provided to the tested sample is a low-frequency sine wave alternating force , when its frequency is much lower than the natural resonant frequency of the sample, the stress and strain in the sample are basically evenly distributed, so it is regarded as quasi-static. Equation (1) can be simplified as:
这里,A为施加应力的面积,B为产生电荷Q的面积,F为所施加的低频交变力,C为与样品并联的大电容,以满足测量d31时的恒定电场边界条件,其C值由样品的尺寸决定;V为由于压电效应而在大电容C两端所产生出的压电电压。Here, A is the area where the stress is applied, B is the area where the charge Q is generated, F is the applied low-frequency alternating force, and C is a large capacitor connected in parallel with the sample to meet the constant electric field boundary condition when measuring d 31 , where C The value is determined by the size of the sample; V is the piezoelectric voltage generated across the large capacitor C due to the piezoelectric effect.
根据d33压电常数定义为:According to the d 33 piezoelectric constant is defined as:
此处,D3,E3分别为电位移及电场强度,T3,S3为与极化方向一致的应力和应变,同理在准静态测量条件下,式(3)可简化为:Here, D 3 , E 3 are the electric displacement and electric field strength respectively, T 3 , S 3 are the stress and strain consistent with the polarization direction, similarly, under quasi-static measurement conditions, formula (3) can be simplified as:
此处,A为施加应力和产生电荷Q的面积(由于应力和应变与极化方向一致),F为所施加的低频交变力,C为与被测样品并联的大电容,同样为了提供一个满足测量d33时的恒定电场边界条件,其C值由样品的尺寸决定;V为由于压电效应而在大电容C两端所产生出的压电电压。Here, A is the area where the stress is applied and the charge Q is generated (since the stress and strain are consistent with the polarization direction), F is the applied low-frequency alternating force, and C is the large capacitance connected in parallel with the sample to be tested, also in order to provide a It meets the constant electric field boundary condition when measuring d 33 , and its C value is determined by the size of the sample; V is the piezoelectric voltage generated at both ends of the large capacitor C due to the piezoelectric effect.
本发明的目的是这样实现的,根据d31压电常数的定义,采用通过对被测试样直接施加低频交变力和测量被测试样由于正压电效应而产生出的低频压电电压的准静态方法而得到被测试样的d31压电常数,为使测量简单可行而引入内部比较样品,以内部比较样品的纵向压电常数d33值作为基准,采用比较法而获得被测试样的d31压电常数。The object of the present invention is achieved like this, according to the definition of d 31 piezoelectric constant, adopt the quasi-voltage method of directly applying low-frequency alternating force to the tested sample and measuring the low-frequency piezoelectric voltage produced by the positive piezoelectric effect of the tested sample The d 31 piezoelectric constant of the tested sample is obtained by the static method. In order to make the measurement simple and feasible, the internal comparison sample is introduced, and the longitudinal piezoelectric constant d 33 value of the internal comparison sample is used as the benchmark, and the d of the tested sample is obtained by the comparison method. 31 piezoelectric constant.
本发明提供的压电材料准静态法横向压电应变常数测量方法(采用比较法),包括以下步骤:The piezoelectric material quasi-static method transverse piezoelectric strain constant measurement method provided by the present invention (adopting comparative method), comprises the following steps:
1)将被测试样与内部比较样品(纵向压电常数d33值为已知的)力学上串联,使两者所受作用力的大小一致,同时,内部比较样品的受力方向与其极化方向一致,以满足其纵向压电常数d33的加力要求;被测试样的受力方向与极化方向垂直,以满足其横向压电常数d31的加力要求;1) Connect the tested sample and the internal comparison sample (the value of the longitudinal piezoelectric constant d 33 is known) in series mechanically, so that the magnitude of the force on the two is consistent, and at the same time, the force direction of the internal comparison sample and its polarization The direction is consistent to meet the force requirement of its longitudinal piezoelectric constant d 33 ; the force direction of the tested sample is perpendicular to the polarization direction to meet the force requirement of its transverse piezoelectric constant d 31 ;
2)被测试样与内部比较样品两端并联相同容量的大电容,以满足d31和d33测量时所需要的恒定电场条件;2) A large capacitor with the same capacity is connected in parallel between the two ends of the tested sample and the internal comparison sample to meet the constant electric field conditions required for the measurement of d 31 and d 33 ;
3)对被测试样和内部比较样品施加同一低频交变作用力,由于正压电效应在被测试样的极化电极面上产生出横向压电电荷,在内部比较样品的极化电极面上产生出纵向压电电荷,两路压电电荷通过各自并联的电容而转换成两路压电电压信号;3) Apply the same low-frequency alternating force to the tested sample and the internal comparison sample. Due to the positive piezoelectric effect, a transverse piezoelectric charge is generated on the polarized electrode surface of the tested sample, and on the polarized electrode surface of the internal comparison sample A longitudinal piezoelectric charge is generated, and the two piezoelectric charges are converted into two piezoelectric voltage signals through respective parallel capacitors;
4)利用内部比较样品已知的纵向压电常数d33值和通过施加同一低频交变力而得到的被测和比较两路压电电压值以及被测试样的几何尺寸(极化电极的面积和受力面积),根据以下公式:4) Use the known longitudinal piezoelectric constant d33 value of the internal comparison sample and the measured and compared two-way piezoelectric voltage values obtained by applying the same low-frequency alternating force and the geometric dimensions of the tested sample (the area of the polarized electrode and force area), according to the following formula:
计算得到被测试样的d31压电常数。Calculate the d 31 piezoelectric constant of the tested sample.
本发明提供的准静态法横向压电应变常数测量方法的工作原理为:对于被测试样,设所受到的作用力为F1,受力面积为A,极化电极的面积为B,被测试样两端所并联的大电容为C1,由于压电效应在电极面B上产生的压电电荷为Q1,通过并联大电容C1上产生的压电电压为V1,根据式(2)的d31压电常数定义可得:The working principle of the quasi-static transverse piezoelectric strain constant measurement method provided by the present invention is as follows: for the tested sample, assume that the applied force is F 1 , the force-bearing area is A, the area of the polarized electrode is B, and the tested The large capacitor connected in parallel at both ends of the sample is C 1 , the piezoelectric charge generated on the electrode surface B due to the piezoelectric effect is Q 1 , and the piezoelectric voltage generated by the parallel connection of the large capacitor C 1 is V 1 , according to the formula (2 )’s d 31 piezoelectric constant can be defined as:
对于内部比较样品,设所受到的作用力为F2,受力面积和极化电极的面积均为A(由于样品的受力方向与自身极化方向相同),两端所并联的大电容为C2,由于压电效应在电极面A上产生的压电电荷为Q2,在所并联大电容C2上产生的压电电压为V2,根据式(4)的d33压电常数定义可得:For the internal comparison sample, let the applied force be F 2 , the force area and the area of the polarized electrode are both A (since the force direction of the sample is the same as its own polarization direction), and the large capacitance connected in parallel at both ends is C 2 , the piezoelectric charge generated on the electrode surface A due to the piezoelectric effect is Q 2 , and the piezoelectric voltage generated on the parallel large capacitor C 2 is V 2 , which is defined according to the d 33 piezoelectric constant of formula (4) Available:
由于被测试样与内部比较样品两端分别并联的电容相同,即:C1=C2;又因为被测试样与内部比较样品在力学上串联,两者受力相同,则:F1=F2;被测试样的d31压电常数与内部比较样品的d33压电常数之比见以下公式:Since the capacitances connected in parallel at both ends of the tested sample and the internal comparison sample are the same, that is: C 1 =C 2 ; and because the tested sample and the internal comparison sample are mechanically connected in series, the force on both is the same, then: F 1 =F 2 ; The ratio of the d 31 piezoelectric constant of the tested sample to the d 33 piezoelectric constant of the internal comparison sample is shown in the following formula:
由于内部比较样品在测量中是不变的,则其d33压电常数值为已知,又因为被测试样的受力面积和产生电荷的面积能够用卡尺直接测出,因此可通过测量被测试样与内部比较样品两端并联电容上的压电电压值V1和V2而得到被测试样的d31压电常数,见下式(或式5与权利要求1中的公式)。Since the internal comparison sample is unchanged in the measurement, its d 33 piezoelectric constant value is known, and because the force-bearing area of the tested sample and the area where the charge is generated can be directly measured with a caliper, it can be measured by measuring The test sample is compared with the internal piezoelectric voltage values V1 and V2 on the parallel capacitors at both ends of the sample to obtain the d31 piezoelectric constant of the tested sample, see the following formula (or
在上述技术方案中,所述的低频交变作用力的频率为110赫兹左右,低频交变力的幅度为0.2个牛顿,被测试样与内部比较样品两端分别并联的大电容均为1微法。In the above technical solution, the frequency of the low-frequency alternating force is about 110 Hz, the amplitude of the low-frequency alternating force is 0.2 Newton, and the large capacitors connected in parallel at both ends of the tested sample and the internal comparison sample are both 1 micron Law.
本发明提供的压电材料准静态法横向压电应变常数测量系统(见图2),包括施力装置和电路装置,其中施力装置包含有:电磁驱动器、专用加力附件(见图3)和内部比较样品;The piezoelectric material quasi-static method transverse piezoelectric strain constant measurement system (see Figure 2) provided by the present invention includes a force applying device and a circuit device, wherein the force applying device includes: an electromagnetic driver, a special force adding accessory (see Figure 3) and internal comparison samples;
所述的电磁驱动器由磁钢33、轭铁芯36、外轭铁34、轭铁底座35、线圈32、活塞31和定心支片30构成,其中线圈32的上端与活塞31的下端相连,由定心支片30固定在外轭铁34的端面上,线圈32的有效部分(绕线部分)悬放在由磁钢33、轭铁芯36和外轭铁34构成的磁场间隙内,当线圈32接入低频正弦波驱动信号时,可在上述磁场中做上下直线运动并通过活塞31产生垂直方向的低频正弦波交变力;Described electromagnetic driver is made of
所述的专用加力附件由绝缘材料制成的上加力圆盘1和下加力圆盘3、定位连接件16、固定探头17、移动探头18、移动探头固定螺钉19、底座20以及底座固定螺钉21组成,其中上加力圆盘1固定在施力装置中定位滑块25的横梁延伸端头处,下加力圆盘3穿过圆型定位膜片28的中心与绝缘连接柱4相连;定位连接件16安插在下加力圆盘3的定位孔上,带有螺纹的固定探头17穿过定位连接件16的螺孔可进行旋转定位;底座20卡在主壳体22和固定环29上,通过底座固定螺钉21固定,移动探头18穿过底座20上的圆孔通过移动探头固定螺钉19定位和固定;专用加力附件的上加力圆盘1和下加力圆盘3用于对被测试样2施加纵向垂直作用力,旋转固定探头17和调节移动探头18的位置可使两个探头与被测试样2的两个电极面(图3和图4中的B方向)紧密接触,引出被测试样由于压电效应所产生出的压电电信号,专用加力附件可以对一定规格尺寸的块型或圆管型被测试样提供纵向作用力和从横向(或径向)获取压电电信号(见图3);The special booster accessories are made of insulating materials, the upper booster disc 1 and the
所述的内部比较样品采用压电陶瓷材料制作(也可用其它压电材料制作),具有稳定的压电性能,其d33压电常数随时间、温度、湿度变化所产生的影响非常小,它作为被测试样d31压电常数测量的基准,安装在施力装置内部,与被测试样在力学上串联,两者受力一致。The internal comparison sample is made of piezoelectric ceramic material (also can be made of other piezoelectric materials), has stable piezoelectric performance, and its d 33 piezoelectric constant has very little influence with time, temperature, and humidity changes. As the benchmark for the measurement of the piezoelectric constant of the tested sample d 31 , it is installed inside the force application device and connected in series with the tested sample mechanically, and the two are under the same force.
所述的电路装置由两路前置放大器9和10、振荡器11、功率放大器12、数据输入部分13、数据处理部分14和显示输出部分15组成,其中振荡器11的输出与功率放大器12的输入相连;前置放大器9和10的输入分别与被测试样2和比较样品6两端并联的大电容相连,前置放大器9和10的输出与数据输入部分13一切接入数据处理部分14,数据处理部分14的输出和显示输出部分15相连。Described circuit device is made up of two-
所述的振荡器11,一个正弦波电压信号发生器,振荡频率在110Hz左右;The oscillator 11 is a sine wave voltage signal generator with an oscillation frequency of about 110 Hz;
所述的功率放大器12,其输出功率仅为5瓦且连续可调,正弦波信号发生器的输出信号经功率放大器放大后接入电磁驱动器线圈,可使电磁驱动器最大产生1个牛顿的低频正弦波交变力;The
所述的两路前置放大器9和10,分别用于对被测和比较两路压电电压信号V1与V2进行放大,其输入阻抗为200KΩ左右,增益范围60-80db;The two-
所述的数据输入13,用于输入被测试样的受力面积和极化面积(A和B),为三位十进制数输入,其输入内容是被测试样的受力面积与极化面积比(受力面积与极化面积可以用卡尺方便地量出);Described
所述的数据处理14,由同步线性检波器、模拟除法器和A/D转换部分组成,用于对放大后的V1与V2以及已有或输入的其它数据进行处理和计算,以得到被测试样d31压电常数。经放大后的两路低频交变电压V1与V2首先通过同步线性检波器转换为两路直流电压信号,然后与输入的被测试样受力面积A、极化面积B以及内部比较样品的d33压电常数值送入模拟乘除法器按公式(5)计算d31压电常数的模拟量值,然后通过A/D转换将计算得到的被测试样d31压电常数模拟量值转换成为数字量值;The
所述的显示输出15,由4位LED数码管加符号位组成,可将测量得到的被测试样d31压电常数值和极性进行显示输出。The
本发明所提供的压电材料准静态法横向压电应变常数测量系统的主要工作过程如下:首先由电路装置中振荡器提供110赫兹左右的低频正弦波信号,经功率放大器放大后送施力装置中电磁驱动器产生0.2牛顿左右的低频正弦波交变力施加在被测试样(加力方向与试样自身极化方向垂直)和内部比较样品(加力方向与样品自身极化方向一致)上,由于压电效应在被测试样和内部比较样品上产生出的两路压电电压信号经前置放大器放大后与输入的被测试样尺寸一起再进行数据处理,最后得到的被测试样d31压电常数值和极性直接显示输出。The main working process of the piezoelectric material quasi-static method transverse piezoelectric strain constant measurement system provided by the present invention is as follows: first, the oscillator in the circuit device provides a low-frequency sine wave signal of about 110 Hz, which is amplified by the power amplifier and then sent to the force applying device The medium electromagnetic driver generates a low-frequency sine wave alternating force of about 0.2 Newton and applies it to the tested sample (the direction of the applied force is perpendicular to the polarization direction of the sample itself) and the internal comparison sample (the direction of the applied force is consistent with the polarization direction of the sample itself). Due to the piezoelectric effect, the two piezoelectric voltage signals generated on the tested sample and the internal comparison sample are amplified by the preamplifier and then processed together with the input tested sample size, and the finally obtained tested sample d 31 voltage The electrical constant value and polarity are directly displayed on the output.
本发明的优点在于:测量中选用的正弦波低频交变力的频率为110赫兹左右,远低于一般被测试样的固有谐振频率,故被测试样中的应力和应变基本上分布均匀,测量所需边界条件得到了保证;由于测量时施加在试样上的低频交变力幅度仅为0.2个牛顿左右,远低于静态法测量中数十个牛顿的作用力,有效避免了压电材料固有的非线性和热释电漂移现象的发生,降低了测量误差,保证了测量精度;又由于测量中采用比较法,被测试样与内部比较样品在力学上串联,数据处理过程中计算d31压电常数时所施加的正弦波低频交变作用力不但可以约去(见式8和式5),而且在加力过程中调节施力装置对被测试样松紧程度所造成的静压力偏差也可以抵消,同时由于测量中被测试样d31压电常数以内部比较样品d33压电常数为基准,因此,测量不仅可以得到被测试样的d31压电常数值还可以得到被测试样d31压电常数的极性,使得测量结果实用有效。The advantages of the present invention are: the frequency of the sine wave low-frequency alternating force selected in the measurement is about 110 Hz, which is far lower than the natural resonance frequency of the general tested sample, so the stress and strain in the tested sample are basically evenly distributed, and the measured The required boundary conditions are guaranteed; since the magnitude of the low-frequency alternating force applied to the sample during measurement is only about 0.2 Newtons, which is far lower than the force of tens of Newtons in the static method measurement, effectively avoiding the piezoelectric material The occurrence of inherent nonlinearity and pyroelectric drift phenomenon reduces the measurement error and ensures the measurement accuracy; and because the comparison method is used in the measurement, the tested sample and the internal comparison sample are mechanically connected in series, and the d 31 is calculated during the data processing The sine wave low-frequency alternating force applied at the piezoelectric constant can not only be reduced (see
附图说明 Description of drawings
图1为本发明d31压电常数准静态测量方法的原理图Fig. 1 is the schematic diagram of d31 piezoelectric constant quasi-static measurement method of the present invention
图2为本发明d31压电常数准静态测量系统结构示意图Fig. 2 is the structure schematic diagram of d31 piezoelectric constant quasi-static measurement system of the present invention
图3为本发明d31压电常数准静态测量专用加力附件结构示意图Fig. 3 is a schematic diagram of the structure of the d 31 piezoelectric constant quasi-static measurement special force attachment of the present invention
图4为本发明d31压电常数准静态测量施力装置结构示意图Fig. 4 is a structural schematic diagram of the d 31 piezoelectric constant quasi-static measurement force application device of the present invention
图5为本发明d31压电常数准静态测量实施例结构示意图Fig. 5 is the schematic diagram of the structure of the quasi-static measurement embodiment of the d31 piezoelectric constant of the present invention
图面说明Graphic description
1-上加力圆盘 2-被测试样 3-下加力圆盘1-upper force disc 2-test sample 3-lower force disc
4-绝缘连接柱 5-比较上探头 6-比较样品4-Insulation connection post 5-Comparison upper probe 6-Comparison sample
7-比较下探头 8-电磁驱动器 B-被测试样电极面7-Comparative probe 8-Electromagnetic driver B-Electrode surface of the tested sample
9-第一前置放大器 10-第二前置放大器 11-振荡器9-First preamplifier 10-Second preamplifier 11-Oscillator
12-功率放大器 13-数据输入 14-数据处理12-power amplifier 13-data input 14-data processing
15-显示输出 16-固定探头定位连接件 17-固定探头15-Display output 16-Fixed probe positioning connector 17-Fixed probe
18-移动探头 19-移动探头固定螺钉 20-底座18-Movement probe 19-Movement probe fixing screw 20-Base
21-底座固定螺钉 22-主壳体 23-定位导轨21-base fixing screw 22-main housing 23-positioning guide rail
24-导轨槽盖 25-定位滑块 26-调节杆24-Guide rail slot cover 25-Positioning slider 26-Adjusting rod
27-调节手轮 28-圆型定位膜片 29-固定环27-Adjusting hand wheel 28-Circular positioning diaphragm 29-Fixed ring
30-定心支片 31-活塞 32-线圈30-Spacer 31-Piston 32-Coil
33-磁钢 34-外轭铁 35-轭铁底座33-Magnet 34-Outer yoke 35-Yoke base
36-轭铁芯 37-信号输入连接插座36-Yoke core 37-Signal input connection socket
具体实施方式 Detailed ways
现在结合上述附图和实施例来进一步详细说明本发明的测量方法和系统。Now, the measurement method and system of the present invention will be further described in detail with reference to the above-mentioned figures and embodiments.
参考图2和5,制作一本实施例由施力装置和电路装置组成的压电材料准静态法横向压电应变常数测量系统。Referring to Figures 2 and 5, an embodiment of a piezoelectric material quasi-static transverse piezoelectric strain constant measurement system consisting of a force applying device and a circuit device is produced.
本实施例施力装置内的电磁驱动器参考图4,由磁钢33、轭铁芯36、外轭铁34、轭铁底座35、线圈32、活塞31和定心支片30构成,其中外轭铁34固定在轭铁底座35上,线圈32的上端与活塞31的下端相连,由定心支片30固定在外轭铁34的端面上,线圈32的绕线部分悬放在由磁钢33、轭铁芯36和外轭铁34构成的磁场间隙内,当接入低频正弦波驱动信号时,可在上述磁场中做上下直线运动并通过活塞31产生垂直方向的低频交变力。Referring to Figure 4, the electromagnetic driver in the force applying device of this embodiment is composed of a
参考图3,本实施例的专用加力附件由环氧板制成的上加力圆盘1和下加力圆盘3,不锈钢材料制成的固定探头17和它的定位连接件16,移动探头18和它的固定螺钉19、底座20以及底座固定螺钉21组成,上加力圆盘1固定在施力装置中定位滑块25的横梁延伸端头处,下加力圆盘3穿过圆型定位膜片28的中心与绝缘连接柱4相连;定位连接件16安插在下加力圆盘3的定位孔上,带有螺纹的固定探头17穿过定位连接件16的螺孔可进行旋转定位;底座20卡在主壳体22和固定环29上,通过底座固定螺钉21固定,移动探头18穿过底座20上的圆孔可以水平移动并通过固定螺钉19固定。信号输入连接插座37安装在主壳体22的外壁上。上加力圆盘1和下加力圆盘3用于对被测试样2施加纵向垂直作用力,旋转固定探头17和调节移动探头18的位置可使两个探头与被测试样2的两个电极面(图3和图4中的B方向)紧密接触,引出被测试样由于压电效应所产生出的压电电信号,专用加力附件可以对一定规格尺寸的块型或圆管型被测试样提供纵向作用力和从横向(或径向)获取压电电信号(见图3)Referring to Fig. 3, the special booster attachment of this embodiment consists of an upper booster disc 1 and a
内部比较样品6是由PZT-5型压电陶瓷材料制成的圆柱型压电陶瓷元件来承担,它的直径为6毫米,高度是5毫米,经过充分的老化时间后,其d33压电常数稳定,为400pC/N,极化电极面为圆柱的上下端面,上端面为极化时的正极,与比较上探头5相连接;下端面为极化时的负极,与比较下探头7相连接。
固定探头17和移动探头18的两端以及比较上下探头5和7的两端各并联一个1微法的电容后通过电缆连接到电路装置中的前置放大器9和10(参考图1),两路前置放大器的输入阻抗均为200KΩ,增益也完全相同,为80db。The two ends of the fixed
参考图2,本实施例的电路装置除了两路性能完全相同的前置放大器9和10外,还包括振荡器11、功率放大器12、数据输入部分13、数据处理部分14和显示输出部分15。Referring to FIG. 2 , the circuit device of this embodiment includes an oscillator 11 , a
这里对一个PZT-5型压电陶瓷材料制成的方块型样品(长、宽、高均为15毫米)进行d31压电常数的测量的过程如下:Here, the process of measuring the d 31 piezoelectric constant of a square sample (length, width, and height) made of a PZT-5 piezoelectric ceramic material is as follows:
参考图5,首先将压电材料准静态法横向压电应变常数测量系统中的施力装置和电路装置连接好(可参照实施例1中的有关说明),然后将方块型被测试样(2)放置在下加力圆盘(3)上面的中间,试样极化时的正电极一端与固定探头(17)相接,而负电极一端与移动探头(18)相接,调节移动探头(18)使方块型被测试样(2)的两个电极面与固定探头(17)移动探头(18)紧密接触,并利用移动探头固定螺钉(19)将其固定,然后,旋转施力装置的调节手轮(27)使定位滑块(25)上下移动并带动上加力圆盘(1)上下移动将方块型被测试样(2)压住,打开系统中电路装置的开关,振荡器(11)工作,产生振荡频率为110Hz的正弦波振荡信号经功率放大器(12)放大后送施力装置中电磁驱动器,转换为同频率的交变力作用在圆柱型内部比较样品(6)和方块型被测试样(2)上,由于压电效应在方型被测试样(2)和圆柱型内部比较样品(6)两端并联电容上所产生的两路低频交变电压经过各自连接的前置放大器(9)和(10)放大后分别送入数据处理部分(13)中的同步线性检波器检波,得到了与方型被测试样(2)的低频交变电压对应的直流电压V1,其极性为负,与圆柱型内部比较样品(6)的低频交变电压对应的直流电压V2,其极性为正,由于方型被测试样(2)受力面积与极化面积相同(15mm×15mm)比值为1,通过数据输入(13)的拨码盘输入“1.00”与圆柱型内部比较样品(6)的d33压电常数“400pC/N”一起送模拟乘除法器按准静态法测量中比较法的d31计算公式,计算方型被测试样(2)的d31压电常数并进行A/D转换,最后得到的测量结果为“-212pC/N”。以上是采用本发明的实施例1压电材料准静态法横向压电应变常数测量系统对方型被测试样d31压电常数测量的一个完整过程,从方型被测试样按要求放入测量系统施力装置中的专用加力附件固定后,到测量系统中电路装置启动,完成由振荡驱动输出、信号输入放大、数据处理到最终测量结果显示输出的全过程工作,只需几秒、最多十几秒的时间。With reference to Fig. 5, at first the force applying device and the circuit device in the piezoelectric material quasi-static method transverse piezoelectric strain constant measurement system are connected (can refer to the relevant description in embodiment 1), then the block type tested sample (2 ) is placed in the middle of the upper force disc (3), when the sample is polarized, one end of the positive electrode is connected to the fixed probe (17), while the other end of the negative electrode is connected to the moving probe (18). Adjust the moving probe (18) ) Make the two electrode surfaces of the square-shaped sample to be tested (2) closely contact with the fixed probe (17) and the moving probe (18), and fix it with the moving probe fixing screw (19), then, rotate the adjustment of the force applying device The hand wheel (27) moves the positioning slide block (25) up and down and drives the upper force disc (1) to move up and down to press the square-shaped test sample (2), open the switch of the circuit device in the system, and the oscillator (11 ) work, the sine wave oscillation signal with an oscillation frequency of 110 Hz is amplified by the power amplifier (12) and then sent to the electromagnetic driver in the force applying device, which is converted into an alternating force of the same frequency and acts on the inside of the cylindrical type to compare the sample (6) and the square type On the tested sample (2), due to the piezoelectric effect, the two low-frequency alternating voltages generated on the parallel capacitors at both ends of the square-shaped tested sample (2) and the cylindrical internal comparison sample (6) pass through the respective connected preamplifiers. After amplifiers (9) and (10) are amplified, they are respectively sent to the synchronous linear detector in the data processing part (13) for detection, and the DC voltage V1 corresponding to the low-frequency alternating voltage of the square-shaped tested sample (2) is obtained. The polarity is negative, and the DC voltage V2 corresponding to the low-frequency alternating voltage of the cylindrical internal comparison sample (6) has a positive polarity. Since the square-shaped tested sample (2) has the same stress area as the polarization area (15mm ×15mm) with a ratio of 1, input "1.00" through the dial of the data input (13) and the d 33 piezoelectric constant "400pC/N" of the cylindrical internal comparison sample (6) and send it to the analog multiplier and divider according to the quasi-static The d 31 calculation formula of the comparative method in the method measurement, calculates the d 31 piezoelectric constant of the square-shaped test sample (2) and performs A/D conversion, and the final measurement result is "-212pC/N". The above is a complete process of measuring the piezoelectric constant of the square-shaped sample d 31 using the piezoelectric material quasi-static method transverse piezoelectric strain constant measurement system in Embodiment 1 of the present invention, and the square-shaped sample is put into the measurement system as required After the special force-adding accessories in the force-applying device are fixed, the circuit device in the measurement system is activated to complete the whole process from oscillation drive output, signal input amplification, data processing to final measurement result display and output. It only takes a few seconds, up to ten a few seconds.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101262252A CN100439929C (en) | 2005-11-30 | 2005-11-30 | Method and system for measuring transverse piezoelectric strain constant of piezoelectric material by quasi-static method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101262252A CN100439929C (en) | 2005-11-30 | 2005-11-30 | Method and system for measuring transverse piezoelectric strain constant of piezoelectric material by quasi-static method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1979184A CN1979184A (en) | 2007-06-13 |
CN100439929C true CN100439929C (en) | 2008-12-03 |
Family
ID=38130417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101262252A Expired - Fee Related CN100439929C (en) | 2005-11-30 | 2005-11-30 | Method and system for measuring transverse piezoelectric strain constant of piezoelectric material by quasi-static method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100439929C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976589A (en) * | 2017-12-25 | 2018-05-01 | 西安交通大学 | A kind of quasi-static d33 tests system of width temperature range |
CN108982982A (en) * | 2018-05-02 | 2018-12-11 | 成都安瑞芯科技有限公司 | The method of probe and test piezoelectric modulus |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101368989B (en) * | 2007-08-17 | 2010-11-10 | 中国科学院声学研究所 | Tangential stress application component used for tangential piezoelectric strain constant d15 measurement |
CN101430352B (en) * | 2007-09-24 | 2012-05-30 | 中国科学院声学研究所 | Measuring system and method for tangential piezoelectric strain constant of piezoelectric material by quasi-static method |
CN104215840B (en) * | 2014-09-01 | 2017-02-15 | 东华大学 | Device and method for testing piezoelectric property of electrostatic spinning PVDF (polyvinylidene fluoride) piezoelectric fiber membrane |
CN104502737A (en) * | 2014-12-29 | 2015-04-08 | 中国计量科学研究院 | Direct dynamic force measurement based piezoelectric strain constant measurement device and method |
KR101793902B1 (en) * | 2016-07-27 | 2017-11-07 | 코스맥스 주식회사 | Device for measuring piezoelectric properties of liquid or viscous materials |
GB2572334B (en) * | 2018-03-26 | 2020-09-09 | Electrosciences Ltd | An electrode for a device for measuring piezoelectricity |
CN109030967A (en) * | 2018-05-02 | 2018-12-18 | 成都安瑞芯科技有限公司 | Test the devices, systems, and methods of piezoelectric modulus |
CN109212335B (en) * | 2018-10-18 | 2020-09-22 | 安徽理工大学 | A material physics piezoelectric experiment device |
CN110230986B (en) * | 2019-07-05 | 2024-04-05 | 季华实验室 | Device and method for measuring d15 parameter of piezoelectric ceramic based on spectral confocal |
CN111562470B (en) * | 2020-04-30 | 2022-07-19 | 南京理工大学 | PZT discharge performance test device with temperature control and overload simulation system |
CN111573275B (en) * | 2020-05-22 | 2022-03-25 | 苏州天准科技股份有限公司 | Nanocrystalline material detecting system |
CN112067913B (en) * | 2020-09-17 | 2023-05-05 | 业成科技(成都)有限公司 | System and method for measuring piezoelectric coefficient |
CN113049889B (en) * | 2021-02-01 | 2022-11-29 | 佛山市卓膜科技有限公司 | Detection method and measurement device for piezoelectric coefficient of piezoelectric film |
CN113092683B (en) * | 2021-04-06 | 2024-05-10 | 武汉佰力博科技有限公司 | High-temperature piezoelectric measurement device |
CN116400140B (en) * | 2023-03-14 | 2023-12-01 | 中国船舶集团有限公司第七一五研究所 | Piezoelectric coefficient suitable for polymer thick filmd31 Measuring device of (2) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4785232A (en) * | 1987-06-05 | 1988-11-15 | The United States Of America As Represented By The Secretary Of The Army | Contactless hall coefficient measurement apparatus and method for piezoelectric material |
JPH0777552A (en) * | 1993-06-18 | 1995-03-20 | Murata Mfg Co Ltd | Method and apparatus for measuring piezo-electricity |
CN2308072Y (en) * | 1997-12-19 | 1999-02-17 | 中国科学院声学研究所 | Instrument for measuring longitudinal piezoelectric strain constant by quasi-static method |
CN1220399A (en) * | 1997-12-18 | 1999-06-23 | 大宇电子株式会社 | Method for measuring piezoelectric constant of thin film shaped piezoelectric material |
JP2003194864A (en) * | 2001-12-25 | 2003-07-09 | Hisao Suzuki | Piezoelectric constant measuring method, piezoelectric constant measuring device using the same, and sample set unit for the same |
CN1629645A (en) * | 2003-12-19 | 2005-06-22 | 中国科学院声学研究所 | Method and system for measuring coercive field strength of ferroelectric |
-
2005
- 2005-11-30 CN CNB2005101262252A patent/CN100439929C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4785232A (en) * | 1987-06-05 | 1988-11-15 | The United States Of America As Represented By The Secretary Of The Army | Contactless hall coefficient measurement apparatus and method for piezoelectric material |
JPH0777552A (en) * | 1993-06-18 | 1995-03-20 | Murata Mfg Co Ltd | Method and apparatus for measuring piezo-electricity |
CN1220399A (en) * | 1997-12-18 | 1999-06-23 | 大宇电子株式会社 | Method for measuring piezoelectric constant of thin film shaped piezoelectric material |
CN2308072Y (en) * | 1997-12-19 | 1999-02-17 | 中国科学院声学研究所 | Instrument for measuring longitudinal piezoelectric strain constant by quasi-static method |
JP2003194864A (en) * | 2001-12-25 | 2003-07-09 | Hisao Suzuki | Piezoelectric constant measuring method, piezoelectric constant measuring device using the same, and sample set unit for the same |
CN1629645A (en) * | 2003-12-19 | 2005-06-22 | 中国科学院声学研究所 | Method and system for measuring coercive field strength of ferroelectric |
Non-Patent Citations (4)
Title |
---|
一种实用的压电常数测试系统及测试精度分析. 叶会英,禹延光.电子元件与材料,第23卷第8期. 2004 * |
一种由压电双晶片测量压电常数d31的方法. 叶会英,浦昭邦.压电与声光,第22卷第3期. 2000 * |
一种精确的压电双晶片参数动态测试模型和方法. 叶会英,禹延光,浦昭邦.计量学报,第23卷第3期. 2002 * |
用动态位移响应测量压电常数的方法. 陈伟民,李敏.压电与声光,第23卷第4期. 2001 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976589A (en) * | 2017-12-25 | 2018-05-01 | 西安交通大学 | A kind of quasi-static d33 tests system of width temperature range |
CN108982982A (en) * | 2018-05-02 | 2018-12-11 | 成都安瑞芯科技有限公司 | The method of probe and test piezoelectric modulus |
Also Published As
Publication number | Publication date |
---|---|
CN1979184A (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100439929C (en) | Method and system for measuring transverse piezoelectric strain constant of piezoelectric material by quasi-static method | |
US5130654A (en) | Magnetolelastic amorphous metal ribbon gradiometer | |
US3830091A (en) | Accelerometer comparator | |
CN112557776A (en) | System and method for testing dynamic piezoelectric performance of piezoelectric material | |
US3854328A (en) | Resiliency testing device | |
CN109828141A (en) | Highly sensitive voltage measuring apparatus and measurement method based on weak coupling micromechanical resonator | |
CN108534887B (en) | Vibration measuring device based on graphene film displacement sensing | |
CN101430352B (en) | Measuring system and method for tangential piezoelectric strain constant of piezoelectric material by quasi-static method | |
CN2890940Y (en) | quasi-static method d31 measuring system | |
CN105136898B (en) | A kind of direct detection means of flexure electro dynamic effect and method based on detection electric charge | |
US3659255A (en) | Hydrophone calibrator | |
CN111238702A (en) | Bolt axial stress testing device and testing method based on ultrasonic measurement | |
CN2308072Y (en) | Instrument for measuring longitudinal piezoelectric strain constant by quasi-static method | |
CN113419118B (en) | Device and method for measuring piezoelectric coefficient under uniaxial depression of ferroelectric crystal | |
Johnson et al. | An acoustically driven Kelvin probe for work‐function measurements in gas ambient | |
CN103760046B (en) | Amplitude value and phase self-calibration low-frequency rock physical measuring method and system | |
CN110632537B (en) | A kind of test method of DC magnetic field strength | |
CN204595101U (en) | A kind of air cavity pressure application membraneous material piezoelectric constant measurement mechanism | |
Kawamura et al. | Development of a high voltage sensor using a piezoelectric transducer and a strain gage | |
Longbiao et al. | Comparison between methods for the measurement of the d33 constant of piezoelectric materials | |
CN104635065A (en) | Device and method of measuring piezoelectric constant of film material through air cavity pressure method | |
CN115683315A (en) | Calibration device, control method and calibration method for free field pressure wave sensor | |
CN107045084B (en) | Tangential piezoelectric constant d 15 Measuring device and method of (a) | |
CN109342323B (en) | Device and method for eliminating interference of external vibration on photoacoustic cell | |
RU2467297C1 (en) | Pulsator of quick-changing pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081203 Termination date: 20141130 |
|
EXPY | Termination of patent right or utility model |