CN100438036C - Memory device and method for fabricating the same - Google Patents
Memory device and method for fabricating the same Download PDFInfo
- Publication number
- CN100438036C CN100438036C CNB2005100644419A CN200510064441A CN100438036C CN 100438036 C CN100438036 C CN 100438036C CN B2005100644419 A CNB2005100644419 A CN B2005100644419A CN 200510064441 A CN200510064441 A CN 200510064441A CN 100438036 C CN100438036 C CN 100438036C
- Authority
- CN
- China
- Prior art keywords
- contact
- memory device
- insulating barrier
- groove
- knot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/34—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/033—Making the capacitor or connections thereto the capacitor extending over the transistor
- H10B12/0335—Making a connection between the transistor and the capacitor, e.g. plug
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
- H10B12/053—Making the transistor the transistor being at least partially in a trench in the substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
- H10B12/485—Bit line contacts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/661—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation
- H10D64/662—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation the conductor further comprising additional layers, e.g. multiple silicon layers having different crystal structures
- H10D64/663—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation the conductor further comprising additional layers, e.g. multiple silicon layers having different crystal structures the additional layers comprising a silicide layer contacting the layer of silicon, e.g. polycide gates
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种存储器件及其制造方法,且更具体地,涉及一种可提高数据保持时间的存储器件及其制造方法。The present invention relates to a memory device and a manufacturing method thereof, and more particularly, to a memory device capable of improving data retention time and a manufacturing method thereof.
背景技术 Background technique
由于半导体装置已被日益小型化,每个图型尺寸亦已被逐渐减小。尤其在诸如动态随机存取存储器(DRAM)装置的存储器件中,由于大规模的集成,其栅电极长度与胞区(cell region)内晶体管尺寸的减小成比例地剧烈减小,并且作为栅电极尺寸减小的结果,源和漏的结已对施加到胞区中晶体管主体的电场及电势起到重要作用。As semiconductor devices have been increasingly miniaturized, the size of each pattern has been gradually reduced. Especially in memory devices such as dynamic random access memory (DRAM) devices, due to large-scale integration, the length of the gate electrode is drastically reduced in proportion to the reduction in transistor size in the cell region, and as a gate As a result of the reduction in electrode size, the junction of the source and drain has played an important role in the electric field and potential applied to the body of the transistor in the cell.
图1是说明传统存储器件结构的剖面图。FIG. 1 is a cross-sectional view illustrating the structure of a conventional memory device.
如图所示,用于隔离装置元件的场氧化物层120形成在衬底110的预定区域内。然后,栅绝缘层130、第一栅导电层140、第二栅导电层150及栅硬掩模层160被依次形成在衬底110上,并依次被施以栅掩模处理及蚀刻处理,从而获得多个栅结构155。As shown, a
然后,杂质被离子注入以形成多个位线接触结170A及多个储存节点接触结170B,之后,在栅结构155的每个侧壁上形成间隔物(spacer)171。然后,形成连接位线接触结170A的多个位线接触塞190A及连接储存节点接触结170B的多个储存节点接触塞190B。该位线接触塞190A及该储存节点接触塞190B分别用于与位线及储存节点相连接。应注意的是,图1仅举例说明单一位线接触结及单一位线接触塞。Impurities are then ion-implanted to form a plurality of bit
但是,传统存储器件具有短沟道效应的问题,即由于栅电极被缩短,沟道区易受来自栅结构、源与漏结的耗尽层、电场、及电位所提供的电压的影响。作为这种不利的短沟道效应的结果,阈电压急剧减少,由此导致难以控制存储器件的阈电压。However, conventional memory devices have the problem of short channel effect, that is, since the gate electrode is shortened, the channel region is susceptible to voltages provided by the gate structure, depletion layers of source and drain junctions, electric fields, and potentials. As a result of this unfavorable short-channel effect, the threshold voltage is drastically reduced, thereby making it difficult to control the threshold voltage of the memory device.
再者,因存储器件已小型化,故须以高浓度离子注入位线接触结170A及储存节点接触结170B。然而,由于为获得高掺杂浓度的过度离子注入,胞区中储存节点接触结170B的边缘区A将具有高水平的电场,因此,在储存节点接触结170B的结部分处的结漏电流增加。此种结漏电流的增加引起数据保持时间减少,亦即,存储器件的恢复特性退化。Furthermore, since the storage device has been miniaturized, high-concentration ions must be implanted into the bit
发明内容 Contents of the invention
因此,本发明之目的是提供一种可通过减少在储存节点接触结处产生的结漏电流来增加数据保持时间的存储器件及其制造方法。Accordingly, an object of the present invention is to provide a memory device and a method of manufacturing the same that can increase a data retention time by reducing junction leakage current generated at a storage node contact junction.
根据本发明的一方面,提供一种存储器件,其包括:提供有沟槽的衬底;形成在沟槽下方的位线接触结;形成在沟槽外的多个储存节点接触结;以及多个栅结构,每个栅结构形成在位于位线接触结与一个储存节点接触结之间的衬底上。According to an aspect of the present invention, there is provided a memory device, which includes: a substrate provided with a trench; a bit line contact junction formed under the trench; a plurality of storage node contact junctions formed outside the trench; gate structures, each gate structure is formed on the substrate between the bit line contact and a storage node contact.
根据本发明的另一方面,提供一种存储器件,其包括:提供有沟槽的衬底;形成在沟槽下方的第一接触结;形成在沟槽外的多个第二接触结;多个栅结构,每个栅结构形成在设置于第一接触结与一个第二接触结之间的衬底上;通过填充栅结构之间所产生的空间而在第一接触结上形成的第一接触塞;以及通过填充栅结构间所产生的空间而在第二接触结上形成的多个第二接触塞。According to another aspect of the present invention, there is provided a memory device, which includes: a substrate provided with a trench; a first contact junction formed under the trench; a plurality of second contact junctions formed outside the trench; gate structures, each gate structure is formed on the substrate disposed between the first contact junction and a second contact junction; the first contact junction formed on the first contact junction by filling the space generated between the gate structures a contact plug; and a plurality of second contact plugs formed on the second contact junction by filling a space generated between the gate structures.
根据本发明的再一方面,提供一种用于制造存储器件的方法,所包括的步骤为:蚀刻部分衬底以获得沟槽;形成多个栅结构,使得栅结构的各一部分被设置在沟槽内;使用栅结构作为掩模进行离子注入处理从而形成沟槽下方的第一接触结并形成沟槽外的多个第二接触结;及在第一接触结上形成第一接触塞并且在相应的接触结上形成多个第二接触塞。According to still another aspect of the present invention, there is provided a method for manufacturing a memory device, comprising the steps of: etching part of the substrate to obtain trenches; forming a plurality of gate structures, so that each part of the gate structures is disposed in the trenches; inside the trench; using the gate structure as a mask to perform ion implantation so as to form a first contact junction under the trench and form a plurality of second contact junctions outside the trench; and form a first contact plug on the first contact junction and A plurality of second contact plugs are formed on the corresponding contact junctions.
附图说明 Description of drawings
通过下面所给出的优选实施例的描述并结合附图,本发明的上述及其它目的和特征将被更好地理解,其中:The above and other objects and features of the present invention will be better understood through the description of the preferred embodiments given below in conjunction with the accompanying drawings, wherein:
图1为说明传统存储器件结构的剖面图。FIG. 1 is a cross-sectional view illustrating the structure of a conventional memory device.
图2为说明依据本发明第一实施例制成的存储器件结构的剖面图。FIG. 2 is a cross-sectional view illustrating the structure of a memory device manufactured according to a first embodiment of the present invention.
图3A到3F为说明依据本发明第一实施例制造存储器件方法的剖面图。3A to 3F are cross-sectional views illustrating a method of manufacturing a memory device according to a first embodiment of the present invention.
图4为说明依据本发明第二实施例的存储器件结构的剖面图。FIG. 4 is a cross-sectional view illustrating the structure of a memory device according to a second embodiment of the present invention.
图5为说明依据本发明第三实施例的存储器件结构的剖面图。5 is a cross-sectional view illustrating the structure of a memory device according to a third embodiment of the present invention.
图6为说明依据本发明第四实施例的存储器件结构的剖面图。FIG. 6 is a cross-sectional view illustrating the structure of a memory device according to a fourth embodiment of the present invention.
图7A到7G为说明依据本发明第四实施例制造存储器件方法的剖面图。7A to 7G are cross-sectional views illustrating a method of manufacturing a memory device according to a fourth embodiment of the present invention.
图8为说明依据本发明第五实施例的存储器件结构的剖面图。FIG. 8 is a cross-sectional view illustrating the structure of a memory device according to a fifth embodiment of the present invention.
图9为说明依据本发明第六实施例的存储器件结构的剖面图。FIG. 9 is a cross-sectional view illustrating the structure of a memory device according to a sixth embodiment of the present invention.
具体实施方式 Detailed ways
将结合附图详细描述根据本发明优选实施例的存储器件及其制造方法。A memory device and a manufacturing method thereof according to preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
图2为说明依据本发明第一实施例的存储器件结构的剖面图。FIG. 2 is a cross-sectional view illustrating the structure of a memory device according to a first embodiment of the present invention.
如图所示,场氧化物层220被形成在衬底210中,并且在衬底的预定区域中形成沟槽200。位于沟槽200下方的衬底210中形成有第一接触结270A,而位于沟槽200外的衬底210中形成有多个第二接触结270B。应注意的是,虽然形成许多第一接触结270A,图2中仅举例说明单个第一接触结270A。As shown, a
多个栅结构255被形成在衬底210的位于第一接触结270A及第二接触结270B之间的每一部分上。此处,每个栅结构包括第一绝缘层230、多晶硅层240、金属层250及用于硬掩模的第二绝缘层260。再者,被选择的栅结构255的各一部分被设置在沟槽200内,并且那些栅结构255的多晶硅层240与金属层250在沟槽200形成处被凹陷。A plurality of
栅结构255每个侧壁上形成有间隔物271。第一接触塞290A形成在第一接触结270A上并填充形成于沟槽200上的栅结构255之间所产生的空间。多个第二接触塞290B被分别形成在第二接触结270B上,并填充形成在沟槽200外的栅结构255之间所产生的相应空间。A
尽管没有说明,位线经由第一接触塞290A连接到第一接触结270A,并且储存节点经由第二接触塞290B连接到第二接触结270B。亦即,第一接触塞290A及第二接触塞290B分别是位线接触塞和储存节点接触塞,且第一接触结270A及第二接触结270B分别是位线接触结和储存节点接触结。Although not illustrated, the bit line is connected to the
如上所述,依据本发明第一实施例所制成的存储器件,胞区中晶体管的位线接触结形成在沟槽(trench)内,而储存节点接触结则形成在沟槽外。许多沟道(channel)形成在每两个位线接触结和储存节点接触结之间。因此,沟槽的侧壁构成沟道,结果,延长了胞区中晶体管的沟道长度。与传统存储器件相比,每两个储存节点接触结与沟道区之间的增加。因而,储存节点接触结的漏电流水平降低,从而增加了数据保持时间。As mentioned above, in the memory device manufactured according to the first embodiment of the present invention, the bit line contact junction of the transistor in the cell region is formed in the trench, and the storage node contact junction is formed outside the trench. Many channels are formed between every two bit line contact junctions and storage node contact junctions. Therefore, the sidewalls of the trench constitute the channel, and as a result, the channel length of the transistor in the cell is extended. Compared with the conventional memory device, every two storage nodes contact the increase between the junction and the channel region. Thus, the leakage current level of the storage node contact junction is reduced, thereby increasing the data retention time.
图3A到3F为说明依据本发明第一实施例制造存储器件的方法的剖面图。此处,图2中所描述的相同参考数字在这些图中也被使用。3A to 3F are cross-sectional views illustrating a method of manufacturing a memory device according to a first embodiment of the present invention. Here, the same reference numerals described in FIG. 2 are also used in these figures.
如图3A所示,场氧化物层220被形成在硅基衬底210上。As shown in FIG. 3A , a
如图3B所示,衬底210的预定部分被选择性地蚀刻以形成沟槽200。虽然沟槽200的深度D依设计规则而有变化,但沟槽200的深度优选为在约20nm到约150nm的范围。As shown in FIG. 3B , predetermined portions of the
如图3C所示,由硅氧化物(silicon oxide)制成的第一绝缘层230形成于上面所完成的衬底结构上,并且在其上方依序形成多晶硅层240及金属层250。此时,多晶硅层240具有与沟槽200的外形一致的凹陷外形。As shown in FIG. 3C , a first insulating
如图3D所示,通过使用选自金属和金属硅化物的材料在多晶硅层240上形成金属层250。此时,在多晶硅层240凹陷处金属层具有凹陷部分。然后,在金属层250上形成用于硬掩模的第二绝缘层260。通常,第二绝缘层260是由硅氮化物制成。As shown in FIG. 3D, a
如图3E所示,经由栅掩模处理及蚀刻处理,第一绝缘层230、多晶硅层240、金属层250及第二绝缘层260被选择性蚀刻,因而获得多个栅结构255。为了恢复蚀刻期间对衬底结构的损伤并改善第一绝缘层230的特性,可实施再氧化处理。之后,利用栅结构255作为掩模进行离子注入处理,以在位于沟槽200下方的衬底210内形成第一接触结270A,并在位于沟槽200外的衬底210内形成多个第二结270B。As shown in FIG. 3E , through gate masking and etching, the first insulating
如图3F所示,在栅结构255的每个侧壁上形成有间隔物271。此时,间隔物271是使用氮化物或氧化物形成的。然后,在栅结构255上方形成用于接触塞的导电层,其被连续施加CMP处理,直到导电层显露为止。CMP处理后,在第一接触结270A上形成第一接触塞290A,同时,在第二接触结270B上形成多个第二接触塞290B。尽管单一第一接触结270A及第一接触塞290A被图解说明,但应注意的是,有多个第一接触结270A及第一接触塞290A。As shown in FIG. 3F , a
虽未图解说明,但第一接触结270A是经由第一接触塞290A与位线相连接,而第二接触结270B则是经由第二接触塞290B与储存节点相连接。但是,第一接触结270A及第二接触结270B可在不利用第一接触塞290A及第二接触塞290B的情况下分别与位线及储存节点相连接。Although not illustrated, the
依据本发明的第一实施例,连接有位线的第一接触结270A被形成在沟槽200内的衬底中,故沟槽200的侧壁构成了胞区中晶体管的沟道区。According to the first embodiment of the present invention, the
图4为说明依据本发明第二实施例的存储器件结构的剖面图。FIG. 4 is a cross-sectional view illustrating the structure of a memory device according to a second embodiment of the present invention.
此处,依据第二实施例的存储器件包括图2中所描述的相同配置元件,因此,关于这种配置元件的详细描述将被省略。依据第二实施例所制成的存储器件与依据第一实施例所制成的存储器件两者不同之处在于:沟槽300的侧壁B被形成为垂直于衬底310的凹陷部分的表面,且多个栅结构355,第一接触结370A及第二接触结370B被设置为使得沟槽300的侧壁B被设置处的衬底310的部分被安排设在各个沟道区域的中心。Here, the memory device according to the second embodiment includes the same configuration elements described in FIG. 2, and therefore, detailed descriptions about such configuration elements will be omitted. The memory device manufactured according to the second embodiment differs from the memory device manufactured according to the first embodiment in that the side wall B of the
图5为说明依据本发明第三实施例的存储器件结构的剖面图。5 is a cross-sectional view illustrating the structure of a memory device according to a third embodiment of the present invention.
此处,依据本发明第三实施例的存储器件包括图2中所描述的相同配置元件,因此,关于这种配置元件的详细描述将被省略。依据第三实施例制成的存储器件与图2所示的存储器件两者不同之处在于:沟槽400的侧壁C正向倾斜,亦即在朝向沟槽400的底部延伸时变窄。Here, the memory device according to the third embodiment of the present invention includes the same configuration elements described in FIG. 2, and therefore, detailed descriptions about such configuration elements will be omitted. The memory device fabricated according to the third embodiment differs from the memory device shown in FIG. 2 in that the sidewall C of the
图6为说明依据本发明第四实施例的存储器件结构的剖面图。FIG. 6 is a cross-sectional view illustrating the structure of a memory device according to a fourth embodiment of the present invention.
如图所示,衬底610中形成有场氧化层620,沟槽600形成在衬底610的预定区域中。沟槽600下方的衬底610中形成有第一接触结670A,同时,多个第二接触结670B形成在位于沟槽600外的衬底610中。应注意的是,尽管形成有许多个第一接触结670A,但图6中只图解说明单个第一接触结670A。As shown in the figure, a
多个栅结构655被形成在设置于第一接触结670A及第二接触结670B之间的衬底610的各部分上。此处,每个栅结构655包含第一绝缘层630、平面化的多晶硅层640A、金属层650及用于硬掩模的第二绝缘层660。再者,经选择的栅结构655的各一部分被设置在沟槽600内。间隔物671被形成在栅结构655的每个侧壁上。第一接触塞690A被形成在第一接触结670A上同时填充部分设置在沟槽600内的栅结构655之间所产生的空间。多个第二接触塞690B被形成在相应的第二接触结670B上同时填充形成在沟槽600外的栅结构655之间所产生的对应空间。A plurality of
虽未图解说明,位线是经由第一接触塞690A与第一接触结670A相连接,且储存节点是经由第二接触塞690B与第二接触结670B相连接。亦即,第一接触塞690A及第二接触塞690B分别是位线接触塞及储存节点接触塞,且第一接触结670A及第二接触结670B分别是位线接触结及储存节点接触结。Although not illustrated, the bit line is connected to the
如上所述,依据本发明第四实施例制成的存储器件,胞区中晶体管的位线接触结被形成在沟槽内,同时储存节点接触结被形成在沟槽外。许多沟道形成在每两个位线接触结和储存节点接触结之间。因此,沟槽的侧壁成为沟道的一部分,结果,胞区中晶体管的沟道长度被延长。与传统存储器件相比,每两个储存节点接触结和沟道区之间的距离增大。因而,减少了储存节点接触结的漏电流水平,故增加了数据保持时间。As described above, in the memory device manufactured according to the fourth embodiment of the present invention, the bit line contact junction of the transistor in the cell region is formed inside the trench, while the storage node contact junction is formed outside the trench. Many channels are formed between every two bit line contact junctions and storage node contact junctions. Therefore, the sidewalls of the trench become part of the channel, and as a result, the channel length of the transistor in the cell is extended. Compared with conventional memory devices, the distance between every two storage node contact junctions and the channel region is increased. Thus, the leakage current level at the storage node contact junction is reduced, thereby increasing the data retention time.
图7A到7G为说明依据本发明第四实施例制造存储器件方法的剖面图。此处,图6中所描述的相同参考数字被用于这些图中相同配置元件。7A to 7G are cross-sectional views illustrating a method of manufacturing a memory device according to a fourth embodiment of the present invention. Here, the same reference numerals described in FIG. 6 are used for the same configuration elements in these figures.
如图7A所示,在硅基衬底610上形成场氧化物层620。As shown in FIG. 7A , a
如图7B所示,衬底610的预定部分被选择性地蚀刻以形成沟槽600。沟槽600的深度D虽依设计规则而有变化,但沟槽600的深度D优选在约20nm到150nm范围内。As shown in FIG. 7B , predetermined portions of the
如图7C所示,由硅氧化物制成的第一绝缘层630被形成在上述完成的衬底结构上,并在其上形成多晶硅层640。优选地,多晶硅层640的厚度等于或小于约此时,多晶硅层640具有与沟槽600外形一致的凹陷外形。亦即,多晶硅层640具有凹陷部分,其导致随后将被形成的金属层在多晶硅层640被凹陷的相同位置处被凹陷。As shown in FIG. 7C, a first insulating
但是,由于所使用金属的特性,有空隙被产生,故在随后的蚀刻处理中所产生的聚合物将渗入该空隙中。结果,聚合物的渗透可能会妨碍蚀刻的有效进行。为解决此问题,在本发明的第一实施例中提出了一种不同的方法,将结合附图对所提出方法进行详细描述。However, due to the properties of the metal used, voids are created into which the polymer produced in the subsequent etching process penetrates. As a result, polymer penetration may prevent etching from being performed effectively. To solve this problem, a different method is proposed in the first embodiment of the present invention, and the proposed method will be described in detail with reference to the accompanying drawings.
如图7D所示,在多晶硅层640上形成金属层之前,先进行化学机械抛光(CMP)处理以去除沟槽600,从而获得平面化的多晶硅层640A。此时,用于上述CMP处理的抛光垫是由高分子聚合物制成,且抛光颗粒的平均尺寸优选在约10nm到约1000nm范围内。再者,抛光垫的表面形成为海绵结构,其孔直径小于约100μm,且浆体(slurry)抛光颗粒的浓度范围优选为约0.5重量百分比到5重量百分比。As shown in FIG. 7D , before forming the metal layer on the
如图7E所示,基于金属或金属硅化物的上述金属层650被形成在平面化的多晶硅层640A上。特别地,金属层优选使用选自钨或钨化合物的材料形成。其后,在金属层650上形成用于硬掩模的第二绝缘层660。典型地,第二绝缘层660由硅的氮化物制成。As shown in FIG. 7E, the
如图7F所示,经由栅掩模处理及蚀刻处理对第一绝缘层630、平面化多晶硅层640A、金属层650及第二绝缘层660进行选择性地蚀刻,从而获得多个栅结构655。为了恢复在蚀刻处理中对衬底结构的损伤并改善第一绝缘层660的特性,可执行再氧化处理。之后,使用栅结构655作为掩模执行离子注入处理以在位于沟槽600下方的衬底610中形成第一接触结670A并且在位于沟槽600外的衬底610中形成多个第二接触结670B。As shown in FIG. 7F , the first insulating
如图7G所示,在栅结构655的每个侧壁上形成间隔物671。此时,间隔物671是使用氮化物或氧化物制成的。其后,在栅结构655上形成用于接触塞的导电层且之后对其连续实施CMP处理直到导电层显露为止。CMP处理之后,在第一接触结670A上形成第一接触塞690A,同时在第二接触结670B上形成多个第二接触塞690B。尽管单一第一接触结270A及第一接触塞290A被图解说明,但应注意的是,有多个第一接触结670A及第一接触塞690A。As shown in FIG. 7G , a
虽未图解说明,但第一接触结670A是经由第一接触塞690A与位线相连接,且第二接触结670B是经由第二接触塞690B与储存节点相连接。当然,第一接触结670A及第二接触结670B可在不利用第一接触塞690A及第二接触塞690B的情况下而分别与位线及储存节点相连接。Although not illustrated, the
依据本发明的第四实施例,与位线相连接的第一接触结670A被形成在位于沟槽600下方的衬底中,故沟槽600的侧壁构成了胞区中晶体管的沟道。According to the fourth embodiment of the present invention, the
图8为说明依据本发明第五实施例的存储器件结构的剖面图。FIG. 8 is a cross-sectional view illustrating the structure of a memory device according to a fifth embodiment of the present invention.
此处,依据第四实施例的存储器件包括图6中所描述的相同配置元件,故关于这种配置元件的详细描述将被省略。然而,依据第五实施例制成的存储器件与依据第四实施例制成的存储器件不同之处为:沟槽700的侧壁B被形成为垂直于衬底710凹陷部分的表面并且多个栅结构755,第一接触结770A及第二接触结770B被设置为使得侧壁B被设置处的衬底710的部分被安排在每个沟道区的中心。Here, the memory device according to the fourth embodiment includes the same configuration elements described in FIG. 6, so a detailed description about such configuration elements will be omitted. However, the memory device fabricated according to the fifth embodiment differs from the memory device fabricated according to the fourth embodiment in that the side wall B of the trench 700 is formed perpendicular to the surface of the recessed portion of the substrate 710 and a plurality of The gate structure 755, the first contact junction 770A and the second contact junction 770B are arranged such that the portion of the substrate 710 where the sidewall B is arranged is arranged in the center of each channel region.
图9为说明依据本发明第六实施例的存储器件结构的剖面图。FIG. 9 is a cross-sectional view illustrating the structure of a memory device according to a sixth embodiment of the present invention.
此处,依据本发明第六实施例的存储器件包括图6中所描述的相同配置元件。但是依据第六实施例制成的存储器件与图6所示的存储器件的差别在于:沟槽800的侧壁C是正向倾斜的,亦即,在朝向沟槽800底部时变窄。Here, the memory device according to the sixth embodiment of the present invention includes the same configuration elements described in FIG. 6 . However, the difference between the memory device fabricated according to the sixth embodiment and the memory device shown in FIG. 6 is that the sidewall C of the
依据本发明第一到第六实施例,与位线相连接的衬底的预定部分被凹陷,因而衬底之凹陷部分的侧壁成为沟道的一部分。结果,延长了沟道的长度,进而导致储存节点接触结处漏电流减少。因此,可增加存储器件的数据保持时间。特别地,第二和第三实施例以及第五和第六实施例提供了在栅图案化处理期间改善关于不对准的容限的功效。According to the first to sixth embodiments of the present invention, a predetermined portion of the substrate connected to the bit line is recessed, so that the sidewall of the recessed portion of the substrate becomes a part of the channel. As a result, the length of the channel is extended, which in turn leads to a reduction in leakage current at the storage node contact junction. Therefore, the data retention time of the memory device can be increased. In particular, the second and third embodiments and the fifth and sixth embodiments provide the effect of improving the tolerance with respect to misalignment during the gate patterning process.
本申请包含分别在2004年7月27日及2004年7月29日向韩国专利局提交的No.KR2004-0058871及2004-0059670两项韩国专利申请相关的主题,其全部内容在此被并入作为参考。This application contains subject matter related to two Korean Patent Applications No. KR2004-0058871 and 2004-0059670 filed with the Korean Patent Office on Jul. 27, 2004 and Jul. 29, 2004, respectively, the entire contents of which are hereby incorporated by reference as refer to.
尽管本发明已关于某些优选实施例被描述,对于本领域的技术人员来说,将显而易见的是:在不背离下列权利要求中所限定的本发明的精神和范围的情况下,可进行各种变化和修改。Although the invention has been described with respect to certain preferred embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention as defined in the following claims: changes and modifications.
主要部分的代表符号说明Explanation of representative symbols of main parts
110,210...810 衬底110, 210...810 Substrate
120,220...820 场氧化物层120, 220...820 field oxide layer
130,230...830 第一绝缘层130, 230...830 The first insulating layer
140,240...840 多晶硅层140, 240...840 polysilicon layer
150,250...850 金属层150, 250...850 metal layer
155,255...855 栅结构155, 255...855 grid structure
160,260...860 第二绝缘层160, 260...860 second insulation layer
170A,270A...870A 第一接触结170A, 270A...870A first contact junction
170B,270B...870B 第二接触结170B, 270B...870B second contact junction
171,271...871 间隔物171, 271...871 spacers
190A,290A...890A 第一接触塞190A, 290A...890A first contact plug
190B,290B...890B 第二接触塞。190B, 290B...890B Second contact plug.
Claims (27)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040058871 | 2004-07-27 | ||
KR1020040058871A KR100623591B1 (en) | 2004-07-27 | 2004-07-27 | Memory device and manufacturing method thereof |
KR1020040059670 | 2004-07-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1728387A CN1728387A (en) | 2006-02-01 |
CN100438036C true CN100438036C (en) | 2008-11-26 |
Family
ID=35927527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100644419A Expired - Fee Related CN100438036C (en) | 2004-07-27 | 2005-04-15 | Memory device and method for fabricating the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100623591B1 (en) |
CN (1) | CN100438036C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100905776B1 (en) | 2006-08-25 | 2009-07-02 | 주식회사 하이닉스반도체 | Manufacturing method of semiconductor device |
KR100815190B1 (en) * | 2007-03-29 | 2008-03-19 | 주식회사 하이닉스반도체 | Semiconductor device and manufacturing method thereof |
KR100905830B1 (en) * | 2007-11-16 | 2009-07-02 | 주식회사 하이닉스반도체 | Semiconductor element and manufacturing method thereof |
CN106910745B (en) * | 2017-03-07 | 2018-03-06 | 睿力集成电路有限公司 | memory and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5040036A (en) * | 1988-02-05 | 1991-08-13 | Emanuel Hazani | Trench-isolated self-aligned split-gate EEPROM transistor and memory array |
US6048767A (en) * | 1991-08-22 | 2000-04-11 | Nec Corporation | Method of forming a semiconductor memory device |
US6228700B1 (en) * | 1999-09-03 | 2001-05-08 | United Microelectronics Corp. | Method for manufacturing dynamic random access memory |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100307531B1 (en) * | 1999-08-09 | 2001-11-01 | 김영환 | Mosfet device and memory cell using the same and fabrication method threeof |
DE19954867C1 (en) | 1999-11-15 | 2000-12-07 | Infineon Technologies Ag | Dynamic random access memory (DRAM) cells arrangement, each cell having one vertical transistor and one capacitor |
-
2004
- 2004-07-27 KR KR1020040058871A patent/KR100623591B1/en not_active Expired - Fee Related
-
2005
- 2005-04-15 CN CNB2005100644419A patent/CN100438036C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5040036A (en) * | 1988-02-05 | 1991-08-13 | Emanuel Hazani | Trench-isolated self-aligned split-gate EEPROM transistor and memory array |
US6048767A (en) * | 1991-08-22 | 2000-04-11 | Nec Corporation | Method of forming a semiconductor memory device |
US6228700B1 (en) * | 1999-09-03 | 2001-05-08 | United Microelectronics Corp. | Method for manufacturing dynamic random access memory |
Also Published As
Publication number | Publication date |
---|---|
CN1728387A (en) | 2006-02-01 |
KR20060010243A (en) | 2006-02-02 |
KR100623591B1 (en) | 2006-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7338864B2 (en) | Memory device and method for fabricating the same | |
KR101095817B1 (en) | Semiconductor element and manufacturing method thereof | |
CN101281886B (en) | Recessed gate MOS transistor device and method of making same | |
CN108257919B (en) | Method for forming random dynamic processing memory element | |
KR100285701B1 (en) | Manufacturing method and structure of trench isolation | |
US7358144B2 (en) | Method for fabricating semiconductor device | |
KR100530496B1 (en) | Semiconductor device, method of forming a recess gate electrode and method of manufacturing a semiconductor device having the same | |
KR101088816B1 (en) | Semiconductor device and manufacturing method thereof | |
CN101226959A (en) | Dynamic random access memory, semiconductor device and method of forming same | |
US8551861B2 (en) | Semiconductor device and method for manufacturing the same | |
JP5718585B2 (en) | Semiconductor device, manufacturing method thereof, and data processing system | |
US11251273B2 (en) | Non-volatile memory device and method for manufacturing the same | |
TW201220475A (en) | Memory device and method of fabricating the same | |
CN106158751A (en) | The manufacture method of dynamic random access memory device | |
US6638805B2 (en) | Method of fabricating a DRAM semiconductor device | |
CN104617140B (en) | Recessed trench access transistor device and method of making the same | |
KR20080030385A (en) | Semiconductor device and manufacturing method thereof | |
JP2005183954A (en) | Method for forming recessed gate electrode | |
CN100438036C (en) | Memory device and method for fabricating the same | |
CN106158868A (en) | The read-only storage array of ROM mask programmable read-only memory, its manufacture method and the manufacture method of memorizer | |
JP2007067357A (en) | Semiconductor device and manufacturing method thereof | |
KR100620442B1 (en) | Manufacturing Method of Semiconductor Device | |
KR20060008594A (en) | Manufacturing Method of NAND Flash Memory Device | |
KR100602738B1 (en) | Memory device and manufacturing method thereof | |
KR101060696B1 (en) | Manufacturing Method of Semiconductor Device and Semiconductor Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081126 Termination date: 20160415 |