CN100436065C - Method for treatment of binding agent for super hard abrasive tools - Google Patents
Method for treatment of binding agent for super hard abrasive tools Download PDFInfo
- Publication number
- CN100436065C CN100436065C CNB2006101021301A CN200610102130A CN100436065C CN 100436065 C CN100436065 C CN 100436065C CN B2006101021301 A CNB2006101021301 A CN B2006101021301A CN 200610102130 A CN200610102130 A CN 200610102130A CN 100436065 C CN100436065 C CN 100436065C
- Authority
- CN
- China
- Prior art keywords
- powder
- metal
- sintering
- ball
- hard abrasive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000011230 binding agent Substances 0.000 title claims abstract description 14
- 238000011282 treatment Methods 0.000 title description 9
- 239000000843 powder Substances 0.000 claims abstract description 52
- 238000005551 mechanical alloying Methods 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 30
- 238000005245 sintering Methods 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 238000005275 alloying Methods 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000003672 processing method Methods 0.000 claims description 6
- 238000004886 process control Methods 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 125000006414 CCl Chemical group ClC* 0.000 claims 1
- 235000021355 Stearic acid Nutrition 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 238000000713 high-energy ball milling Methods 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 238000003701 mechanical milling Methods 0.000 claims 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims 1
- 239000008117 stearic acid Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 21
- 239000013528 metallic particle Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000004146 energy storage Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 238000000498 ball milling Methods 0.000 description 4
- 239000007767 bonding agent Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000001778 solid-state sintering Methods 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 229910017827 Cu—Fe Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000011156 metal matrix composite Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种金属结合剂超硬磨具中结合剂的处理方法。The invention relates to a method for treating a bond in a metal bond superabrasive tool.
背景技术 Background technique
传统的金属结合剂超硬磨具是将根据计算的各种金属粉末和超硬磨料(如金刚石、立方氮化硼等)均匀混合,然后称量,装入模具中,进行压制、烧结,成为由金属结合剂结合的、含有一定比例超硬磨料的金属结合剂-超硬磨料复合体,即成为超硬磨具的工作部分。由于高温下金刚石、立方氮化硼等品质严重下降,因而,一般限制烧结温度在900℃以下,常用温度在750~850℃之间,保持时间也要尽量短。Traditional metal-bonded superabrasives are uniformly mixed with various metal powders and superabrasives (such as diamond, cubic boron nitride, etc.) according to the calculation, then weighed, put into a mold, pressed, and sintered to become The metal bond-superabrasive complex combined with a metal bond and containing a certain proportion of superabrasives becomes the working part of the superabrasive tool. Because the quality of diamond and cubic boron nitride deteriorates seriously at high temperature, the sintering temperature is generally limited to below 900°C, and the commonly used temperature is between 750 and 850°C, and the holding time should be as short as possible.
为了满足超硬磨料工作过程中其性能对结合剂的要求,结合剂一般由Cu、Co、Ni、Fe、W、WC等组成,但这些金属熔点较高,难以在900℃以下烧结,因而,一般还要加入Sn、Zn等低熔点的金属改善烧结性能。而低熔点金属的加入往往降低烧结后烧结体的力学性能,互溶的选择性也较强,如与Cu、Co、Ni等相溶性较好,而与廉价的Fe等相溶性则较差。其根本原因,是这一温度范围不能使组分中的金属粉末颗粒之间实现有效的合金化,因而不能形成良好的固相烧结。In order to meet the requirements of the performance of superabrasives on the binder during the working process, the binder is generally composed of Cu, Co, Ni, Fe, W, WC, etc., but these metals have high melting points and are difficult to sinter below 900 ° C. Therefore, Generally, metals with low melting point such as Sn and Zn are added to improve sintering performance. The addition of low-melting point metals often reduces the mechanical properties of the sintered body after sintering, and the selectivity of mutual solubility is also strong, such as better compatibility with Cu, Co, Ni, etc., but poor compatibility with cheap Fe. The fundamental reason is that this temperature range cannot achieve effective alloying between the metal powder particles in the components, and thus cannot form good solid-state sintering.
为此,专业技术人员进行了相关研究,通过预合金化的方法来改善这一问题。目前采用的预合金化有两类:一是通过冶金熔炼-喷吹雾化制粉的方法,使每一颗粉末颗粒都具有相同的成分,制成合金粉末。这一方法的缺点在于喷吹过程使粉末颗粒呈球形,烧结活性较差;另一方法是采用化学共沉积,通过多种材料(一般2~3种)作为阳极电解,细微粉末按一定比例共同沉积,形成较为细致的混合,部分形成化学互溶,经过后期处理后,从而实现一定程度的合金化。缺点在于由于电解的问题,合金的成分受到限制,很难实现三元以上合金化,后期的处理很麻烦;上述两种方法除了各自的缺点外,共同的缺点是必须在专业生产金属粉末的厂家进行,对于超硬磨具制造厂家不能自行灵活配制组分。For this reason, professional and technical personnel have carried out relevant research, and improved this problem through the method of pre-alloying. There are two types of pre-alloying currently used: one is through metallurgical smelting-injection atomization to make powder, so that each powder particle has the same composition to make alloy powder. The disadvantage of this method is that the powder particles are spherical during the injection process, and the sintering activity is poor; the other method is to use chemical co-deposition, through a variety of materials (generally 2 to 3 kinds) as the anode electrolysis, the fine powder is combined in a certain proportion. Deposition, forming a finer mixture, partly forming chemical mutual solubility, and after post-processing, a certain degree of alloying is achieved. The disadvantage is that due to the problem of electrolysis, the composition of the alloy is limited, it is difficult to achieve alloying of ternary or more, and the later treatment is very troublesome; the above two methods have their own shortcomings, but the common disadvantage is that they must be produced in a professional manufacturer of metal powder. For superhard abrasive manufacturers, they cannot flexibly prepare components by themselves.
机械合金化(Mechanical Alloying,)作为制备新材料的一种新方法,可以用来制造非晶相和纳米相,可以打破相图的规限,制造多元素的过饱和固溶合金。技术人员已经用它成功地制备出非晶、纳米晶、金属间化合物、金属基复合材料、弥散强化材料、高温材料、磁性材料、过饱和固溶体等多种新型合金。这种合金化与传统的湿法冶金合金化不同,机械合金化过程就是将需要合金化的材料粉末按一定配比进行高能量密度的机械混合,在高能球磨机等设备中长时间运转,将机械能传递给粉末,同时粉末在球磨介质的多次大能量的冲击下,经过剪切、摩擦和压缩多种力的作用,形成反复的挤压、冷焊合及粉碎,在粉末界面间相互扩散或进行固态反应形成弥散分布的超细粒子合金粉末的过程,在这一过程中,通过大量的塑性变形、破碎、焊合将机械能转换为各种不平衡条件储存,如颗粒度细化的表面能,晶粒度细化的界面能,位错等缺陷大量增殖产生的位能,点阵常数变大原子偏离平衡点产生的位能;这一方法可使许多其它方法不能形成合金的元素之间形成固熔体,Cu-Fe合金是典型代表。Mechanical alloying (Mechanical Alloying,) as a new method of preparing new materials, can be used to manufacture amorphous phase and nano phase, can break the restriction of the phase diagram, and manufacture multi-element supersaturated solid solution alloys. Technologists have used it to successfully prepare various new alloys such as amorphous, nanocrystalline, intermetallic compounds, metal matrix composites, dispersion-strengthened materials, high-temperature materials, magnetic materials, and supersaturated solid solutions. This kind of alloying is different from the traditional hydrometallurgical alloying. The mechanical alloying process is to mechanically mix the material powders that need to be alloyed according to a certain ratio with high energy density, and run for a long time in high-energy ball mills and other equipment to convert the mechanical energy. At the same time, under the impact of multiple large energy of the ball milling medium, the powder undergoes multiple forces of shearing, friction and compression to form repeated extrusion, cold welding and crushing, and the mutual diffusion or The process of solid-state reaction to form dispersed ultra-fine particle alloy powder. In this process, through a large number of plastic deformation, crushing, and welding, mechanical energy is converted into various unbalanced conditions for storage, such as the surface energy of fine particle size , the interface energy of grain size refinement, the potential energy generated by a large number of defects such as dislocations, and the potential energy generated by atoms deviating from the equilibrium point when the lattice constant becomes larger; this method can make many elements that cannot be alloyed by other methods Form a solid solution, Cu-Fe alloy is a typical representative.
Gilman和Benjamin把机械合金化的球磨过程分成以下四个阶段:Gilman and Benjamin divided the ball milling process of mechanical alloying into the following four stages:
1.初期阶段粉末粒子是原组分的层状复合物。复合粒子内,原来的组分是可辨认的,粒子与粒子之间成分差别很大,粒子内部成分很不均匀。1. The powder particles in the initial stage are layered composites of the original components. In the composite particle, the original components are recognizable, the composition varies greatly from particle to particle, and the internal composition of the particle is very uneven.
2.中间阶段粒子变成盘旋的层状,溶质元素开始溶解。由于吸收球的动能,粉末温度升高,严重的冷变形造成高密度晶格缺陷,加强了低激活能的管扩散(pipe difussion),组分的紧密混合减小了扩散距离。这些都促进了在整个粒子范围内固溶体的形成。此时在粒子内沉淀可以发生,介稳相可以形成。质点变得更加弥散,分布逐渐变得均匀。2. In the middle stage, the particles become spiral layers, and the solute elements begin to dissolve. Due to the kinetic energy of the absorbing balls, the temperature of the powder rises, severe cold deformation causes high-density lattice defects, strengthens the pipe diffusion with low activation energy, and the intimate mixing of components reduces the diffusion distance. These all promote the formation of solid solutions throughout the particle range. At this point precipitation within the particles can occur and a metastable phase can form. The particles become more dispersed and the distribution gradually becomes uniform.
3.最后阶段层变得更细更盘旋状,各个粒子的粉末混合物的平均成分范围变窄。层间距离成为更小。粒子中仍含有某个组元浓度偏高的区域及残余的金属间化合物。平衡相的沉淀成为可能,粒子的显微硬度达到饱和值。MA过程的前期,硬度大致是随着MA的进行呈线性增加的,达到饱和之后,加工软化与进一步的加工硬化的平衡,硬度维持在一定的水平。3. The final stage layer becomes finer and more convoluted, and the average composition range of the powder mixture of individual particles narrows. The distance between layers becomes smaller. Particles still contain regions with a high concentration of a component and residual intermetallic compounds. The precipitation of the equilibrium phase becomes possible, and the microhardness of the particles reaches the saturation value. In the early stage of the MA process, the hardness increases roughly linearly with the progress of MA. After reaching saturation, the balance between work softening and further work hardening keeps the hardness at a certain level.
4.完成阶段粉末粒子具有严重地冷变形,层状结构在显微镜下已不易辨别;粉末质点的成分现在与原材料粉末混合物的平均成分一致。达到这个程度之后,进一步的球磨对弥散质点分布的改善已无实质性作用。任何无意引入系统的杂质,在球磨过程中也得到细化,均匀分布,不会形成大的夹杂。严重地冷变形的结构形成超显微细晶粒。4. The powder particles in the finished stage have serious cold deformation, and the layered structure is not easy to distinguish under the microscope; the composition of the powder particles is now consistent with the average composition of the raw material powder mixture. After reaching this level, further ball milling has no substantial effect on improving the distribution of dispersed particles. Any impurities that are unintentionally introduced into the system are also refined during the ball milling process, and are evenly distributed without forming large inclusions. Severely cold deformed structures form ultrafine grains.
通过以上关于机械合金化的过程描述和文献检索,认为机械合金化方法主要用于制备非晶、纳米晶、金属间化合物、金属基复合材料、弥散强化材料、高温材料、磁性材料、过饱和固溶体等多种新型合金,利用机械合金化过程中能量储存和表面活化制造金属结合剂超硬磨具还未见报导。本发明通过试验得到在进行一定时间(大约完成了上述中间阶段)后,粉体中的储能达到最高值,如图1所示。Through the above process description and literature search on mechanical alloying, it is believed that the mechanical alloying method is mainly used to prepare amorphous, nanocrystalline, intermetallic compounds, metal matrix composites, dispersion strengthened materials, high temperature materials, magnetic materials, supersaturated solid solutions A variety of new alloys, such as energy storage and surface activation in the process of mechanical alloying, have not been reported in the manufacture of metal bond superhard abrasive tools. The present invention obtains through experiments that after a certain period of time (about completing the above-mentioned intermediate stage), the energy storage in the powder reaches the highest value, as shown in FIG. 1 .
从图1可见,机械合金化进行30小时,Cu-Fe粉体在加热过程中能量释放达最大值,时间过长反而使能量储存降低,对固态烧结的有利作用降低。从图1中还可以看到,经不同时间机械合金化处理后,粉体的熔化温度未变,说明在粉体组元熔融前由于机械合金化作用形成的储能在加热过程中完全释放。这一释放过程在温度为500~800℃范围达到最高密度,这正是超硬磨具烧结的常用温度范围。能量释放过程使材料组织中的不平衡现象得以消除,促进了原子扩散,新鲜、活化的表面有利于发生固态界面之间的物质转移,从而达到良好烧结的目的。It can be seen from Figure 1 that after mechanical alloying for 30 hours, the energy release of Cu-Fe powder reaches the maximum value during the heating process. If the time is too long, the energy storage will be reduced, and the beneficial effect on solid-state sintering will be reduced. It can also be seen from Figure 1 that after mechanical alloying treatment at different times, the melting temperature of the powder remains unchanged, indicating that the stored energy formed by mechanical alloying before the powder components are melted is completely released during the heating process. This release process reaches the highest density at a temperature of 500-800°C, which is the common temperature range for sintering superhard abrasive tools. The energy release process eliminates the imbalance in the material structure, promotes the diffusion of atoms, and the fresh and activated surface is conducive to the transfer of substances between the solid-state interfaces, thereby achieving the purpose of good sintering.
本发明有别于一般的机械合金化,机械合金化方法主要用于制备非晶、纳米晶、金属间化合物、金属基复合材料、弥散强化材料、高温材料、磁性材料、过饱和固溶体等多种新型合金,而本发明主要是利用机械合金化的方法,在机械合金化过程中使粉体颗粒达到较高储能,以此来加强金属结合剂超硬磨具中结合剂的固态烧结程度,降低烧结温度,是用于提高金属结合剂超硬磨具的结合剂的处理方法,通过机械合金化过程中一个阶段的处理,使处理后的结合剂粉体可在较低温度下易于烧结,并提高固态烧结质量;本发明的另一区别在于只利用机械合金化的方法达到处理的粉体较高储能和形成新鲜、活化的颗粒表面,而不在意是否完全合金化或是否达到机械合金化其它方面的效果。The present invention is different from general mechanical alloying, and the mechanical alloying method is mainly used for preparing amorphous, nanocrystalline, intermetallic compounds, metal matrix composite materials, dispersion strengthened materials, high temperature materials, magnetic materials, supersaturated solid solutions, etc. new type of alloy, and the present invention mainly uses the method of mechanical alloying to make the powder particles achieve higher energy storage in the process of mechanical alloying, so as to strengthen the solid-state sintering degree of the binder in the metal bond superabrasive tool, Lowering the sintering temperature is a treatment method for improving the bonding agent of metal bonded superhard abrasive tools. Through a stage of treatment in the mechanical alloying process, the processed bonding agent powder can be easily sintered at a lower temperature. And improve the quality of solid-state sintering; another difference of the present invention is that only the method of mechanical alloying is used to achieve higher energy storage of the processed powder and to form a fresh, activated particle surface, regardless of whether it is completely alloyed or whether it has reached mechanical alloying other effects.
与其它在金属结合剂超硬磨具制造中采用的预合金化方法相比,机械合金化的设备比较一般,市场上可以买到,很适合超硬磨具制造厂购置使用。超硬磨具生产厂家能够更为灵活的根据要求配制粉体成分,而不需到专业厂家购买。Compared with other pre-alloying methods used in the manufacture of metal-bonded superhard abrasive tools, mechanical alloying equipment is relatively common and can be bought on the market, which is very suitable for superhard abrasive tool manufacturers to purchase and use. Manufacturers of superhard abrasive tools can more flexibly prepare powder components according to requirements, without the need to purchase from professional manufacturers.
发明内容 Contents of the invention
本发明的目的在于提供一种超硬磨具结合剂的处理方法,该处理方法采用机械合金化的方法,对金属结合剂磨具的结合剂的金属粉体进行机械合金化处理,达到较高储能程度即可,而不需要完全实现合金化,使结合剂金属粉体降低烧结温度、提高烧结质量。The purpose of the present invention is to provide a processing method of superhard abrasive tool bond, which adopts the method of mechanical alloying, and carries out mechanical alloying treatment to the metal powder of the bond of metal bond abrasive tool to achieve higher The degree of energy storage is enough, and it is not necessary to completely realize alloying, so that the binder metal powder can reduce the sintering temperature and improve the sintering quality.
本发明利用机械合金化方法处理金属结合剂超硬磨具的结合剂金属粉体过程如下:The present invention utilizes mechanical alloying method to process the bonding agent metal powder process of metal bonding agent superhard abrasive tool as follows:
1.将称量的结合剂金属粉体与一定的钢球混合,球∶料=5~15∶1,装入钢制球磨罐中。1. Mix the weighed binder metal powder with a certain amount of steel balls, ball: material = 5 ~ 15: 1, and put it into a steel ball mill tank.
2.一般采用行星球磨机或自行设计的高能球磨机,本发明采用的是南京产型号为XM-4×05行星式球磨机,调整转数为200~400r/min,倒向频率10~50Hz。2. Generally, a planetary ball mill or a self-designed high-energy ball mill is used. The present invention adopts a model XM-4×05 planetary ball mill produced in Nanjing.
3.装入球磨罐的结合剂金属粉体中同时加入一定量的过程控制剂,过程控制剂为甲醇、乙醇、四氯化碳或甲醇。3. A certain amount of process control agent is added to the binder metal powder in the ball mill tank at the same time. The process control agent is methanol, ethanol, carbon tetrachloride or methanol.
4.在机械合金化过程中,球磨罐内充入惰性气体,一般为氩气。机械合金化20~30小时后停机,取出机械合金化处理后的金属粉体,然后与金刚石、立方氮化硼等磨料混合,进行烧结。4. During the mechanical alloying process, the ball mill tank is filled with an inert gas, usually argon. Stop the machine after 20 to 30 hours of mechanical alloying, take out the metal powder after mechanical alloying, and then mix it with diamond, cubic boron nitride and other abrasives for sintering.
本发明的优点是:提高了结合剂可烧结的能力,在低温下可形成良好烧结,提高了烧结制品的强度,Cu-Fe粉体800℃MA处理后同等条件下烧结后硬度、强度分别提高了125%和117%(如图2所示),在一般制品厂家可方便的应用。The advantages of the present invention are: the ability of the binder to be sintered is improved, good sintering can be formed at low temperature, the strength of the sintered product is improved, and the hardness and strength of the Cu-Fe powder after sintering at 800°C under the same conditions are respectively increased. 125% and 117% (as shown in Figure 2), can be easily applied in general product manufacturers.
附图说明 Description of drawings
图1是不同机械合金化时间Cu50-Fe50DSC曲线;Fig. 1 is Cu50-Fe50DSC curve of different mechanical alloying time;
图2是不同机械合金化时间与烧结体硬度和抗折强度关系曲线;Fig. 2 is the relationship curve between different mechanical alloying time and sintered body hardness and flexural strength;
图3是不同机械合金化处理后于800℃烧结5min获得的金相组织a机械合金化0h;b机械合金化10h;c机械合金化30h。Figure 3 is the metallographic structure obtained by sintering at 800°C for 5 minutes after different mechanical alloying treatments. a mechanical alloying 0h; b
具体实施方式 Detailed ways
实施例1Example 1
将质量比(wt%)为Cu 50%、Fe 50%、平均粒径32~40μm的金属粉体初步混合,装入钢制球磨罐中,按金属粉体质量的10倍加入直径14mm的GCr15钢球,并滴入金属粉体质量2%的甲醇作过程控制剂。密封后打开真空阀抽真空,然后注入氩气。将球磨罐放置在XM-4×05行星式球磨机上,调整转数为200r/min,倒向频率40Hz。连续机械合金化30小时后,取下球磨罐,放置5小时,然后将经过机械合金化的金属粉体取出。将处理后的金属粉体不再进行其它处理,计算后直接称量、加入到腔体为4×7×40mm的用于制造小锯片刀头的石墨模具中,置于RYJ-98A型热压烧结机上,于20MPa、800℃、保持4分钟,得到完全不同的烧结组织,见图3。其性能见图2所示。上述金属粉体按金刚石锯片的热压烧结制造工艺制造,制成用于切割混凝土的圆锯片,切割旧高速公路1200M。Preliminarily mix the metal powder with a mass ratio (wt%) of Cu 50%, Fe 50%, and an average particle size of 32-40 μm, put it into a steel ball mill jar, and add GCr15 with a diameter of 14mm according to 10 times the mass of the metal powder. steel ball, and drop into the metal powder mass 2% methanol as a process control agent. After sealing, open the vacuum valve to evacuate, and then inject argon. Place the ball mill jar on the XM-4×05 planetary ball mill, adjust the rotation speed to 200r/min, and the reverse frequency to 40Hz. After continuous mechanical alloying for 30 hours, the ball mill jar was removed and left for 5 hours, and then the mechanically alloyed metal powder was taken out. The processed metal powder is not subjected to any other treatment. After calculation, it is directly weighed and added to a graphite mold with a cavity of 4×7×40mm for the manufacture of small saw blade heads, and placed in a RYJ-98A type thermal On a pressure sintering machine, hold at 20MPa, 800°C for 4 minutes to obtain a completely different sintered structure, as shown in Figure 3. Its performance is shown in Figure 2. The above metal powder is manufactured according to the hot pressing and sintering manufacturing process of diamond saw blades, and is made into Circular saw blade for cutting concrete, cutting old highway 1200M.
实施例2Example 2
按下表称量配制的金属粉体初步混合,装入钢制球磨罐中,按金属粉体质量的10倍加入直径14mm的GCr15钢球,并滴入金属粉体质量2%的甲醇作过程控制剂。Preliminarily mix the prepared metal powder according to the table below, put it into a steel ball mill tank, add GCr15 steel balls with a diameter of 14mm according to 10 times the weight of the metal powder, and drop methanol with a weight of 2% of the metal powder for the process control agent.
密封后打开真空阀抽真空,然后注入氩气。将球磨罐放置在XM-4×05行星式球磨机上,调整转数为200r/min,倒向频率40Hz。连续机械合金化30小时后,取下球磨罐,放置5小时,然后将经过机械合金化的粉体取出。将处理后的粉体不再进行其它处理,计算后分别称量、加入到用于制造厚度为0.2mm的超薄小锯片的石墨模具中,置于RYJ-98A型热压烧结机上,于20MPa、780℃、保持3分钟,制成用于切割单晶硅的圆锯片,切割单晶硅晶片,效果良好。After sealing, open the vacuum valve to evacuate, and then inject argon. Place the ball mill jar on the XM-4×05 planetary ball mill, adjust the rotation speed to 200r/min, and the reverse frequency to 40Hz. After continuous mechanical alloying for 30 hours, the ball mill jar was removed and left for 5 hours, and then the mechanically alloyed powder was taken out. The treated powder is not subjected to other treatment, weighed after calculation, added to the graphite mold used to manufacture ultra-thin small saw blades with a thickness of 0.2mm, and placed on the RYJ-98A hot-press sintering machine. 20MPa, 780°C, hold for 3 minutes, made Circular saw blades for cutting monocrystalline silicon, cutting monocrystalline silicon wafers with good results.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101021301A CN100436065C (en) | 2006-11-04 | 2006-11-04 | Method for treatment of binding agent for super hard abrasive tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101021301A CN100436065C (en) | 2006-11-04 | 2006-11-04 | Method for treatment of binding agent for super hard abrasive tools |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1947948A CN1947948A (en) | 2007-04-18 |
CN100436065C true CN100436065C (en) | 2008-11-26 |
Family
ID=38017626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101021301A Expired - Fee Related CN100436065C (en) | 2006-11-04 | 2006-11-04 | Method for treatment of binding agent for super hard abrasive tools |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100436065C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102285005A (en) * | 2011-09-14 | 2011-12-21 | 山东日能超硬材料有限公司 | Composite sharp tool bit |
CN103465176A (en) * | 2013-09-26 | 2013-12-25 | 秦皇岛星晟科技有限公司 | Formula of metal-based diamond-impregnated wheel |
CN104475741A (en) * | 2014-12-17 | 2015-04-01 | 扬州大学 | Method for preparing Ti5Si3 intermetallic compound powder by mechanical alloying |
CN108580912A (en) * | 2018-06-12 | 2018-09-28 | 桂林特邦新材料有限公司 | The adding method of metal adhesive when preparing PCBN compact |
CN109822464A (en) * | 2019-03-14 | 2019-05-31 | 泉州众志金刚石工具有限公司 | A kind of artificial stone fixed thick saw blade roller and sharpening head material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1059138A (en) * | 1991-08-30 | 1992-03-04 | 机械电子工业部郑州磨料磨具磨削研究所 | Agglomerate of composite superhard material and manufacture method thereof |
CN1114706C (en) * | 1999-01-15 | 2003-07-16 | H.C.施塔克公司 | Method for producing hard metal mixtures |
CN1166498C (en) * | 1996-08-28 | 2004-09-15 | 诺顿公司 | Metal single layer grinding apparatus |
JP2005111232A (en) * | 2003-10-10 | 2005-04-28 | Seiko:Kk | Grinding material |
CN1213835C (en) * | 2000-11-10 | 2005-08-10 | 3M创新有限公司 | Compostie abrasive particles and method of manufacture |
CN1218814C (en) * | 2003-12-15 | 2005-09-14 | 高峻峰 | Method for manufacturing metal or ceramic bond superhard grinding tool |
-
2006
- 2006-11-04 CN CNB2006101021301A patent/CN100436065C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1059138A (en) * | 1991-08-30 | 1992-03-04 | 机械电子工业部郑州磨料磨具磨削研究所 | Agglomerate of composite superhard material and manufacture method thereof |
CN1166498C (en) * | 1996-08-28 | 2004-09-15 | 诺顿公司 | Metal single layer grinding apparatus |
CN1114706C (en) * | 1999-01-15 | 2003-07-16 | H.C.施塔克公司 | Method for producing hard metal mixtures |
CN1213835C (en) * | 2000-11-10 | 2005-08-10 | 3M创新有限公司 | Compostie abrasive particles and method of manufacture |
JP2005111232A (en) * | 2003-10-10 | 2005-04-28 | Seiko:Kk | Grinding material |
CN1218814C (en) * | 2003-12-15 | 2005-09-14 | 高峻峰 | Method for manufacturing metal or ceramic bond superhard grinding tool |
Non-Patent Citations (2)
Title |
---|
真空-保护气热压烧结及装备. 王明智,王艳辉,赵玉成,臧建兵.金刚石与磨料磨具工程,第1期. 2000 |
真空-保护气热压烧结及装备. 王明智,王艳辉,赵玉成,臧建兵.金刚石与磨料磨具工程,第1期. 2000 * |
Also Published As
Publication number | Publication date |
---|---|
CN1947948A (en) | 2007-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107475548A (en) | A kind of preparation method of nanometer of toughness reinforcing Ultra-fine Grained WC Co hard alloy | |
CN107739950A (en) | A kind of WC Co cBN composite hard alloys and preparation method thereof | |
CN107012347B (en) | A kind of high-entropy alloy sintered diamond locking nub | |
CN102363854A (en) | Superfine YG-type cemented carbide containing light and heavy rare earth and its preparation method | |
CN111378888A (en) | Nano particle interface reinforced Ti (C, N) -based metal ceramic material with high nitrogen content and preparation method thereof | |
CN113106318B (en) | WC (Wolfram carbide) preform structure reinforced iron-based composite material and preparation method thereof | |
CN106985085A (en) | A kind of metal anchoring agent diamond wheel | |
CN100436065C (en) | Method for treatment of binding agent for super hard abrasive tools | |
CN104117676B (en) | Rare earth modified tungstenio binder diamond bistrique, its manufacture method and rare earth modified tungstenio bonding agent | |
CN106863158A (en) | A kind of method of vacuum brazing cubic boron nitride abrasive wheel | |
CN104175237B (en) | Rare earth modified tungstenio binder diamond emery wheel and manufacture method thereof | |
JPS627149B2 (en) | ||
AU2012287547A1 (en) | A grinding tool for machining brittle materials and a method of making a grinding tool | |
CN113894711A (en) | Diamond grinding wheel for grinding automobile glass and preparation method thereof | |
CN103045167B (en) | Magnetic grinding material and preparation method thereof | |
CN110509192B (en) | Metal glass bonding agent and preparation method thereof, grinding wheel and preparation method and application thereof | |
CN114921677B (en) | High-entropy alloy-diamond superhard composite material with high self-sharpening and strong heat dissipation as well as preparation method and application thereof | |
CN114318163B (en) | Superfine multi-element prealloy powder for diamond tool and preparation method thereof | |
CN110508800A (en) | A kind of prealloy powder for being used with combined binder grinding tool of mill hard brittle material and preparation method thereof, grinding tool | |
CN104148640B (en) | Rare earth modified tungstenio binder diamond cutting blade and manufacture method thereof | |
CN115679282A (en) | Preparation method of titanium-silicon target material | |
CN104148642B (en) | Rare earth modified tungsten based anchoring agent diamond ultra-thin saw blade and manufacture method thereof | |
JPS5857502B2 (en) | Sintered material with toughness and wear resistance | |
CN105154707A (en) | Preparation method and application of wolfram carbide (WC) composite | |
CN111850369A (en) | Preparation method of mechanical alloying of WC-6Ni-graphite self-lubricating hard tool material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081126 Termination date: 20111104 |