CN100434218C - Application method of surface alloyed ceramics - Google Patents
Application method of surface alloyed ceramics Download PDFInfo
- Publication number
- CN100434218C CN100434218C CNB2006101258482A CN200610125848A CN100434218C CN 100434218 C CN100434218 C CN 100434218C CN B2006101258482 A CNB2006101258482 A CN B2006101258482A CN 200610125848 A CN200610125848 A CN 200610125848A CN 100434218 C CN100434218 C CN 100434218C
- Authority
- CN
- China
- Prior art keywords
- ceramics
- brazing
- metal
- ceramic
- surface alloyed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 50
- 238000005219 brazing Methods 0.000 claims abstract description 44
- 229910000975 Carbon steel Inorganic materials 0.000 claims abstract description 8
- 239000010962 carbon steel Substances 0.000 claims abstract description 8
- 230000004907 flux Effects 0.000 claims abstract description 3
- 238000005275 alloying Methods 0.000 claims description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- 229910000679 solder Inorganic materials 0.000 claims description 12
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 229910017944 Ag—Cu Inorganic materials 0.000 claims description 3
- 239000005030 aluminium foil Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 abstract description 30
- 239000010936 titanium Substances 0.000 abstract description 30
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 28
- 239000002131 composite material Substances 0.000 abstract description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052802 copper Inorganic materials 0.000 abstract description 18
- 239000010949 copper Substances 0.000 abstract description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 16
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052742 iron Inorganic materials 0.000 abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 abstract description 10
- 239000007769 metal material Substances 0.000 abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052804 chromium Inorganic materials 0.000 abstract description 7
- 239000011651 chromium Substances 0.000 abstract description 7
- 229910052735 hafnium Inorganic materials 0.000 abstract description 6
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 abstract description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 5
- 239000011888 foil Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 230000000704 physical effect Effects 0.000 abstract 1
- 239000013077 target material Substances 0.000 abstract 1
- 238000003466 welding Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 26
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 150000002739 metals Chemical class 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 13
- 229910010293 ceramic material Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000007598 dipping method Methods 0.000 description 7
- 238000001465 metallisation Methods 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 229910017945 Cu—Ti Inorganic materials 0.000 description 2
- -1 and Si 3 N 4 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000011218 binary composite Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 239000011206 ternary composite Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一种表面合金化陶瓷的应用方法,它是利用表面合金化陶瓷具有复合靶材料活性金属钛、锆、铪与金属铜、铝、铁、锰、铬等渗镀层的化学、物理性能,实现陶瓷与金属材料的钎焊连接方法,在低真空下,Al2O3陶瓷与金属铝箔的钎焊连接,Al2O3陶瓷与金属碳钢Q235B的加弧辉光钎焊,Si3N4陶瓷与碳钢Q235B的钎焊连接,ZrO2陶瓷与碳钢Q235B在大气条件下钎焊,Al2O3陶瓷叠层材料在真空炉中钎焊。该方法的优点在于,表面合金化陶瓷与金属材料钎焊不需钎剂,钎焊结合强度高,可达160-180MPa,具有很好的抗氧化性,钎焊速度快,效率高,可在多种工业领域和焊接技术中应用。
An application method of surface alloyed ceramics, which uses the chemical and physical properties of the surface alloyed ceramics to have composite target material active metal titanium, zirconium, hafnium and metal copper, aluminum, iron, manganese, chromium, etc. Brazing connection method with metal materials, under low vacuum, brazing connection of Al 2 O 3 ceramics and metal aluminum foil, arc glow brazing of Al 2 O 3 ceramics and metal carbon steel Q235B, Si 3 N 4 ceramics Brazing connection with carbon steel Q235B, ZrO 2 ceramics brazed with carbon steel Q235B under atmospheric conditions, and Al 2 O 3 ceramic laminates brazed in a vacuum furnace. The advantage of this method is that no flux is needed for the brazing of surface alloyed ceramics and metal materials, the brazing bonding strength is high, up to 160-180MPa, it has good oxidation resistance, the brazing speed is fast, and the efficiency is high. It is used in various industrial fields and welding technology.
Description
分案申请divisional application
原案申请号:200410012575.1Original application number: 200410012575.1
原案申请日:2004年9月30日Date of filing the original case: September 30, 2004
原案申请名称:表面合金化陶瓷的制备方法Title of original application: Preparation method of surface alloyed ceramics
一、技术领域 1. Technical field
本发明表面合金化陶瓷的应用方法涉及陶瓷表面改性技术和复合材料制备技术领域。The application method of the surface alloyed ceramics of the invention relates to the technical fields of ceramic surface modification technology and composite material preparation.
二、背景技术 2. Background technology
陶瓷材料具有许多优点,如耐高温、耐腐蚀、高硬度、耐磨损以及电绝缘性好等,因此,陶瓷材料得到了广泛应用。但由于陶瓷具有不可避免的缺点,如性脆、强度分散和加工性能差等,限制了陶瓷的进一步使用。将陶瓷表面合金化,形成表面合金化陶瓷是扬长避短扩大陶瓷应用的主要途径。因而,表面合金化陶瓷具有广阔的应用前景。Ceramic materials have many advantages, such as high temperature resistance, corrosion resistance, high hardness, wear resistance, and good electrical insulation. Therefore, ceramic materials have been widely used. However, due to the inevitable disadvantages of ceramics, such as brittleness, strength dispersion and poor processability, the further use of ceramics is limited. Alloying the surface of ceramics to form surface alloyed ceramics is the main way to maximize the strengths and avoid weaknesses to expand the application of ceramics. Therefore, surface alloyed ceramics have broad application prospects.
陶瓷表面金属化的最大困难是由于陶瓷材料与金属材料的键合机理不同,陶瓷材料是共价键,而金属材料是金属键,因此金属很难在陶瓷材料表面润湿铺展。因此也就产生了许多陶瓷表面金属化的方法,其中Mn-Mo法和气相沉积法是最常用的方法。Mn-Mo法是在复杂的烧结工艺过程中,将Mn和Mo粉末材料烧结在陶瓷表面,这样的金属化过程使陶瓷表面光洁度下降,性能降低;气相沉积金属化法的特点是陶瓷不经受高温,可保证零件的尺寸精度,金属化膜连续致密、导热性好,高频损耗小,强度高,但仅能沉积单一金属元素,所以只能称其为陶瓷表面金属化方法,此外由于没有活性元素的作用,金属层与陶瓷的结合强度较低。The biggest difficulty in metallizing ceramic surfaces is that the bonding mechanism of ceramic materials and metal materials is different. Ceramic materials are covalent bonds, while metal materials are metal bonds, so metals are difficult to wet and spread on the surface of ceramic materials. Therefore, many methods of ceramic surface metallization have been produced, among which Mn-Mo method and vapor deposition method are the most commonly used methods. The Mn-Mo method is to sinter Mn and Mo powder materials on the ceramic surface during the complex sintering process. This metallization process reduces the surface finish and performance of the ceramics; the vapor deposition metallization method is characterized by ceramics that do not withstand high temperatures. , can ensure the dimensional accuracy of the parts, the metallized film is continuous and dense, has good thermal conductivity, low high-frequency loss, and high strength, but it can only deposit a single metal element, so it can only be called a ceramic surface metallization method. In addition, because it has no activity Due to the effect of elements, the bonding strength between the metal layer and the ceramic is low.
基于活性元素钛与陶瓷化学反应的有利作用,本申请者曾进行过陶瓷表面的加弧辉光渗钛,但这样的方法仅使陶瓷表面实现了钛金属化,金属元素单一,适应性能较差,而且由于钛的亲氧能力较强,金属钛层容易被大气氧化,形成氧化膜不利于后续的应用过程。如在此基础上的陶瓷与金属的连接,由于陶瓷表面渗镀的钛层在钎焊过程中很难全部与钎料发生反应和混合,在陶瓷与金属连接接头的陶瓷侧保留了一层钛层,影响了钎料与陶瓷的润湿和反应,直接影响了陶瓷与金属的连接强度,接头中陶瓷侧大量的金属间化合物的存在使接头脆性增加,在残余应力作用下容易出现开裂。Based on the beneficial effect of the chemical reaction between active element titanium and ceramics, the applicant has carried out arc glow titanium infiltration on the ceramic surface, but this method only makes the ceramic surface realize titanium metallization, the metal element is single, and the adaptability is poor , and due to the strong oxygen affinity of titanium, the metal titanium layer is easily oxidized by the atmosphere, and the formation of an oxide film is not conducive to the subsequent application process. For example, in the connection between ceramics and metals based on this, since the titanium layer permeated on the surface of the ceramics is difficult to react and mix with the solder during the brazing process, a layer of titanium is retained on the ceramic side of the ceramics and metal connection joints. The layer affects the wetting and reaction of the solder and the ceramic, and directly affects the connection strength between the ceramic and the metal. The presence of a large number of intermetallic compounds on the ceramic side of the joint increases the brittleness of the joint and is prone to cracking under the action of residual stress.
因此为了进一步扩大陶瓷的应用范围,找出一种方便快捷的表面合金化陶瓷制备方法,是势在必行的。Therefore, in order to further expand the application range of ceramics, it is imperative to find out a convenient and quick preparation method of surface alloyed ceramics.
三、发明内容 3. Contents of the invention
本发明表面合金化陶瓷的应用方法的目的是利用现有普通陶瓷来制备表面合金化陶瓷,普通陶瓷通过本发明所设计的复合靶和工艺方法后,使普通陶瓷表面渗镀一层含有活性金属钛、锆或铪和所需金属材料铁、铬、镍、锰、钼、铜、铝或银中的一种或一种以上的具有所需成分性能的合金层,表面合金化陶瓷在其表面具有导电、导热性等金属性能。在此基础上进一步利用表面合金化陶瓷,实现陶瓷与金属的高质量钎焊连接。The purpose of the application method of the surface alloyed ceramics of the present invention is to use the existing ordinary ceramics to prepare surface alloyed ceramics. After the ordinary ceramics pass through the composite target and the process method designed in the present invention, the surface of the ordinary ceramics is permeated with a layer containing active metals. An alloy layer of titanium, zirconium or hafnium and one or more of the required metal materials iron, chromium, nickel, manganese, molybdenum, copper, aluminum or silver with the required composition and properties, and the surface alloyed ceramics on its surface It has metal properties such as electrical conductivity and thermal conductivity. On this basis, the surface alloyed ceramics are further used to achieve high-quality brazing connections between ceramics and metals.
表面合金化陶瓷,其特征在于是一种利用复合靶在加弧辉光炉中对普通陶瓷表面进行合金化处理,使普通陶瓷表面渗镀一层含有活性金属钛、锆或铪和所需金属材料铁、铬、镍、锰、钼、铜、铝或银中的一种或一种以上的合金层,其表面具有导电、导热性金属性能的表面合金化陶瓷。The surface alloyed ceramics is characterized in that it uses a composite target to alloy the surface of ordinary ceramics in an arc-added glow furnace, so that the surface of ordinary ceramics is permeated with a layer containing active metals titanium, zirconium or hafnium and the required metals. One or more alloy layers of iron, chromium, nickel, manganese, molybdenum, copper, aluminum or silver, the surface of which has conductive and thermal conductive metal properties of surface alloyed ceramics.
上述表面合金化陶瓷的制备方法,其特征在于利用本发明设计的复合靶,在加弧辉光炉中对普通陶瓷进行表面合金化,复合靶在电弧热的作用下蒸发或熔化,金属离子在高电场的作用下高速撞击在陶瓷表面,并经过扩散和化学冶金反应渗镀在陶瓷表面,陶瓷表面获得由这些金属元素组成的合金层,制备工艺参数为:极限真空度小于6Pa,工作气压10~20Pa,工作介质氩气,辉光电压300~900V,电弧电流40~100A,渗镀时间10~50min,这种方法可实现多种类型表面合金化陶瓷和叠层复合材料的制备。The preparation method of the above-mentioned surface alloyed ceramics is characterized in that the composite target designed by the present invention is used to carry out surface alloying of ordinary ceramics in an arc-added glow furnace, the composite target evaporates or melts under the action of arc heat, and the metal ions are Under the action of a high electric field, it hits the ceramic surface at high speed, and is infiltrated on the ceramic surface through diffusion and chemical metallurgical reaction. The ceramic surface obtains an alloy layer composed of these metal elements. The preparation process parameters are: the ultimate vacuum degree is less than 6Pa, and the working pressure is 10 ~20Pa, working medium argon, glow voltage 300~900V, arc current 40~100A, infiltration time 10~50min, this method can realize the preparation of various types of surface alloyed ceramics and laminated composite materials.
上述表面合金化陶瓷的制备方法,其特征在于所述的复合靶由活性金属钛、锆或铪和其它所需金属材料铁、铬、镍、锰、钼、铜、铝或银中的一种或几种按比例机械组合,从使用面积计算,金属钛、锆或铪所占的比例为10~40%,其它金属元素所占比例分别因合金成分不同而各异。The preparation method of the above-mentioned surface alloyed ceramics is characterized in that the composite target is made of active metal titanium, zirconium or hafnium and other required metal materials such as iron, chromium, nickel, manganese, molybdenum, copper, aluminum or silver. Or several kinds of mechanical combination in proportion. Calculated from the use area, the proportion of metal titanium, zirconium or hafnium is 10-40%, and the proportion of other metal elements is different due to different alloy components.
本发明一种表面合金化陶瓷的应用方法,其特征在于是一种表面合金化后的陶瓷与金属的连接方法,采用表面合金化陶瓷制备方法制成的Si3N4、ZrO2、Al2O3或SiC表面合金化陶瓷与铝箔、碳钢或表面合金化后的异种陶瓷进行连接,不需要钎剂,使用Ag-Cu钎料,其工艺参数为:极限真空度小于6Pa,工作气压10~20Pa,辉光电压300~900V,钎焊温度750~900℃,保温时间5~15min,工作介质氩气,在加弧辉光炉中,实现Si3N4、ZrO2、Al2O3或SiC表面合金化陶瓷与金属的连接,其界面结合强度大于180MPa。The application method of surface alloyed ceramics of the present invention is characterized in that it is a method of connecting surface alloyed ceramics and metals, and Si 3 N 4 , ZrO 2 , Al 2 prepared by the surface alloyed ceramics preparation method O 3 or SiC surface alloyed ceramics are connected with aluminum foil, carbon steel or dissimilar ceramics after surface alloying, no flux is needed, and Ag-Cu solder is used. The process parameters are: ultimate vacuum degree is less than 6Pa, working pressure is 10 ~20Pa, glow voltage 300~900V, brazing temperature 750~900℃, holding time 5~15min, working medium argon, realize Si 3 N 4 , ZrO 2 , Al 2 O 3 in arc-added glow furnace Or the connection between SiC surface alloyed ceramics and metal, the interface bonding strength is greater than 180MPa.
制备表面合金化陶瓷的目的就是为了与金属材料钎焊连接,在复合靶的选择上也可以特别考虑,如选择Cu和Ti二元复合靶或Ag、Cu和Ti三元复合靶,在陶瓷表面形成Cu-Ti二元合金或Ag-Cu-Ti三元合金,这两种材料本身就是很好的钎料,因而有利于表面合金化陶瓷/金属的钎焊连接。这样不仅节省钎料,而且可以在多种环境条件下(大气条件下)对其进行钎焊。The purpose of preparing surface alloyed ceramics is to braze with metal materials. Special consideration can also be given to the selection of composite targets, such as choosing Cu and Ti binary composite targets or Ag, Cu and Ti ternary composite targets. Form Cu-Ti binary alloy or Ag-Cu-Ti ternary alloy, these two materials are good brazing filler metals in themselves, which is beneficial to the brazing connection of surface alloyed ceramics/metals. This not only saves solder, but also allows it to be brazed under various environmental conditions (atmospheric conditions).
采用本制备方法也可对片状陶瓷两面进行表面合金化,可以形成双面合金化陶瓷。也可以把双面合金化陶瓷叠加并焊接在一起,形成叠层复合材料,如附图图5所示。The preparation method can also carry out surface alloying on both sides of the sheet-shaped ceramics, and can form double-sided alloyed ceramics. Double-sided alloyed ceramics can also be stacked and welded together to form a laminated composite material, as shown in Figure 5 of the accompanying drawings.
本制备方法与现有陶瓷金属化方法、陶瓷/金属钎焊方法相比具有以下优点:Compared with the existing ceramic metallization method and ceramic/metal brazing method, the preparation method has the following advantages:
1.有利于陶瓷表面的金属化和合金化,形成表面合金化陶瓷,进一步拓宽了陶瓷的应用范围。1. It is conducive to the metallization and alloying of the ceramic surface, forming surface alloyed ceramics, and further broadening the application range of ceramics.
2.避免了单一渗钛层阻碍和脆化影响,有利于合金层与陶瓷的化学反应,提高界面结合强度,降低了界面应力集中程度;2. It avoids the influence of a single titanium infiltration layer and embrittlement, which is beneficial to the chemical reaction between the alloy layer and the ceramic, improves the interface bonding strength, and reduces the degree of interface stress concentration;
3.复合渗镀合金层不易被大气氧化。3. The composite alloy layer is not easy to be oxidized by the atmosphere.
4.表面合金化陶瓷可以在较低的真空度条件下,甚至可以在大气环境中实现钎焊连接;利用普通钎料进行钎焊,可获得优良的焊接接头。4. The surface alloyed ceramics can be brazed under low vacuum conditions, even in the atmosphere; brazing with ordinary solder can obtain excellent welded joints.
5.制备速度快,效率高。5. The preparation speed is fast and the efficiency is high.
四、附图说明 4. Description of drawings
图1为本发明表面合金化陶瓷及制备方法所用加弧辉光真空炉设备示意图。1为冷却循环水;2为阳极靶即复合靶;3是炉壁为夹套形式,内部通冷却水1;4为附加阴极,起加热保温作用;5为阴极台座;6为密封垫圈;7陶瓷工件;8为引弧钩,用于点燃电弧和维持电弧;9为电弧电源;10为辉光电源。Fig. 1 is a schematic diagram of arc-added glow vacuum furnace equipment used in the surface alloyed ceramics and the preparation method of the present invention. 1 is the cooling circulating water; 2 is the anode target, that is, the composite target; 3 is the furnace wall is in the form of a jacket, and the cooling water 1 is passed inside; 4 is the additional cathode, which plays the role of heating and heat preservation; 5 is the cathode pedestal; 6 is the sealing gasket; 7 Ceramic workpiece; 8 is an arc strike hook, which is used to ignite and maintain an arc; 9 is an arc power supply; 10 is a glow power supply.
图2为本发明的表面合金化陶瓷及制备方法中采用的复合金属靶的结构剖面图。Fig. 2 is a cross-sectional view of the structure of the composite metal target used in the surface alloyed ceramics and the preparation method of the present invention.
图3为本发明的表面合金化陶瓷及制备方法中采用的复合金属靶的仰视图。根据所需合金化的组分不同,材料11、12、13、14可以为钛、锆或铪活性元素材料和铁、铜、镍、铬、锰、铝、钼等中的一种或一种以上,一般情况下,从经济角度考虑,最外圈为较便宜的材料,最内圈为贵重的材料。对于陶瓷材料而言,活性元素是不可少的,因为它们可以与陶瓷进行一定的化学反应。11、12、13、14材料所占比例按面积计算,因陶瓷材料不同和所需合金层组分不同而各异。Fig. 3 is a bottom view of the composite metal target used in the surface alloyed ceramics and the preparation method of the present invention. According to different alloying components,
图4为本发明的钎焊方法示意图。15为表面合金化陶瓷,16为合金层,17为钎料,18为金属(或表面合金化陶瓷)。把表面合金化陶瓷15、钎料17和金属18组装好,放入辉光钎焊炉或真空炉中,然后按着上述规定的工艺参数进行钎焊连接。Fig. 4 is a schematic diagram of the brazing method of the present invention. 15 is a surface alloyed ceramic, 16 is an alloy layer, 17 is a solder, and 18 is a metal (or a surface alloyed ceramic). Assemble the surface alloyed
图5为陶瓷/金属叠层复合材料。19为陶瓷;20为金属材料;Figure 5 is a ceramic/metal laminate composite. 19 is ceramic; 20 is metal material;
五、具体实施方式 5. Specific implementation
实施方式1Embodiment 1
表面合金化Al2O3陶瓷的制备,目的用于表面导电。Preparation of surface alloyed Al 2 O 3 ceramics for surface conductivity.
陶瓷为Al2O3,复合靶采用钛、铜、铝三种组分,由外至内布置为铜、铝、钛材料,面积比例为30~40%、30~40%、20~40%。陶瓷表面合金化的工艺参数为:The ceramic is Al 2 O 3 , and the composite target adopts three components of titanium, copper and aluminum, which are arranged as copper, aluminum and titanium materials from outside to inside, and the area ratio is 30-40%, 30-40%, 20-40% . The process parameters of ceramic surface alloying are:
极限真空度 6Pa 辉光电压 600VUltimate vacuum degree 6Pa Glow voltage 600V
电弧电流 60A 渗镀时间 30minArc current 60A Dipping time 30min
工作介质 氩气Working medium Argon
Al2O3陶瓷表面合金层厚度为20μm,具有良好的导电性能。Al 2 O 3 ceramic surface alloy layer has a thickness of 20 μm and has good electrical conductivity.
实施方式2Embodiment 2
表面合金化陶瓷用于微连接Surface Alloyed Ceramics for Microjoints
陶瓷材料为Al2O3,金属为15μm后的铝箔,复合靶采用铝、钛两种成分,采用铝为外圈,钛为内圈,复合靶中铝、钛的面积比例为60~80%、20~40%。表面合金化陶瓷与金属及钎料放入真空炉中进行连接。The ceramic material is Al 2 O 3 , the metal is aluminum foil after 15 μm, the composite target is made of aluminum and titanium, the outer ring is aluminum, the inner ring is titanium, and the area ratio of aluminum and titanium in the composite target is 60-80%. , 20-40%. The surface alloyed ceramics are connected with metal and solder in a vacuum furnace.
陶瓷表面合金化及其与金属的钎焊的工艺参数为:The process parameters of ceramic surface alloying and brazing with metal are:
极限真空度 6Pa 工作气压 20PaUltimate vacuum degree 6Pa Working pressure 20Pa
辉光电压 700V 电弧电流 60AGlow Voltage 700V Arc Current 60A
渗镀时间 50min 钎焊温度 500℃Dipping time 50min Brazing temperature 500℃
保温时间 10min 工作介质 氩气Holding time 10min working medium argon
Al2O3陶瓷表面渗合金层厚度为10~20μm,钎焊结果表明Al2O3陶瓷/金属铝箔接头无裂纹,整个结合面无不连接处,钎焊接头抗剪强度为100MPa。Al 2 O 3 ceramic surface alloying layer thickness is 10 ~ 20μm, brazing results show that Al 2 O 3 ceramic/metal aluminum foil joints have no cracks, the entire joint surface has no disconnection, and the shear strength of the brazed joint is 100MPa.
实施方式3Embodiment 3
表面合金化陶瓷与金属的低真空钎焊,用于陶瓷/金属连接Low vacuum brazing of surface alloyed ceramics to metals for ceramic/metal joints
陶瓷材料为Si3N4,金属材料为碳钢Q235,复合靶采用铜、钛、铁三种成分,采用铜为外圈,钛铜为内圈,铜、钛、铁的面积比例为40~60%、20~40%、10~40%,表面合金化陶瓷与金属及Ag-Cu钎料放入真空炉中进行钎焊。The ceramic material is Si 3 N 4 , the metal material is carbon steel Q235, the composite target is composed of copper, titanium and iron, copper is used as the outer ring, titanium copper is used as the inner ring, and the area ratio of copper, titanium and iron is 40~ 60%, 20-40%, 10-40%, the surface alloyed ceramics and metals and Ag-Cu solder are placed in a vacuum furnace for brazing.
陶瓷表面合金化及其与金属的钎焊的工艺参数为:The process parameters of ceramic surface alloying and brazing with metal are:
极限真空度 6Pa 工作气压 20PaUltimate Vacuum 6Pa Working Pressure 20Pa
辉光电压 700V 电弧电流 60AGlow Voltage 700V Arc Current 60A
渗镀时间 50min 钎焊温度 850℃Dipping time 50min Brazing temperature 850℃
钎焊真空度 5×10-2Pa 保温时间 10minBrazing vacuum degree 5×10 -2 Pa holding time 10min
工作介质 氩气Working medium Argon
陶瓷表面合金层厚度为30μm,钎焊接头质量良好,Si3N4陶瓷无裂纹,整个结合面无不连接处,钎焊接头抗剪强度为300MPa。The thickness of the alloy layer on the surface of the ceramic is 30 μm, the quality of the brazed joint is good, the Si 3 N 4 ceramic has no cracks, and the entire joint surface has no disconnection, and the shear strength of the brazed joint is 300 MPa.
实施方式4Embodiment 4
Si3N4与ZrO2陶瓷表面合金化后的低真空钎焊Low-vacuum brazing after surface alloying of Si 3 N 4 and ZrO 2 ceramics
陶瓷为Si3N4和ZrO2,Si3N4陶瓷表面合金化时复合靶采用铜、钛、镍三种元素,采用铜为外圈,镍为内圈,铜、钛、镍比例分别为40~60%、20~40%、10~40%,ZrO2陶瓷表面合金化时复合靶选用锆、铬、镍三种元素,锆、铬、镍分别占的比例为20~40%、40~60%、15~30%,表面合金化后的陶瓷钎料放入真空炉中进行钎焊。其工艺参数为:The ceramics are Si 3 N 4 and ZrO 2 . When Si 3 N 4 ceramics are surface alloyed, the composite target uses copper, titanium, and nickel as three elements. Copper is used as the outer ring, and nickel is used as the inner ring. The proportions of copper, titanium, and nickel are respectively 40-60%, 20-40%, 10-40%, when ZrO 2 ceramic surface is alloyed, three elements of zirconium, chromium and nickel are used as the composite target, and the proportions of zirconium, chromium and nickel are 20-40%, 40% respectively. ~60%, 15~30%, the surface alloyed ceramic solder is put into a vacuum furnace for brazing. Its process parameters are:
极限真空度 6Pa 工作气压 20PaUltimate vacuum degree 6Pa Working pressure 20Pa
辉光电压 800V 电弧电流 60AGlow Voltage 800V Arc Current 60A
渗镀时间 40min 钎焊温度 930℃Dipping time 40min Brazing temperature 930℃
钎焊真空度 0.5Pa 保温时间 10minBrazing vacuum degree 0.5Pa holding time 10min
工作介质 氩气Working medium Argon
陶瓷表面合金层厚度为30μm,钎焊结果获得性能良好的接头,Si3N4及ZrO2陶瓷接头无裂纹,整个结合面无不连接处,钎焊接头抗剪强度为230MPa。The thickness of the alloy layer on the ceramic surface is 30 μm, and the joint with good performance is obtained as a result of brazing. The Si 3 N 4 and ZrO 2 ceramic joint has no cracks, and the entire joint surface has no disconnection. The shear strength of the brazed joint is 230MPa.
实施方式5Embodiment 5
Al2O3陶瓷表面合金化后与金属的加弧辉光钎焊Arc glow brazing of Al 2 O 3 ceramic surface to metal after alloying
陶瓷为Al2O3,金属为碳钢Q235B,复合靶采用钛、镍、铝四种成分,采用钛为外圈,钛、铁、铝分别占的比例为20~40%、20~40%、30~50%,合金化后的陶瓷与金属及钎料放入辉光炉中进行辉光钎焊。陶瓷表面合金化及其与金属的辉光钎焊的工艺参数为:The ceramic is Al 2 O 3 , the metal is carbon steel Q235B, the composite target uses four components of titanium, nickel and aluminum, and titanium is used as the outer ring, and the proportions of titanium, iron and aluminum are 20-40% and 20-40% respectively , 30-50%, the alloyed ceramics, metals and solders are put into a glow furnace for glow brazing. The process parameters of ceramic surface alloying and glow brazing with metal are:
极限真空度 6Pa 工作气压 20PaUltimate vacuum degree 6Pa Working pressure 20Pa
辉光电压 600V 电弧电流 60AGlow Voltage 600V Arc Current 60A
渗镀时间 40min 钎焊温度 900℃Dipping time 40min Brazing temperature 900℃
保温时间 10min 工作介质 氩气Holding time 10min working medium argon
陶瓷表面渗层厚度为35μm左右,钎焊结果获得性能良好的接头,Al2O3陶瓷无裂纹,整个结合面无不连接处,钎焊接头抗剪强度为210MPa。The thickness of the infiltrated layer on the surface of the ceramic is about 35 μm. As a result of brazing, a joint with good performance is obtained. The Al 2 O 3 ceramic has no cracks, and the entire joint surface has no disconnection. The shear strength of the brazed joint is 210MPa.
实施方式6Embodiment 6
ZrO2陶瓷表面合金化后与金属在大气条件下钎焊Brazing of ZrO 2 Ceramic Surface Alloyed with Metal under Atmospheric Conditions
陶瓷为ZrO2,金属为碳钢Q235B,复合靶采用锆、铁、镍三种成分,采用镍、为外圈,锆、铁、镍分别占的比例为20~40%、40~60%、15~20%,表面合金化后的陶瓷与金属在大气条件下进行钎焊。陶瓷表面合金化及其与金属的钎焊工艺参数为:The ceramic is ZrO 2 , the metal is carbon steel Q235B, the composite target uses three components of zirconium, iron and nickel, and nickel is used as the outer ring, and the proportions of zirconium, iron and nickel are 20-40%, 40-60%, respectively. 15-20%, the surface alloyed ceramics and metals are brazed under atmospheric conditions. The process parameters of ceramic surface alloying and brazing with metal are:
极限真空度 6Pa 工作气压 20PaUltimate vacuum degree 6Pa Working pressure 20Pa
辉光电压 700V 电弧电流 60AGlow Voltage 700V Arc Current 60A
渗镀时间 20min 钎焊温度 920℃Dipping time 20min Brazing temperature 920℃
保温时间 10min 工作介质 氩气Holding time 10min working medium argon
陶瓷表面渗层厚度为30μm左右,钎焊结果获得性能良好的接头,ZrO2陶瓷无裂纹,整个结合面无不连接处,钎焊接头抗剪强度为180MPa。The thickness of the infiltrated layer on the surface of the ceramic is about 30 μm. As a result of brazing, a joint with good performance is obtained. The ZrO 2 ceramic has no cracks, and the entire joint surface has no disconnection. The shear strength of the brazed joint is 180 MPa.
实施方式7Embodiment 7
Al2O3陶瓷叠层材料制备Preparation of Al 2 O 3 Ceramic Laminates
陶瓷为片状Al2O3,复合靶采用钛、铜、铝、银四种成分,采用铜为外圈,钛、铜、铝、银分别占的比例为20~40%、40~60%、15~20%,5~10%对片状Al2O3双面表面合金化,然后把3片双面合金化陶瓷叠放在一起,在真空炉中进行钎焊。The ceramic is flake Al 2 O 3 , the composite target uses titanium, copper, aluminum, and silver as four components, and copper is used as the outer ring, and the proportions of titanium, copper, aluminum, and silver are 20-40% and 40-60% respectively. , 15-20%, and 5-10% alloy the double-sided surfaces of sheet-shaped Al 2 O 3 , then stack three double-sided alloyed ceramics together and braze in a vacuum furnace.
陶瓷表面合金化及其与金属的钎焊工艺参数为:The process parameters of ceramic surface alloying and brazing with metal are:
极限真空度 6Pa 工作气压 20PaUltimate vacuum degree 6Pa Working pressure 20Pa
辉光电压 700V 电弧电流 60AGlow Voltage 700V Arc Current 60A
渗镀时间 20min 钎焊温度 920℃Dipping time 20min Brazing temperature 920℃
保温时间 10min 工作介质 氩气Holding time 10min working medium argon
钎焊真空度 0.5PaBrazing vacuum degree 0.5Pa
陶瓷表面渗层厚度为40μm左右,结合面无不连接处。The thickness of the infiltrated layer on the ceramic surface is about 40 μm, and there is no disconnection on the joint surface.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101258482A CN100434218C (en) | 2004-09-30 | 2004-09-30 | Application method of surface alloyed ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101258482A CN100434218C (en) | 2004-09-30 | 2004-09-30 | Application method of surface alloyed ceramics |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100125751A Division CN1300064C (en) | 2004-09-30 | 2004-09-30 | Surface alloying ceramic and its preparing process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1919515A CN1919515A (en) | 2007-02-28 |
CN100434218C true CN100434218C (en) | 2008-11-19 |
Family
ID=37777429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101258482A Expired - Fee Related CN100434218C (en) | 2004-09-30 | 2004-09-30 | Application method of surface alloyed ceramics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100434218C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101314192B (en) * | 2008-06-04 | 2011-02-02 | 哈尔滨工业大学 | Connecting method for metallic material and non-metallic composite |
CN105732073A (en) * | 2010-07-22 | 2016-07-06 | 九尊城网络科技(深圳)有限公司 | Method for connecting carbon steel and zirconia ceramic |
CN105732072A (en) * | 2010-07-22 | 2016-07-06 | 九尊城网络科技(深圳)有限公司 | Method for connecting carbon steel and zirconia ceramic |
CN102319964B (en) * | 2011-08-06 | 2013-06-05 | 郑州机械研究所 | Active core silver solder for soldering ceramics and preparation method thereof |
US10105795B2 (en) * | 2012-05-25 | 2018-10-23 | General Electric Company | Braze compositions, and related devices |
CN103896635B (en) * | 2014-03-07 | 2015-09-02 | 太原理工大学 | The surface alloying process of powdered ceramic material |
DE102015208831B4 (en) * | 2015-05-12 | 2024-06-06 | Carl Zeiss Smt Gmbh | Method for producing an EUV module, EUV module and EUV lithography system |
CN104973879B (en) * | 2015-07-15 | 2018-05-25 | 哈尔滨工业大学(威海) | A kind of Al2O3The method for sealing of ceramics and ceramic sealing alloy |
CN105436643A (en) * | 2016-01-07 | 2016-03-30 | 上海电机学院 | Direct aluminum or aluminum alloy brazing method for aluminum oxide ceramics |
CN106041238B (en) * | 2016-06-13 | 2018-09-25 | 西安理工大学 | A kind of oil well surveys specific retention probing shell structure and its sealing materials |
CN108314459A (en) * | 2017-01-16 | 2018-07-24 | 贵州天义电器有限责任公司 | Ceramics and binding post soldering connection process in a kind of sealing high voltage connector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05148067A (en) * | 1991-11-26 | 1993-06-15 | Tokin Corp | Ceramic substrate and its production |
US6291804B1 (en) * | 1999-03-31 | 2001-09-18 | Ngk Insulators, Ltd. | Joined structure of ceramic heater and electrode terminal, and joining method therefor |
CN1364748A (en) * | 2002-01-31 | 2002-08-21 | 中国科学院上海硅酸盐研究所 | Combining method for aluminium nitride and copper |
US6635358B2 (en) * | 2000-07-27 | 2003-10-21 | Ngk Insulators, Ltd. | Composite member comprising bonded different members and method for making the composite member |
-
2004
- 2004-09-30 CN CNB2006101258482A patent/CN100434218C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05148067A (en) * | 1991-11-26 | 1993-06-15 | Tokin Corp | Ceramic substrate and its production |
US6291804B1 (en) * | 1999-03-31 | 2001-09-18 | Ngk Insulators, Ltd. | Joined structure of ceramic heater and electrode terminal, and joining method therefor |
US6635358B2 (en) * | 2000-07-27 | 2003-10-21 | Ngk Insulators, Ltd. | Composite member comprising bonded different members and method for making the composite member |
CN1364748A (en) * | 2002-01-31 | 2002-08-21 | 中国科学院上海硅酸盐研究所 | Combining method for aluminium nitride and copper |
Also Published As
Publication number | Publication date |
---|---|
CN1919515A (en) | 2007-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100434218C (en) | Application method of surface alloyed ceramics | |
JP5623783B2 (en) | Brazing material for air bonding, bonded body, and current collecting material | |
CN102275022B (en) | A connection method between C/C composite material and copper or copper alloy | |
CN102689109A (en) | High-entropy brazing filler metal for brazing non-oxide ceramics and non-oxide ceramic composite material and preparation method of brazing filler metal | |
CN101284336A (en) | Argon arc welding-brazing hybrid welding method for connecting titanium alloy and steel | |
JPH0367985B2 (en) | ||
CN105585328B (en) | A kind of technique of nanometer of foil connection carbon/silicon carbide ceramic matrix composite and metal | |
CN105585326B (en) | A kind of technique of nanometer of foil diffusion connection carbon/silicon carbide ceramic matrix composite | |
CN106181000A (en) | A kind of tungsten alloy and the method for attachment of molybdenum alloy | |
CN110524082B (en) | A method for rapid wetting of carbon fibers in ceramic matrix composites with Fe as active element | |
CN112479744B (en) | A method and device for preparing active metal connection layer on the surface of carbon fiber reinforced silicon carbide composite material | |
CN109332860A (en) | Arc additive manufacturing method of 5083 aluminum alloy/TC 4 titanium alloy structure | |
Song et al. | Wetting behavior and brazing of titanium‐coated SiC ceramics using Sn0. 3Ag0. 7Cu filler | |
CN109128583B (en) | A kind of brazing filler metal for vacuum brazing high nitrogen steel and preparation method thereof | |
CN103341700B (en) | A kind of Co-Ti-Nb system high-temp solder | |
Tillmann et al. | Mechanical behavior of reactive air brazed (RAB) Crofer 22 APU-Al 2 O 3 joints at ambient temperature | |
CN105965176B (en) | For soldering tungsten-copper alloy and the Ni base chilling solders and soldering processes of stainless steel | |
Cao et al. | A low-temperature sealing method for metal-supported oxide fuel cell applications: Ni–Sn transient liquid phase bonding | |
JPH07284989A (en) | Brazing filler metal for high-temperature brazing | |
Yu et al. | Fabrication of high-temperature-resistant bondline based on multilayer core–shell hybrid microspheres for power devices | |
CN109014661B (en) | A kind of brazing filler metal additive for high nitrogen steel brazing | |
Atabaki | Recent progress in joining of ceramic powder metallurgy products to metals | |
CN111604619A (en) | A kind of vanadium-plated graphene enhancer for brazing of high nitrogen steel | |
CN1300064C (en) | Surface alloying ceramic and its preparing process | |
CN1709629A (en) | Joint Strengthening Method for Controlling the Interface Structure of Copper Alloy and Steel Butt Welding Joints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Qingyuan elegance Ceramic Co., Ltd. Assignor: Taiyuan University of Technology Contract fulfillment period: 2008.12.15 to 2013.12.15 contract change Contract record no.: 2009440001705 Denomination of invention: Application method of surface alloying ceramic Granted publication date: 20081119 License type: Exclusive license Record date: 20091023 |
|
LIC | Patent licence contract for exploitation submitted for record |
Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2008.12.15 TO 2013.12.15; CHANGE OF CONTRACT Name of requester: QINGYUAN CITY OUYA CERAMICS CO., LTD. Effective date: 20091023 |
|
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081119 Termination date: 20100930 |