CN100430031C - Binocular stereo vision high-order aberration correction visual simulation system - Google Patents
Binocular stereo vision high-order aberration correction visual simulation system Download PDFInfo
- Publication number
- CN100430031C CN100430031C CNB2004100090432A CN200410009043A CN100430031C CN 100430031 C CN100430031 C CN 100430031C CN B2004100090432 A CNB2004100090432 A CN B2004100090432A CN 200410009043 A CN200410009043 A CN 200410009043A CN 100430031 C CN100430031 C CN 100430031C
- Authority
- CN
- China
- Prior art keywords
- wave
- reflecting mirror
- computer
- matching telescope
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000004075 alteration Effects 0.000 title claims abstract description 58
- 230000000007 visual effect Effects 0.000 title claims abstract description 31
- 238000012937 correction Methods 0.000 title claims abstract description 24
- 230000004438 eyesight Effects 0.000 title claims abstract description 21
- 238000004088 simulation Methods 0.000 title claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 238000001356 surgical procedure Methods 0.000 claims abstract description 15
- 238000003384 imaging method Methods 0.000 claims abstract description 11
- 230000003044 adaptive effect Effects 0.000 claims abstract description 8
- 238000013461 design Methods 0.000 claims abstract description 6
- 230000002980 postoperative effect Effects 0.000 claims description 6
- 239000004973 liquid crystal related substance Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 210000001747 pupil Anatomy 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 6
- 230000002427 irreversible effect Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 238000009472 formulation Methods 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010226 confocal imaging Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 230000004382 visual function Effects 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000009982 effect on human Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
双眼体视高阶像差矫正视觉仿真系统,由两套自适应光学信标(1)、扩束系统(2)、反射镜(3)、分束镜(4)、反射镜(5)、人眼(6)、光束匹配望远镜(7)、波前校正器(8)、反射镜(9)、光束匹配望远镜(10)、分束镜(11)、哈特曼波前传感器(12)、计算机(13)、高压放大器(14)、反射镜(15)、成像光学系统(16)、视觉鉴别率显示器(17)和计算机(18)组成。本发明使患者在手术方案或个性化隐形眼镜的制定过程中,通过本仪器就可以感受到术后或高阶像差矫正后的双眼立体视觉效果,使患者与医生共同讨论手术方案或设计方案成为可能,或者在个性化隐形眼镜制作之前实现参数的修改优化,同时建立客观测量数据与视觉主观感受间的关系,使得不可逆的手术方案术前优化成为可能。
The binocular stereo high-order aberration correction vision simulation system consists of two sets of adaptive optical beacons (1), beam expander system (2), mirrors (3), beam splitters (4), mirrors (5), Human eye (6), beam matching telescope (7), wavefront corrector (8), mirror (9), beam matching telescope (10), beam splitter (11), Hartmann wavefront sensor (12) , a computer (13), a high-voltage amplifier (14), a mirror (15), an imaging optical system (16), a visual discrimination rate display (17) and a computer (18). The invention enables patients to feel the binocular stereoscopic vision effect after surgery or after high-order aberration correction through the instrument during the formulation of surgical plans or personalized contact lenses, so that patients and doctors can discuss surgical plans or design plans together It becomes possible, or realize the modification and optimization of parameters before the production of personalized contact lenses, and at the same time establish the relationship between objective measurement data and visual subjective experience, making it possible to optimize the irreversible surgical plan before operation.
Description
所属技术领域Technical field
本发明涉及一种双眼体视高阶像差矫正视觉仿真系统,是一种用于个性化人眼高阶像差手术矫正术前、或个性化人眼高阶像差隐形眼镜配置前,仿真人眼术后、或隐形眼镜配置后立体视觉效果的光学仪器。The invention relates to a binocular stereo vision high-order aberration correction visual simulation system, which is a simulation system used for the simulation of high-order aberrations of human eyes before surgical correction, or before the configuration of personalized high-order aberration contact lenses of human eyes. Optical instrument for stereoscopic vision effect after human eye operation or contact lens configuration.
背景技术 Background technique
自上世纪70年代前苏联科学家发明放射状角膜切开术(RadialKeratotomy-RK)矫正视力以来,随着激光技术、光电技术的进步,90年代出现了准分子激光角膜削融术(Photorefractive Keratertomy-PRK),90年代后期发展起来的准分子激光原位角膜磨镶术(Laser in SituKeratomileusis-LASIK),近年来这些技术都已经发展成为了门诊手术。这些手术通过手术刀、激光切削角膜组织、改变角膜表面的曲率使平行光线重新聚焦在视网膜上,从而达到屈光矫正的目的。Since the former Soviet scientists invented Radial Keratotomy (RK) to correct vision in the 1970s, with the advancement of laser technology and photoelectric technology, excimer laser corneal ablation (Photorefractive Keratotomy-RK) appeared in the 1990s. , the excimer laser in situ keratomileusis (Laser in SituKeratomileusis-LASIK) developed in the late 1990s, these technologies have developed into outpatient surgery in recent years. These operations use a scalpel, laser to cut corneal tissue, and change the curvature of the corneal surface to refocus parallel light rays on the retina, thereby achieving the purpose of refractive correction.
随着人眼波像差精确测量技术的出现,波像差引导的“个性化”角膜屈光手术成为了可能。所谓波前像差引导的角膜个性化切削,是指用波前像差仪测量患者眼的波前像差,数据经计算机计算,制定出需矫正的手术方案,通过LASI K手术中小光斑飞点扫描激光系统实行手术。亦即根据不同个体独特的光学特性和解剖特性,通过各种波像差,如球差、像散、彗差和非球面误差切削,矫正个体人眼波像差、并减少手术带来的高阶像差,从而提高人眼视网膜的成像质量。这种方式理论上可以使患者得到比正常人更好的“超常视力”。With the emergence of accurate measurement technology of human eye wave aberration, wave aberration-guided "personalized" corneal refractive surgery has become possible. The so-called wavefront aberration-guided personalized corneal cutting refers to measuring the wavefront aberration of the patient's eye with a wavefront aberration meter. The data is calculated by a computer to formulate a surgical plan that needs to be corrected. The scanning laser system performs the surgery. That is to say, according to the unique optical characteristics and anatomical characteristics of different individuals, through various wave aberrations, such as spherical aberration, astigmatism, coma and aspheric error cutting, correct the wave aberration of individual human eyes and reduce the high-order damage caused by surgery. Aberrations, thereby improving the imaging quality of the human retina. This method can theoretically enable patients to get better "supernormal vision" than normal people.
David Williams实验室曾经就校正人眼的高阶像差做过相应研究实验,证明校掉较高阶像差有助于提高人眼的主观像质,该实验系统其主要特征在于人眼像差的测量采用微透镜结构的哈特曼-夏克波前传感器(“VisualPerformance after correcting the monochromatic and chromaticaberrations of the eye”Geun-Young Yoon and David R.Williams,J.Opt.Soc.Am.A/Vol.19,No.2/February)。The David Williams laboratory has done corresponding research experiments on correcting higher-order aberrations of the human eye, and proved that correcting higher-order aberrations can help improve the subjective image quality of the human eye. The main feature of this experimental system is that the aberrations of the human eye The measurement adopts the Hartmann-Shack wavefront sensor with microlens structure ("VisualPerformance after correcting the monochromatic and chromaticaberrations of the eye" Geun-Young Yoon and David R.Williams, J.Opt.Soc.Am.A/Vol.19 , No.2/February).
在实际应用中,个性化LASI K手术还存在如下几个问题:In practical application, personalized LASI K surgery still has the following problems:
(1)手术不可逆,患者术后角膜很薄,即便准确测定了术后残留像差,也无法通过再次手术加以矫正;(1) The operation is irreversible. The postoperative cornea is very thin. Even if the postoperative residual aberration is accurately measured, it cannot be corrected by reoperation;
(2)客观个性化与视觉主观感受的差异。手术切削方案的制定完全基于物理的像差测量数据,但像差对成像质量特别是人的主观视力感觉具有两重性。有时即使通过手术消除了所有像差,患者的主观感觉不一定最好,不一定达到患者最满意的视觉效果;而适当保留某些像差却有助于提高患者主观感觉和舒适度,或有助于提高某些特定视功能;(2) The difference between objective personalization and visual subjective feeling. The formulation of the surgical cutting plan is completely based on the physical aberration measurement data, but the aberration has dual effects on the imaging quality, especially the subjective perception of human vision. Sometimes even if all the aberrations are eliminated through surgery, the patient's subjective feeling may not be the best, and the patient's most satisfactory visual effect may not be achieved; however, properly retaining some aberrations can help improve the patient's subjective feeling and comfort, or have Help to improve some specific visual function;
(3)LASIK手术切削精度、偏中心切削和角膜组织伤口的自动愈合功能等因素,使得术后效果具有一定程度的不可预测性和不可确定性。(3) Factors such as cutting precision, off-center cutting and automatic healing function of corneal tissue wounds in LASIK surgery make the postoperative effect have a certain degree of unpredictability and uncertainty.
所以在手术方案制定过程中,如何考虑像差的消除,哪些像差应该消除,像差在多大程度上给予消除,如何考虑手术切削误差、中心偏误差,如何建立客观像差补偿和患者主观感受间的关系等等问题,都需要一种工具来帮助预先模拟手术方案的实施结果,便于降低风险,达到接近预期的手术效果。Therefore, in the process of formulating the surgical plan, how to consider the elimination of aberrations, which aberrations should be eliminated, to what extent the aberrations should be eliminated, how to consider surgical cutting errors, center deviation errors, how to establish objective aberration compensation and subjective feelings of patients There is a need for a tool to help simulate the implementation results of the surgical plan in advance, so as to reduce the risk and achieve the expected surgical effect.
此外,配置个性化人眼高阶像差隐形眼镜,需要事先用波前像差仪测量患者眼的波前像差,数据经计算机处理成控制数据,用以制定隐形眼镜的掩模方案,再经刻蚀和曝光程序制作个性化隐形眼镜。该过程制作成本比普通眼镜高得多,如果能事先模拟眼镜设计方案,使患者感受其对人眼产生的主观矫正效果,将有利于提高制作的成功率,从而降低成本。In addition, to configure personalized high-order aberration contact lenses for the human eye, it is necessary to measure the wavefront aberration of the patient's eye with a wavefront aberration meter in advance. Personalized contact lenses are produced through etching and exposure procedures. The production cost of this process is much higher than that of ordinary glasses. If the design of glasses can be simulated in advance so that patients can experience the subjective correction effect on human eyes, it will help improve the success rate of production and reduce costs.
除了上述应用目的之外,客观评价患者的视觉功能还需要满足双眼的体视功能,单眼的视觉效果并不能完全代表人眼的主观视觉效果。In addition to the above-mentioned application purposes, the objective evaluation of a patient's visual function also needs to satisfy the stereoscopic function of both eyes, and the visual effect of one eye cannot fully represent the subjective visual effect of the human eye.
发明内容 Contents of the invention
本发明的技术解决解决问题是:提供一种双眼体视高阶像差矫正视觉仿真系统,使患者在手术方案或个性化隐形眼镜的制定过程中,通过本仪器就可以感受到术后或高阶像差矫正后的双眼立体视觉效果,使患者与医生共同讨论手术方案或设计方案成为可能,或者在个性化隐形眼镜制作之前实现参数的修改优化。医生也可以使用本仪器,仿真模拟手术中的各种误差对患者术后视觉的影响以优化手术参数,同时建立客观测量数据与视觉主观感受间的关系,使得不可逆的手术方案术前优化成为可能。The technical solution of the present invention is to provide a binocular stereo vision high-order aberration correction visual simulation system, so that patients can feel the postoperative or high The binocular stereoscopic vision effect after order aberration correction makes it possible for patients and doctors to discuss surgical plans or design plans together, or realize parameter modification and optimization before making personalized contact lenses. Doctors can also use this instrument to simulate the impact of various errors in surgery on patients' postoperative vision to optimize surgical parameters, and at the same time establish the relationship between objective measurement data and visual subjective feelings, making irreversible preoperative optimization of surgical plans possible. .
本发明的技术解决方案是:双眼高阶像差矫正视觉仿真系统,其特点在于:双眼体视高阶像差矫正视觉仿真系统,其特征在于:它由自适应光学信标1、扩束系统2、第一反射镜3、第一分束镜4、第二反射镜5、第一光束匹配望远镜7、波前校正器8、第三反射镜9、第二光束匹配望远镜10、第二分束镜11、哈特曼波前传感器12、计算机13、高压放大器14、第四反射镜15、成像光学系统16、视觉鉴别率显示器17各两套和一套计算机系统18组成;两束自适应光学信标1发出的光,各自由扩束系统2扩束,经第一反射镜3、第一分束镜4和第二反射镜5反射进人眼6瞳孔;人眼6眼底各自反射的光,分别经过第二反射镜5和第一分束镜4反射,进入第一光束匹配望远镜7,再经波前校正器8和第三反射镜9反射,通过第二光束匹配望远镜10,至第二分束镜11反射进入哈特曼波前传感器12,哈特曼波前传感器12分别将测得的误差信号送至计算机13处理成双眼各自的波像差;医生根据波像差数据制定手术方案,将LASIK手术预案或个性化隐形眼镜的设计预案数据输入计算机13,计算机13将这些数据处理成控制信号,控制信号分别送高压放大器14放大后,各自施加到波前校正器8上,由波前校正器8分别生成术后或隐形眼镜配置后的双眼波像差矫正量,从而模拟矫正人眼波像差,双眼波像差矫正完毕,计算机系统18给出能产生双眼立体视觉的控制信号,两台视觉鉴别率显示器17同时开始工作,视觉鉴别率显示器17发出的光,分别经成像光学系统16、第四反射镜15、第二分束镜11、第二光束匹配望远镜10、第三反射镜9、波前校正器8、第一光束匹配望远镜7,进入人眼6,此时患者双眼观看鉴别率显示器上生成的各种产生立体效果的图案,真实地体验LASIK手术后或个性化隐形眼镜配置后的视觉感受。The technical solution of the present invention is: binocular high-order aberration correction visual simulation system, which is characterized in that: binocular stereo vision high-order aberration correction visual simulation system, is characterized in that: it consists of adaptive optical beacon 1, beam expander system 2. The first mirror 3, the first beam splitter mirror 4, the second mirror 5, the first
其中自适应光学信标1可以是激光器、半导体激光器和超荧光辐射半导体器件;波前校正器8可以是变形反射镜、液晶波前校正器、微机械变形镜和双压电陶瓷变形镜;哈特曼波前传感器12是基于微棱镜阵列的哈特曼波前传感器(中国专利申请号03126431.X,03126430.1和200310100168.1),该新型哈特曼波前传感器是以二维锯齿形相位光栅阵列和傅立叶透镜组合,代替以往的微透镜阵列实现光束孔径的均匀分割,位于傅立叶透镜焦平面的CCD进行光电探测,实现波前测量功能;视觉鉴别率显示器17可以是商用投影仪、彩色液晶显示器、等离子体显示器、场致发光显示器和有机发光显示器;消除人眼角膜的杂光可以用共焦成像的原理,共焦滤波小孔19置于成像系统的视场光栏面或视场光栏实像面,例如在第一光束匹配望远镜7或第二光束匹配望远镜10的两组透镜的公共焦点处,这样只有眼底反射光才能透过该光栏,从而消除杂光;或者采用偏轴照明的方法;或者采用偏振光源照明,眼底反射光是退偏的,角膜散射光则不退偏,通过检偏器检不同的偏振态来滤除角膜杂光。Wherein the adaptive optics beacon 1 can be a laser, a semiconductor laser and a superfluorescent radiation semiconductor device; the
本发明与现有技术相比,首次提出将双眼高阶像差矫正应用于LASI K手术前或隐形眼镜配置前患者主观立体视觉效果的仿真判定上,在为患者双眼提供各自高阶像差矫正的同时,由鉴别率显示器上生成各种产生立体效果的图案,使患者能够真实地体验LASIK手术后或个性化隐形眼镜配置后的立体视觉感受。并且,其中的波前传感器为基于微棱镜阵列的哈特曼波前传感器,其结构简单、稳定,加工工艺易实现,相对于现有的基于微透镜阵列的哈特曼传感器技术,能够简化安装、调节,降低生产成本。Compared with the prior art, the present invention proposes for the first time to apply binocular high-order aberration correction to the simulation judgment of the patient's subjective stereoscopic vision effect before LASI K surgery or contact lens configuration, and provide respective high-order aberration correction for both eyes of the patient. At the same time, various patterns that produce stereoscopic effects are generated on the discrimination monitor, so that patients can truly experience the stereoscopic vision after LASIK surgery or personalized contact lens configuration. Moreover, the wavefront sensor is a Hartmann wavefront sensor based on a microprism array, which has a simple and stable structure and is easy to implement. Compared with the existing Hartmann sensor technology based on a microlens array, it can simplify installation , Adjustment, and reduce production costs.
附图说明 Description of drawings
图1为本发明的组成结构原理框图;Fig. 1 is the block diagram of composition structure principle of the present invention;
图2为本发明中的哈特曼波前传感器结构示意图。Fig. 2 is a schematic structural diagram of the Hartmann wavefront sensor in the present invention.
具体实施方式 Detailed ways
如图1所示,本发明由自适应光学信标1、扩束系统2、第一反射镜3、第一分束镜4、第二反射镜5、第一光束匹配望远镜7、波前校正器8、第三反射镜9、第二光束匹配望远镜10、第二分束镜11、哈特曼波前传感器12、计算机13、高压放大器14、第四反射镜15、成像光学系统16、视觉鉴别率显示器17各两套和一套计算机系统18组成。两束自适应光学信标1发出的光,各自由扩束系统2扩束,经第一反射镜3、第一分束镜4和第二反射镜5反射进人眼6瞳孔;双眼6眼底各自反射的光,分别经过第二反射镜5和第一分束镜4反射,进入第一光束匹配望远镜7(根据共焦成像原理,共焦滤波小孔19置于成像系统的视场光栏面或视场光栏实像面,例如在第一光束匹配望远镜7或第二光束匹配望远镜10的两组透镜的公共焦点处的共焦滤波光栏19,只让眼底反射光透过,从而消除杂光),再经波前校正器8和第三反射镜9反射,通过第二光束匹配望远镜10,至第二分束镜11反射进入基于微棱镜阵列的哈特曼波前传感器12,传感器12分别将测得的误差信号送至计算机13处理成双眼各自的波像差。As shown in Figure 1, the present invention consists of an adaptive optical beacon 1, a beam expander system 2, a first reflector 3, a first beam splitter 4, a second reflector 5, a first
如图2所示,基于微棱镜阵列的哈特曼波前传感器12由二维锯齿形相位光栅阵列结构的微棱镜阵列12-1、傅立叶透镜12-2和位于透镜焦平面的CCD 12-3组成,入射光束经微棱镜阵列12-1后,各个子孔径的光束分别产生了相应的相位变化,经由紧贴其后的傅立叶透镜12-2,和位于傅立叶透镜焦面上的CCD 12-3探测其光强分布,该光强分布包含着二维锯齿形相位光栅阵列12-1所产生的相位信息,每个子孔径所产生的相位变化不同,因而在傅立叶透镜12-2焦面上形成一个光斑阵列,整个光束孔径被均匀分割。标准平面波入射产生的光斑阵列事先被保存起来作为标定数据。当具有一定像差的波前入射时,各个局部倾斜平面波对其子孔径内二维锯齿形相位光栅产生新的附加相位,该相位变化将反映到傅立叶透镜12-2焦面的光斑位置偏移上。As shown in Figure 2, the Hartmann
CCD 12-3接收到的光斑信号可通过计算机进行处理,采用质心算法:由公式①计算光斑的位置(xi,yi),探测全孔径的波面误差信息:The light spot signal received by CCD 12-3 can be processed by computer, using the centroid algorithm: calculate the position ( xi , y i ) of the light spot by the formula ①, and detect the wave surface error information of the full aperture:
式中,m=1~M,n=1~N为子孔径映射到CCD 12-3光敏靶面上对应的像素区域,Inm是CCD 12-3光敏靶面上第(n,m)个像素接收到的信号,xnm,ynm分别为第(n,m)个像素的x坐标和y坐标。In the formula, m=1~M, n=1~N is that the sub-aperture is mapped to the corresponding pixel area on the CCD 12-3 photosensitive target surface, and 1 nm is the (n, m)th on the CCD 12-3 photosensitive target surface The signal received by the pixel, x nm and y nm are the x coordinate and y coordinate of the (n, m)th pixel respectively.
再根据公式②计算入射波前的波前斜率gxi,gyi:Then calculate the wavefront slope g xi , g yi of the incident wavefront according to formula ②:
式中,(x0,y0)为标准平面波标定哈特曼传感器获得的光斑中心基准位置;哈特曼传感器探测波前畸变时,光斑中心偏移到(xi,yi),完成哈特曼波前传感器对信号的检测。In the formula, (x 0 , y 0 ) is the reference position of the center of the spot obtained by standard plane wave calibration of the Hartmann sensor; when the Hartmann sensor detects wavefront distortion, the center of the spot is shifted to ( xi , y i ), completing the Hartmann sensor Signal detection by a Terman wavefront sensor.
本发明的使用过程是:The use process of the present invention is:
(1)医生根据波像差数据制定手术方案,将LASIK手术预案或个性化隐形眼镜的设计预案数据输入计算机13,计算机将这些数据处理成控制信号,控制信号分别送两台高压放大器14放大后,各自施加到波前校正器8上,由波前校正器分别生成术后或隐形眼镜配置后的双眼波像差矫正量,从而模拟矫正人眼波像差。(1) The doctor formulates the operation plan according to the wave aberration data, and inputs the data of the LASIK operation plan or the design plan data of the personalized contact lens into the
(2)双眼波像差矫正完毕,计算机18给出能产生双眼立体视觉的控制信号,两台视觉鉴别率显示器17同时开始工作,视觉鉴别率显示器发出的光,分别经成像光学系统16、第四反射镜15、第二分束镜11、第二光束匹配望远镜10、第三反射镜9、波前校正器8、第一光束匹配望远镜7,进入人眼6。此时患者双眼观看鉴别率显示器上生成的各种产生立体效果的图案,真实地体验LASIK手术后或个性化隐形眼镜配置后的视觉感受。(2) binocular wave aberration is corrected,
(3)根据患者的视觉感受,医生可以调整LASIK手术预案或个性化隐形眼镜波像差矫正方案,由该人眼高阶像差矫正视觉仿真系统再现这些调整,重复上述1、2步骤,直至患者视觉感受最佳,从而解决LASIK手术不可逆带来的一系列问题。(3) According to the patient's visual experience, the doctor can adjust the LASIK operation plan or the personalized contact lens wave aberration correction plan, and these adjustments will be reproduced by the human eye high-order aberration correction visual simulation system, and the above steps 1 and 2 will be repeated until Patients have the best visual experience, thus solving a series of irreversible problems caused by LASIK surgery.
(4)医生可以通过该系统再现LASIK手术中切削精度、偏中心切削和角膜组织伤口的自动愈合功能等因素带来的各种波像差,重复上述(1)、(2)和(3)步骤,通过患者的真实视觉感受,优化手术方案,取得最佳手术效果。(4) Doctors can use this system to reproduce various wave aberrations caused by factors such as cutting accuracy, off-center cutting and automatic healing function of corneal tissue wounds in LASIK surgery, repeating the above (1), (2) and (3) Steps, through the patient's real visual experience, optimize the surgical plan and achieve the best surgical effect.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100090432A CN100430031C (en) | 2004-04-26 | 2004-04-26 | Binocular stereo vision high-order aberration correction visual simulation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100090432A CN100430031C (en) | 2004-04-26 | 2004-04-26 | Binocular stereo vision high-order aberration correction visual simulation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1689538A CN1689538A (en) | 2005-11-02 |
CN100430031C true CN100430031C (en) | 2008-11-05 |
Family
ID=35345502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100090432A Expired - Lifetime CN100430031C (en) | 2004-04-26 | 2004-04-26 | Binocular stereo vision high-order aberration correction visual simulation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100430031C (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006007750A1 (en) * | 2006-02-20 | 2007-08-23 | Wavelight Ag | Method for laser material processing device or micro structuring device for biological and metallic materials, involves inserting specific optical elements in illuminating system around focal position for making possible beam product |
CN1849993B (en) * | 2006-05-18 | 2010-04-14 | 上海交通大学 | Artificial vision simulation and experiment system |
CN1916768A (en) | 2006-09-08 | 2007-02-21 | 中国科学院光电技术研究所 | Personalized contact lens customization apparatus |
CN100586406C (en) * | 2007-12-28 | 2010-02-03 | 中国科学院光电技术研究所 | A Transmissive Hartmann Measuring Instrument for Intraocular Lens Aberration |
CN101803906B (en) * | 2010-03-10 | 2011-12-14 | 中国科学院光电技术研究所 | Automatic defocusing compensation human eye aberration Hartmann measuring instrument |
CN103997949B (en) * | 2011-10-17 | 2017-06-06 | 卡尔蔡司光学国际有限公司 | Statistics formula automatic optometry unit |
CN103385691B (en) * | 2013-08-02 | 2015-07-15 | 中国科学院光电技术研究所 | Binocular adaptive optical vision simulator and simulation method |
CN105662799A (en) * | 2015-12-31 | 2016-06-15 | 杨东生 | Binoculus visual balancing glasses |
CN105942970A (en) * | 2016-07-07 | 2016-09-21 | 上海理工大学 | Binocular wave front aberration vision optical analysis system |
CN109119150A (en) * | 2018-08-23 | 2019-01-01 | 北京天明眼科新技术开发公司 | One kind trying piece auxiliary system on |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
US6199986B1 (en) * | 1999-10-21 | 2001-03-13 | University Of Rochester | Rapid, automatic measurement of the eye's wave aberration |
CN1306796A (en) * | 1999-07-30 | 2001-08-08 | 中国科学院光电技术研究所 | Adaptive optical retina imaging system (3) |
US6382795B1 (en) * | 2000-05-20 | 2002-05-07 | Carl Zeiss, Inc. | Method and apparatus for measuring refractive errors of an eye |
CN1426286A (en) * | 2000-04-28 | 2003-06-25 | 罗切斯特大学 | Improving vision and retinal imaging |
-
2004
- 2004-04-26 CN CNB2004100090432A patent/CN100430031C/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
CN1306796A (en) * | 1999-07-30 | 2001-08-08 | 中国科学院光电技术研究所 | Adaptive optical retina imaging system (3) |
US6199986B1 (en) * | 1999-10-21 | 2001-03-13 | University Of Rochester | Rapid, automatic measurement of the eye's wave aberration |
CN1426286A (en) * | 2000-04-28 | 2003-06-25 | 罗切斯特大学 | Improving vision and retinal imaging |
US6382795B1 (en) * | 2000-05-20 | 2002-05-07 | Carl Zeiss, Inc. | Method and apparatus for measuring refractive errors of an eye |
Non-Patent Citations (2)
Title |
---|
哈特曼传感器测量人眼波像差的特性研究. 全薇,凌宁,王肇圻,饶学军,王成,陈志辉.光电工程,第30卷第3期. 2003 * |
自适应系统对活体人眼视网膜细胞的初步观察. 姜春晖,王文吉,徐格致,凌宁,张雨东,饶学军,李新阳.上海医学,第26卷第7期. 2003 * |
Also Published As
Publication number | Publication date |
---|---|
CN1689538A (en) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1999443B1 (en) | Spatial frequency wavefront sensor system and method | |
US6439720B1 (en) | Method and apparatus for measuring optical aberrations of the human eye | |
JP4897497B2 (en) | Volume point spread function for eye diagnosis and treatment | |
JP2001524662A (en) | Objective measurement and correction of optical system using wavefront analysis | |
JP2001000393A (en) | Human eye refractive characteristic measuring method and device | |
CA2343679A1 (en) | Apparatus and method for objective measurements of optical systems using wavefront analysis | |
JP2015521926A (en) | Method and apparatus for determining optical aberrations of an eyeball | |
TW201206407A (en) | Method to guide a cataract procedure by corneal imaging | |
CN101248981A (en) | Visual Optical Analysis System Based on Wavefront Aberration | |
CN102860817A (en) | Laser scanning confocal ophthalmoscope device based on double wave front corrector | |
MXPA01013364A (en) | Spatial filter for enhancing hartmann shack images and associated methods. | |
US12048650B2 (en) | System and method of determining incision depths in eyes | |
CN100430031C (en) | Binocular stereo vision high-order aberration correction visual simulation system | |
TWI262325B (en) | Eye aberration measurement and calibrating equipment and its method | |
CN103431837B (en) | Human eye axial chromatic aberration and transverse chromatic aberration measurement device based on Hartmann sensor and method thereof | |
CN100450428C (en) | Human eye high-order aberration correction visual simulation system | |
CN115590460A (en) | Wavefront aberration detection system for eyes | |
US9665771B2 (en) | Method and apparatus for measuring aberrations of an ocular optical system | |
JP7629014B2 (en) | Systems and methods for determining topography associated with ophthalmic procedures - Patents.com | |
JP2023524174A (en) | Apparatus and method for determining at least one ocular aberration | |
CN105167738B (en) | Adaptive optical optic nerve function objective tester | |
WO2010052497A1 (en) | Correction of aberrations | |
JP4216549B2 (en) | Ophthalmic optical characteristic measuring device | |
Toadere | A study about human eyes wavefront aberrations capture and correction | |
Navarro | Measurement, modeling and improvement of optical image quality in human eyes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20081105 |