[go: up one dir, main page]

CN100428226C - A method for implementing memory-like database access and retrieval - Google Patents

A method for implementing memory-like database access and retrieval Download PDF

Info

Publication number
CN100428226C
CN100428226C CNB2003101145692A CN200310114569A CN100428226C CN 100428226 C CN100428226 C CN 100428226C CN B2003101145692 A CNB2003101145692 A CN B2003101145692A CN 200310114569 A CN200310114569 A CN 200310114569A CN 100428226 C CN100428226 C CN 100428226C
Authority
CN
China
Prior art keywords
data
hit rate
retrieval
index table
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2003101145692A
Other languages
Chinese (zh)
Other versions
CN1635494A (en
Inventor
李云峰
李玉军
刘宏
林清武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Group Co Ltd
Original Assignee
Hisense Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Group Co Ltd filed Critical Hisense Group Co Ltd
Priority to CNB2003101145692A priority Critical patent/CN100428226C/en
Publication of CN1635494A publication Critical patent/CN1635494A/en
Application granted granted Critical
Publication of CN100428226C publication Critical patent/CN100428226C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明所述的实现类内存数据库存取和检索的方法应用于嵌入式系统,所述的方法根据数据检索的需要建立相应数据节点的存储表。根据上述存储表建立相应的索引表,索引表是基于平衡二叉树模型建立的、动态可排序的数据表结构。对建立的索引表排序字段优先存储表,对指定在先的若干次查询进行扫描和分析,对属性查询的优先级进行排序,确定索引的排序规律,从而使数据的查询更加有效率。所述的存取和检索方法与现有的内存数据库检索方法相比,可以即时更新统计查询命中率,具有相当高的数据库管理和安全性能,因此可以提高效率并降低内、外存资源占用。

Figure 200310114569

The method for realizing memory-like database access and retrieval described in the present invention is applied to an embedded system, and the method establishes a storage table of corresponding data nodes according to the requirement of data retrieval. A corresponding index table is established according to the above storage table, and the index table is a dynamically sortable data table structure established based on a balanced binary tree model. The sorting field of the established index table is stored in priority, scans and analyzes the specified previous queries, sorts the priority of attribute queries, and determines the sorting rules of the index, so that the query of data is more efficient. Compared with the existing in-memory database retrieval method, the access and retrieval method can instantly update the statistical query hit rate, and has relatively high database management and security performance, so it can improve efficiency and reduce the occupation of internal and external storage resources.

Figure 200310114569

Description

实现类内存数据库存取和检索的方法 A method for implementing memory-like database access and retrieval

技术领域 technical field

本发明涉及一种存取和检索的方法,具体地是针对类内存数据库实现在低资源占用前提下的数据快速存取和检索。The invention relates to a method for accessing and retrieving, in particular to realizing fast data accessing and retrieving under the premise of low resource occupation for memory-like databases.

背景技术 Background technique

随着目前计算机和网络信息技术的迅猛发展,现有办公和生活中已经越来越离不开对于计算机和网络的使用。各种大量的信息和数据通过网络或是单机运行,实现了数据共享和远程传输。在对数据库中的数据进行管理的同时,针对数据有效分类存取以及实施高级检索的方法和软件也相应地产生和得到应用。With the rapid development of computer and network information technology, the use of computers and networks has become more and more inseparable from existing office and life. Various large amounts of information and data are run through the network or stand-alone, realizing data sharing and remote transmission. While managing the data in the database, methods and software for effectively classifying and accessing data and implementing advanced retrieval are also produced and applied accordingly.

目前得到较多应用的数据管理方法包括有层次、网状和关系数据库等方式,虽然可在一定程度上解决数据存取和检索的问题,但是建立并应用这类商用数据库仍存在着一定的缺陷。比如,数据库建立和使用成本较高,对于小型数据管理单位来说就显得过于昂贵;另外,现有如MS SQL、DBII和Oracle等数据库都是基于针对硬盘或磁带进行操作,在数据量较大时无法满足实时响应、快速存取和检索的要求。现在也有采用内存数据库建立数据存取和检索的模式,虽然检索速度较快,但也同时占用了较大的外存和内存资源空间,特别是对于嵌入式系统来说资源浪费严重。At present, the data management methods that are widely used include hierarchical, network and relational databases. Although the problems of data access and retrieval can be solved to a certain extent, there are still certain defects in the establishment and application of such commercial databases. . For example, the cost of database establishment and use is relatively high, which is too expensive for small data management units; in addition, existing databases such as MS SQL, DBII, and Oracle are all based on hard disk or tape operations. It cannot meet the requirements of real-time response, fast access and retrieval. Now there is also a mode of data access and retrieval using an in-memory database. Although the retrieval speed is fast, it also takes up a large amount of external storage and internal memory resources, especially for embedded systems. A serious waste of resources.

如上所述,现有的各种数据库存取和检索方法,对于小型数据应用单位来说都存在明显的缺点和不足,现在已公开技术中未有相应的解决方案。As mentioned above, the various existing database access and retrieval methods have obvious shortcomings and deficiencies for small data application units, and there is no corresponding solution in the disclosed technology.

发明内容 Contents of the invention

本发明所述的实现类内存数据库存取和检索的方法,旨在解决上述问题和不足而设计有应用于嵌入式系统数据库的数据存取和检索方法。The method for realizing memory-like database access and retrieval of the present invention aims to solve the above-mentioned problems and deficiencies and is designed with a data access and retrieval method applied to embedded system databases.

为解决上述技术问题,本发明采用以下技术方案予以实现:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions to achieve:

一种实现类内存数据库存取和检索的方法,其包括如下步骤:类内存数据库初始化步骤以及类内存数据库检索和存取步骤,其中,所述类内存数据库初始化步骤进而包括如下步骤:A method for realizing memory-like database access and retrieval, comprising the following steps: a memory-like database initialization step and a memory-like database retrieval and access step, wherein the memory-like database initialization step further includes the following steps:

读取配置最新的m命中率表,m为一次查询命中率计算周期中所需要执行的查询的总次数,以下m解释相同;Read and configure the latest m hit rate table. m is the total number of queries that need to be executed in a query hit rate calculation cycle. The following m is explained in the same way;

针对数据内容和类型建立基于Hash表类型结构的数据节点存储表;Establish a data node storage table based on the Hash table type structure for data content and type;

建立基于平衡二叉树模型的索引表,以及索引表排序字段优先存储表;Establish an index table based on a balanced binary tree model, and a priority storage table for sorting fields of the index table;

调用类内存数据库检索和存取步骤中的存储函数,建立数据库中所有表格,同时按照索引表排序字段优先存储表对所述的索引表进行排序;Calling the storage function in the memory-like database retrieval and access steps, establishing all tables in the database, and simultaneously sorting the index tables according to the priority storage table of the index table sorting field;

所述的类内存数据库检索和存取步骤进而包括以下步骤:The retrieval and access steps of the class memory database further include the following steps:

需要分析m条查询记录,从m命中率表中,选择命中率最高的为下一次的m值,若命中率都相同,则随机选择;It is necessary to analyze m query records. From the m hit rate table, select the one with the highest hit rate as the next m value. If the hit rates are the same, select randomly;

每次在接收到查询指令后,首先将总查询次数加1,然后确定涉及的字段总数量,再按照已有优先级数据从大到小分别将本次权重分配到本次索引表排序字段优先存储表的存储范围;在i<=m的时候,i为查询命中率计算周期中包含本次查询后的总查询次数,i的取值在自然数范围内,简单将上次的优先级数据和本次权重求和即可得到本次优先级数据;当i>m时清空索引表排序字段优先存储表数据并置i为0;Each time after receiving a query command, first add 1 to the total number of queries, then determine the total number of fields involved, and then assign the weight of this time to the index table sorting field priority according to the existing priority data from large to small The storage range of the storage table; when i<=m, i is the total number of queries after this query is included in the query hit rate calculation cycle, and the value of i is within the range of natural numbers. Simply combine the previous priority data and The priority data of this time can be obtained by summing the weights this time; when i>m, clear the sorting field of the index table to store the table data first and set i to 0;

根据最优字段进行索引表排序,与上一次相同则跳过这一步,并且在索引表排序字段优先存储表中的取值处加1;然后根据查询条件中是否有最优字段来决定如何获得需要的数据节点关键字,如果有,则从基于平衡二叉树模型的索引表中获得需要的数据节点关键字;如果没有,则从基于Hash表类型结构的数据节点存储表中获得需要的数据节点关键字,最终逐条进行单记录读取,没有关键字列表只能遍历数据节点存储表的所有数据,在进行单记录存取的时候,只要直接存储数据节点存储表即可,可以保证在有限次的函数转换之后即可得到确切位置,而不需要逐个进行检查;Sort the index table according to the optimal field, skip this step if it is the same as last time, and add 1 to the value in the priority storage table of the index table sorting field; then decide how to get it according to whether there is an optimal field in the query condition The required data node key, if any, obtain the required data node key from the index table based on the balanced binary tree model; if not, obtain the required data node key from the data node storage table based on the Hash table type structure words, and finally read single records one by one. There is no keyword list and only all the data in the data node storage table can be traversed. The exact position can be obtained after the function conversion, without checking one by one;

在总查询次数大于等于m的时候进行命中率计算,然后填入相应位置并置总查询次数为0,然后从中选出命中率最高的作为下一次的m值,如果m命中率表内有多于一个位置同时为最大,则随机挑选一个作为下一次的m值;When the total number of queries is greater than or equal to m, the hit rate is calculated, then fill in the corresponding position and set the total query times to 0, and then select the one with the highest hit rate as the next m value, if there are many in the m hit rate table is the maximum at one position at the same time, then randomly select one as the next m value;

重新建立基于平衡二叉树模型的索引表;Re-establish the index table based on the balanced binary tree model;

清空索引表排序字段优先存储表;Clear the index table sorting field to store the table first;

当停止服务时,将m命中率表作为配置文件存储到外存,作为下一次服务运行的初始值。When the service is stopped, the m hit rate table is stored as a configuration file in the external memory as the initial value for the next service operation.

所述数据节点存储表通过主键可以一次定位数据的存储位置。The data node storage table can locate the storage location of data at one time through the primary key.

如上所述,本发明所述的实现类内存数据库存取和检索的方法,数据的存储是按照关系数据库的第三范式进行的,可以有效的防止冗余和异常。而且与现有的内存数据库检索方法相比,可以即时更新统计查询命中率,具有相当高的数据库管理和安全性能,因此可以提高效率并降低内、外存资源占用。As mentioned above, in the method for realizing memory-like database access and retrieval described in the present invention, data storage is carried out according to the third normal form of relational database, which can effectively prevent redundancy and abnormality. Moreover, compared with the existing memory database retrieval method, the statistical query hit rate can be updated in real time, and has relatively high database management and security performance, so it can improve efficiency and reduce internal and external memory resource occupation.

附图说明 Description of drawings

图1是所述的数据节点存储表;Fig. 1 is described data node storage table;

图2是所述的建立索引表的平衡二叉树模型图;Fig. 2 is the balanced binary tree model figure of described building index table;

图3是所述的排序字段优先存储表;Fig. 3 is described sorting field priority storage table;

图4是检索若干条记录后的最新命中率表;Figure 4 is the latest hit rate table after retrieving several records;

图5是类内存数据库的初始化流程图;Fig. 5 is the initialization flowchart of class memory database;

图6是类内存数据库的结束阶段示意图;Fig. 6 is a schematic diagram of the end stage of the memory-like database;

图7是所述的配置文件格式表;Fig. 7 is described configuration file format table;

图8是所述的类内存数据库查询和存取流程图。Fig. 8 is a flow chart of querying and accessing the memory-like database.

具体实施方式 Detailed ways

如图1-图8所示,本发明所述的实现类内存数据库存取和检索的方法,针对数据内容和类型建立相应数据节点的存储表,以实现根据主键直接存取目标数据。根据存储表建立相应的基于平衡二叉树模型的索引表。根据上述索引表建立一个索引表排序字段优先存储表,对指定在先的若干次查询进行扫描和分析,对属性查询的优先级进行排序,确定索引的排序规律。As shown in Figures 1 to 8, the method for realizing memory-like database access and retrieval according to the present invention establishes a storage table of corresponding data nodes for data content and type, so as to directly access target data according to the primary key. According to the storage table, the corresponding index table based on the balanced binary tree model is established. Create an index table sorting field priority storage table based on the above index table, scan and analyze the specified prior queries, sort the priority of attribute queries, and determine the sorting rules of the index.

如图1所示,所述的存储表是基于Hash表类型结构建立的,通过主键(黑体字)可以一次定位数据的存储位置,从而使用主键就可以实现快速的数据存取。As shown in Figure 1, the described storage table is based on the Hash table type structure, and the storage location of the data can be located once by the primary key (bold), so that fast data access can be realized by using the primary key.

根据所述存储表中的数据内容和类型,为有效避免数据库整体出现冗余和异常,通常是按关系数据库中的第三范式模式,建立相应的用于快速查询和数据定位的查询表。According to the data content and type in the storage table, in order to effectively avoid redundancy and abnormality in the entire database, a corresponding query table for fast query and data location is usually established according to the third normal form mode in the relational database.

如图2所示,根据上述存储表建立索引表的平衡二叉树模型,实现每个节点只对应索引表的主键进行存储,并且已经预先进行了最优字段排序。因而可以保证索引命中时的查询复杂度最小。As shown in Figure 2, a balanced binary tree model of the index table is established based on the above storage table, so that each node is only stored corresponding to the primary key of the index table, and the optimal field sorting has been performed in advance. Therefore, it can ensure that the query complexity is minimized when the index is hit.

如图3所示,索引表排序字段优先存储表中包括存储表所有属性的优先级数据,在表中的最后一行数据是其所在列上面m行数据的和。As shown in Figure 3, the index table sorting field priority storage table includes the priority data of all attributes of the storage table, and the last row of data in the table is the sum of m rows of data above its column.

如图4所示,在分析上述索引表排序字段优先存储表中的m条查询记录后,将最新的命中率存入所示的命中率表中。As shown in FIG. 4 , after analyzing the m query records in the priority storage table in the sorting field of the above index table, the latest hit rate is stored in the hit rate table shown.

如图5所示,所述类内存数据库的初始化流程是:As shown in Figure 5, the initialization process of the memory-like database is:

读取配置最新的m命中率表(如图4);Read and configure the latest m hit rate table (as shown in Figure 4);

建立所述的索引表和平衡二叉树模型(如图2)、以及索引表排序字段优先存储表(如图3);Set up described index table and balanced binary tree model (as Fig. 2), and index table sorting field priority storage table (as Fig. 3);

调用所述的类内存数据库查询和存取流程(如图8)中的存储函数,建立数据库中所有表格(如图1),同时进一步完善所述的索引表(如图2)。Call the storage function in the query and access flow of the class memory database (as shown in Figure 8), set up all tables in the database (as shown in Figure 1), and further improve the index table (as shown in Figure 2) simultaneously.

如图6所示,是所述的类内存数据库结束阶段示意图。As shown in FIG. 6 , it is a schematic diagram of the end stage of the memory-like database.

如图7所示,是所述的配置文件格式表。As shown in Figure 7, it is the configuration file format table.

如图8所示,所述的类内存数据库查询和存取流程是:As shown in Figure 8, the query and access process of the class memory database is:

需要分析m条查询记录,从上述图4中选择命中率最高的为下一次的m值,若命中率都相同,则随机选择;Need to analyze m query records, select the highest hit rate from the above Figure 4 as the next m value, if the hit rates are the same, randomly select;

每次在接收到查询指令后,首先将总查询次数加1,然后确定涉及字段数为N0.值,则按照已有优先级数据从大到小分别将本次权重(N0...1)分配到本次存储范围;在i<=m的时候,简单将上次的优先级数据和本次权重求和即可得到本次优先级数据;当i>m时清空本表数据并置i为0。Each time after receiving a query instruction, first add 1 to the total number of queries, and then determine that the number of fields involved is N0. Value, then according to the existing priority data from large to small, the weight of this time (N0...1) Assigned to the current storage range; when i<=m, simply sum the previous priority data and the current weight to get the current priority data; when i>m, clear the data in this table and place i is 0.

根据最优字段进行索引表排序,与上一次相同则跳过这一步,并且在如图3所示的排序字段优先存储表中的取值处加1;然后根据最优字段(如果有的话)来进行首次筛选,从而最终获得需要的数据节点关键字,最终逐条进行单记录读取(没有关键字列表只能遍历表的所有数据)。在进行单记录存取的时候,只要直接查如图1所示的存储表即可,可以保证在有限次的函数转换之后即可得到确切位置,而不需要逐个进行检查;Sort the index table according to the optimal field, skip this step if it is the same as last time, and add 1 to the value in the sorting field priority storage table as shown in Figure 3; then according to the optimal field (if any) ) to perform the first screening, so as to finally obtain the required data node keywords, and finally read single records one by one (there is no keyword list, only all the data in the table can be traversed). When performing single-record access, you only need to directly check the storage table shown in Figure 1, which can ensure that the exact location can be obtained after a limited number of function conversions, without checking one by one;

在总查询次数大于等于m的时候进行命中率计算,然后填入相应位置并置总查询次数为0,然后从中选出命中率最高的进行下一次的m值(如果命中率表内有多于一个位置同时为最大,则随机挑选一个作为下一次的m值);When the total number of queries is greater than or equal to m, the hit rate is calculated, then fill in the corresponding position and set the total query times to 0, and then select the one with the highest hit rate for the next m value (if there are more than If a position is the largest at the same time, then randomly select one as the next m value);

重新建立如图2所示的存储表索引表;Re-establish the storage table index table as shown in Figure 2;

清空如图3所示的索引表排序字段优先存储表;Clear the index table sorting field priority storage table as shown in Figure 3;

当停止服务时,将命中率表作为配置文件(如图4)存储到外存,作为下一次服务运行的初始值。When the service is stopped, the hit rate table is stored as a configuration file (as shown in Figure 4) in the external memory as the initial value for the next service operation.

Claims (2)

1、一种实现类内存数据库存取和检索的方法,其包括如下步骤:类内存数据库初始化步骤以及类内存数据库检索和存取步骤,其中,所述类内存数据库初始化步骤进而包括如下步骤:1. A method for realizing class memory database access and retrieval, comprising the steps of: class memory database initialization step and class memory database retrieval and access step, wherein, the class memory database initialization step further comprises the following steps: 读取配置最新的m命中率表,m为一次查询命中率计算周期中所需要执行的查询的总次数,以下m解释相同;Read and configure the latest m hit rate table. m is the total number of queries that need to be executed in a query hit rate calculation cycle. The following m is explained in the same way; 针对数据内容和类型建立基于Hash表类型结构的数据节点存储表;Establish a data node storage table based on the Hash table type structure for data content and type; 建立基于平衡二叉树模型的索引表,以及索引表排序字段优先存储表;Establish an index table based on a balanced binary tree model, and a priority storage table for sorting fields of the index table; 调用类内存数据库检索和存取步骤中的存储函数,建立数据库中所有表格,同时按照索引表排序字段优先存储表对所述的索引表进行排序;Calling the storage function in the memory-like database retrieval and access steps, establishing all tables in the database, and simultaneously sorting the index tables according to the priority storage table of the index table sorting field; 所述的类内存数据库检索和存取步骤进而包括一下步骤:The retrieval and access steps of the class memory database further include the following steps: 需要分析m条查询记录,从m命中率表中,选择命中率最高的为下一次的m值,若命中率都相同,则随机选择;It is necessary to analyze m query records. From the m hit rate table, select the one with the highest hit rate as the next m value. If the hit rates are the same, select randomly; 每次在接收到查询指令后,首先将总查询次数加1,然后确定涉及的字段总数量,再按照已有优先级数据从大到小分别将本次权重分配到本次索引表排序字段优先存储表的存储范围;在i<=m的时候,i为查询命中率计算周期中包含本次查询后的总查询次数,i的取值在自然数范围内,简单将上次的优先级数据和本次权重求和即可得到本次优先级数据;当i>m时清空索引表排序字段优先存储表数据并置i为0;Each time after receiving a query command, first add 1 to the total number of queries, then determine the total number of fields involved, and then assign the weight of this time to the index table sorting field priority according to the existing priority data from large to small The storage range of the storage table; when i<=m, i is the total number of queries after this query is included in the query hit rate calculation cycle, and the value of i is within the range of natural numbers. Simply combine the previous priority data and The priority data of this time can be obtained by summing the weights this time; when i>m, clear the sorting field of the index table to store the table data first and set i to 0; 根据最优字段进行索引表排序,与上一次相同则跳过这一步,并且在索引表排序字段优先存储表中的取值处加1;然后根据查询条件中是否有最优字段来决定如何获得需要的数据节点关键字,如果有,则从基于平衡二叉树模型的索引表中获得需要的数据节点关键字;如果没有,则从基于Hash表类型结构的数据节点存储表中获得需要的数据节点关键字,最终逐条进行单记录读取,没有关键字列表只能遍历数据节点存储表的所有数据,在进行单记录存取的时候,只要直接存储数据节点存储表即可,可以保证在有限次的函数转换之后即可得到确切位置,而不需要逐个进行检查;Sort the index table according to the optimal field, skip this step if it is the same as last time, and add 1 to the value in the priority storage table of the index table sorting field; then decide how to get it according to whether there is an optimal field in the query condition The required data node key, if there is, obtain the required data node key from the index table based on the balanced binary tree model; if not, obtain the required data node key from the data node storage table based on the Hash table type structure words, and finally read single records one by one. There is no keyword list and only all the data in the data node storage table can be traversed. The exact position can be obtained after the function conversion, without checking one by one; 在总查询次数大于等于m的时候进行命中率计算,然后填入m命中率表中相应位置并置总查询次数为0,然后从m命中率表中选出命中率最高的作为下一次的m值,如果m命中率表内有多于一个位置同时为最大,则随机挑选一个作为下一次的m值;When the total number of queries is greater than or equal to m, the hit rate is calculated, then fill in the corresponding position in the m hit rate table and set the total number of queries to 0, and then select the highest hit rate from the m hit rate table as the next m value, if more than one position in the m hit rate table is the maximum at the same time, randomly select one as the next m value; 重新建立基于平衡二叉树模型的索引表;Re-establish the index table based on the balanced binary tree model; 清空索引表排序字段优先存储表;Clear the index table sorting field to store the table first; 当停止服务时,将m命中率表作为配置文件存储到外存,作为下一次服务运行的初始值。When the service is stopped, the m hit rate table is stored as a configuration file in the external memory as the initial value for the next service operation. 2、根据权利要求1所述的实现类内存数据库存取和检索的方法,其特征在于:所述数据节点存储表通过主键可以一次定位数据的存储位置。2. The method for realizing memory-like database access and retrieval according to claim 1, characterized in that: the data node storage table can locate the storage location of data at one time through the primary key.
CNB2003101145692A 2003-12-27 2003-12-27 A method for implementing memory-like database access and retrieval Expired - Lifetime CN100428226C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101145692A CN100428226C (en) 2003-12-27 2003-12-27 A method for implementing memory-like database access and retrieval

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101145692A CN100428226C (en) 2003-12-27 2003-12-27 A method for implementing memory-like database access and retrieval

Publications (2)

Publication Number Publication Date
CN1635494A CN1635494A (en) 2005-07-06
CN100428226C true CN100428226C (en) 2008-10-22

Family

ID=34843456

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101145692A Expired - Lifetime CN100428226C (en) 2003-12-27 2003-12-27 A method for implementing memory-like database access and retrieval

Country Status (1)

Country Link
CN (1) CN100428226C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102467692A (en) * 2010-11-16 2012-05-23 金蝶软件(中国)有限公司 Dupont analysis display method and device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426253C (en) * 2005-08-01 2008-10-15 中兴通讯股份有限公司 Test method of a database depended software unit
CN100371936C (en) * 2006-04-03 2008-02-27 无锡永中科技有限公司 Data search method for tree-type structural file
US7860823B2 (en) * 2006-05-04 2010-12-28 Microsoft Corporation Generic interface for deep embedding of expression trees in programming languages
CN101452422B (en) * 2007-11-29 2011-03-30 联芯科技有限公司 Chip data read-write method, corresponding apparatus and system
CN101388842B (en) 2008-10-30 2012-04-04 华为技术有限公司 Storage method and apparatus
CN101572762B (en) * 2009-02-25 2012-07-04 南京联创科技集团股份有限公司 Method for realizing combination of mass tickets by statistic based storage management and quick indexing
CN102521375B (en) * 2011-12-19 2013-12-11 山东中创软件商用中间件股份有限公司 Directory service data retrieval method and directory service data retrieval system
CN103177026A (en) * 2011-12-23 2013-06-26 北京新媒传信科技有限公司 Data management method and data management system
CN103425694B (en) * 2012-05-23 2016-12-14 北京神州泰岳软件股份有限公司 The searching method of relational data and device
US8510261B1 (en) * 2012-05-29 2013-08-13 Sap Ag System and method of generating in-memory models from data warehouse models
US8930374B2 (en) * 2012-06-29 2015-01-06 Nokia Corporation Method and apparatus for multidimensional data storage and file system with a dynamic ordered tree structure
CN103678384A (en) * 2012-09-18 2014-03-26 鸿富锦精密工业(深圳)有限公司 Sequential index generating system and sequential index generating method
CN102945163A (en) * 2012-10-29 2013-02-27 桂林电子科技大学 Signal-slot structure for embedded system
CN103455556B (en) * 2013-08-08 2017-06-23 成都市欧冠信息技术有限责任公司 Memory cell data method of cutting out
CN104679816B (en) * 2014-12-17 2018-02-06 上海彩亿信息技术有限公司 A kind of SQLITE database application methods under embedded system
CN107239454B (en) * 2016-03-28 2020-11-17 福建天晴数码有限公司 Retrieval method and system based on text database
CN108416000A (en) * 2018-02-27 2018-08-17 百度在线网络技术(北京)有限公司 Method for exhibiting data, device, equipment and storage medium
CN109299100B (en) * 2018-10-12 2019-08-30 第四范式(北京)技术有限公司 Managing internal memory data and the method and system for safeguarding data in memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547992A2 (en) * 1991-12-17 1993-06-23 International Business Machines Corporation Method and system for enhanced efficiency of data recovery in balanced tree memory structures
US6292795B1 (en) * 1998-05-30 2001-09-18 International Business Machines Corporation Indexed file system and a method and a mechanism for accessing data records from such a system
US20020181480A1 (en) * 2001-01-22 2002-12-05 Ian Puleston Method for using a balanced tree as a base for a routing table

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547992A2 (en) * 1991-12-17 1993-06-23 International Business Machines Corporation Method and system for enhanced efficiency of data recovery in balanced tree memory structures
US6292795B1 (en) * 1998-05-30 2001-09-18 International Business Machines Corporation Indexed file system and a method and a mechanism for accessing data records from such a system
US20020181480A1 (en) * 2001-01-22 2002-12-05 Ian Puleston Method for using a balanced tree as a base for a routing table

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102467692A (en) * 2010-11-16 2012-05-23 金蝶软件(中国)有限公司 Dupont analysis display method and device

Also Published As

Publication number Publication date
CN1635494A (en) 2005-07-06

Similar Documents

Publication Publication Date Title
CN100428226C (en) A method for implementing memory-like database access and retrieval
Hoffer et al. The use of cluster analysis in physical data base design
US7774379B2 (en) Methods for partitioning an object
CN106815260B (en) Index establishing method and equipment
CN102906751A (en) Method and device for data storage and data query
CN104239377A (en) Platform-crossing data retrieval method and device
US20220114155A1 (en) Per-segment secondary indexing in database systems
US12026162B2 (en) Data query method and apparatus, computing device, and storage medium
CN104615785A (en) Data storage method and device based on TYKY cNosql
CN116881243A (en) Learning type indexing method and system based on time sequence data characteristics
CN103455335A (en) Multilevel classification Web implementation method
WO2023241246A1 (en) Index establishment method, and electronic device and computer-readable storage medium
CN110706125A (en) Water conservancy big data analysis information service system and platform service system
CN115114294A (en) Adaptive method, device and computer equipment for database storage mode
CN116301656A (en) Data storage method, system and equipment based on log structure merging tree
CN109918369A (en) Date storage method and device
CN114691032B (en) An information storage optimization method based on blockchain technology
KR101955376B1 (en) Processing method for a relational query in distributed stream processing engine based on shared-nothing architecture, recording medium and device for performing the method
US20070260579A1 (en) Method of designing query classification component for multilevel dbms
CN111858722A (en) Big data application system and method based on Internet of things
CN113421131A (en) Intelligent marketing system based on big data content
CN110209742B (en) Block chain based storage system and method classified according to data importance
WO2024108638A1 (en) Adaptive query method based on sharding indexes, and apparatus
CN107943927B (en) The memory module conversion method of multidimensional data in a kind of distributed memory system
CN117472959A (en) Gskip list-based block chain efficient query system and dynamic construction method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20081022

CX01 Expiry of patent term