CN100428058C - In-situ detection method for odd aberration of projection objective lens in lithography machine - Google Patents
In-situ detection method for odd aberration of projection objective lens in lithography machine Download PDFInfo
- Publication number
- CN100428058C CN100428058C CNB2005100264509A CN200510026450A CN100428058C CN 100428058 C CN100428058 C CN 100428058C CN B2005100264509 A CNB2005100264509 A CN B2005100264509A CN 200510026450 A CN200510026450 A CN 200510026450A CN 100428058 C CN100428058 C CN 100428058C
- Authority
- CN
- China
- Prior art keywords
- delta
- odd
- projection objective
- defocus
- objective lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
技术领域 technical field
本发明涉及光刻机,特别是一种光刻机投影物镜奇像差原位检测方法,特别涉及光刻机投影物镜奇像差中波前倾斜、彗差、三波差的原位检测方法。The invention relates to a lithography machine, in particular to an in-situ detection method for the odd aberration of the projection objective lens of the lithography machine, and in particular to an in-situ detection method for wavefront tilt, coma and triple wave aberration in the odd aberration of the projection objective lens of the lithography machine.
背景技术 Background technique
在集成电路制造设备中,用于光学光刻的投影光刻机是公知的。在投影光刻机中,曝光光束照明刻有集成电路图形的掩模,掩模经过投影物镜成像在基板上,使涂覆在基板上的光刻胶被曝光。Projection lithography machines for optical lithography are well known in integrated circuit fabrication facilities. In the projection lithography machine, the exposure beam illuminates the mask engraved with the integrated circuit pattern, and the mask is imaged on the substrate through the projection objective lens, so that the photoresist coated on the substrate is exposed.
随着半导体集成电路集成度的提高,对光刻分辨率与套刻精度的要求越来越高。投影物镜的像差是影响光刻分辨率与套刻精度的一个重要因素。投影物镜的像差通常使用波像差表示,波像差可分解为泽尼克多项式的形式。按照泽尼克多项式分解的波像差可分为偶像差与奇像差两类。奇像差包括波前倾斜、彗差与三波差等。随着光刻特征尺寸的不断减小,尤其是离轴照明等光刻分辨率增强技术的使用,投影物镜奇像差对光刻分辨率与套刻精度的影响变得越来越突出。因此高精度的光刻机投影物镜奇像差原位检测技术不可或缺。With the improvement of the integration level of semiconductor integrated circuits, the requirements for photolithography resolution and overlay accuracy are getting higher and higher. The aberration of the projection objective lens is an important factor affecting the resolution and overlay accuracy of lithography. The aberration of a projection objective is usually expressed in terms of wave aberration, which can be decomposed into the form of Zernike polynomials. Wave aberrations decomposed by Zernike polynomials can be divided into idol aberrations and odd aberrations. Odd aberrations include wavefront tilt, coma and triple wave aberration. With the continuous reduction of lithography feature size, especially the use of lithography resolution enhancement technologies such as off-axis illumination, the influence of projection objective lens odd aberration on lithography resolution and overlay accuracy has become more and more prominent. Therefore, high-precision in-situ detection technology for odd aberrations of the projection objective lens of lithography machines is indispensable.
DAMIS(Displacement At Multiple Illumination Settings)是一种基于设置投影物镜的数值孔径、部分相干因子的像差检测技术,可以原位检测光刻机投影物镜奇像差中的彗差(参见在先技术[1],Joost Sytsma,Hans vander Laan,Marco Moers,Rob Willekers.“Improved Imaging Metrology Neededfor Advanced Lithography”.Semiconductor international 2001,4)。在先技术[1]中,首先设置不同的投影物镜的数值孔径、部分相干因子,将具有多个测试标记的掩模曝光在涂有光刻胶的基板上。掩模上任一测试标记的结构如图1所示。对基板进行后烘与显影后,基板上的光刻胶上形成掩模测试标记的图形。通过光刻机中的光学对准系统对这些图形进行对准,得到掩模测试标记的成像位置(X,Y),与理想位置相比后得到成像位置偏移量(ΔX,ΔY)。然后利用光刻仿真软件确定不同的数值孔径、部分相干因子下的灵敏度系数。根据不同数值孔径、部分相干因子下得到不同的成像位置偏移量及灵敏度系数,利用特定的数学模型与算法得到表征投影物镜彗差的泽尼克系数Z7,Z8,Z14,Z15。DAMIS利用光刻机固有的硬件与功能检测像差,无需增加额外硬件,实现了光刻机投影物镜彗差的原位检测,检测方法简单、直接。遗憾的是此方法检测前要对投影物镜的数值孔径、部分相干因子进行优化工作,检测过程中需要重复设置多种不同的数值孔径、部分相干因子,检测过程复杂;同时,随着光刻分辨率的提高,DAMIS逐渐无法满足投影物镜奇像差在检测精度与检测速度上的需要。DAMIS (Displacement At Multiple Illumination Settings) is an aberration detection technology based on setting the numerical aperture and partial coherence factor of the projection objective lens. 1], Joost Sytsma, Hans van der Laan, Marco Moers, Rob Willekers. "Improved Imaging Metrology Needed for Advanced Lithography". Semiconductor international 2001, 4). In the prior art [1], first, different numerical apertures and partial coherence factors of the projection objective lens are set, and a mask with multiple test marks is exposed on a substrate coated with photoresist. The structure of any test mark on the mask is shown in Figure 1. After post-baking and developing the substrate, a pattern of mask test marks is formed on the photoresist on the substrate. These patterns are aligned by the optical alignment system in the lithography machine to obtain the imaging position (X, Y) of the mask test mark, and the imaging position offset (ΔX, ΔY) is obtained after comparing with the ideal position. Then use lithography simulation software to determine the sensitivity coefficient under different numerical apertures and partial coherence factors. According to different numerical apertures and partial coherence factors, different imaging position offsets and sensitivity coefficients are obtained, and Zernike coefficients Z 7 , Z 8 , Z 14 , and Z 15 , which characterize the coma aberration of the projection objective lens, are obtained by using specific mathematical models and algorithms. DAMIS uses the inherent hardware and functions of the lithography machine to detect aberrations, without adding additional hardware, and realizes the in-situ detection of the coma aberration of the projection objective lens of the lithography machine. The detection method is simple and direct. Unfortunately, this method needs to optimize the numerical aperture and partial coherence factor of the projection objective lens before detection. During the detection process, it is necessary to repeatedly set a variety of different numerical apertures and partial coherence factors, which makes the detection process complicated; With the improvement of the efficiency, DAMIS is gradually unable to meet the needs of the detection accuracy and detection speed of the odd aberration of the projection objective lens.
发明内容 Contents of the invention
针对在先技术[1]存在的上述不足,本发明提供一种高精度的光刻机投影物镜奇像差原位检测方法。Aiming at the above-mentioned deficiencies in the prior art [1], the present invention provides a high-precision in-situ detection method for odd aberrations of the projection objective lens of a lithography machine.
该方法基于成像平面离焦量的改变实现了对光刻机投影物镜奇像差中波前倾斜、彗差、三波差的同时高精度原位检测。解决了在先技术[1]中检测过程复杂、检测精度低且检测速度慢的问题。Based on the change of the defocus amount of the imaging plane, the method realizes simultaneous high-precision in-situ detection of wavefront tilt, coma, and triple wave aberration in the odd aberration of the projection objective lens of the lithography machine. The problems of complicated detection process, low detection precision and slow detection speed in the prior art [1] are solved.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种光刻机投影物镜奇像差原位检测方法,该方法包括以下步骤:An in-situ detection method for odd aberrations of a projection objective lens of a photolithography machine, the method comprising the following steps:
①开启光刻机光源,调整光刻机工件台,使工件台承载的基板位于具有一定离焦量的位置处;① Turn on the light source of the lithography machine, adjust the workpiece table of the lithography machine, so that the substrate carried by the workpiece table is located at a position with a certain amount of defocus;
②所述光源发出的光束经过光刻机照明系统调整后,照射在掩模上;该掩模上的测试标记经投影物镜成像在所述基板上,曝光后获得具有该离焦量的测试标记的潜影图像;② The light beam emitted by the light source is adjusted by the lighting system of the lithography machine and irradiated on the mask; the test mark on the mask is imaged on the substrate through the projection objective lens, and the test mark with the defocus amount is obtained after exposure latent image of
③改变基板的离焦量Δf,重复上述步骤②,在基板上获得具有一系列不同离焦量的测试标记的潜影图像;③Change the defocus amount Δf of the substrate, repeat the
④将曝光后的基板后烘显影后,利用光刻机的光学对准系统测量基板上掩模测试标记图形的成像位置,与掩模测试标记图形的理论成像位置相比较,得到所述的基板在一系列离焦量的条件下掩模测试标记的成像位置的偏移量(ΔXi,ΔYi);④ After post-baking and developing the exposed substrate, use the optical alignment system of the lithography machine to measure the imaging position of the mask test mark pattern on the substrate, and compare it with the theoretical imaging position of the mask test mark pattern to obtain the substrate The offset (ΔX i , ΔY i ) of the imaging position of the mask test mark under a series of defocus conditions;
⑤根据所述离焦位置的成像位置偏移量(ΔXi,ΔYi)确定奇像差的灵敏度系数S;⑤ Determine the sensitivity coefficient S of the odd aberration according to the imaging position offset (ΔX i , ΔY i ) of the defocus position;
⑥利用所述成像位置偏移量(ΔXi,ΔYi)与灵敏度系数S,通过Zk=S-1·ΔXi计算出光刻机投影物镜奇像差Zk,所述的i和k为大于或等于1的正整数。。⑥ Using the imaging position offset (ΔX i , ΔY i ) and the sensitivity coefficient S, calculate the odd aberration Z k of the projection objective lens of the lithography machine through Z k = S -1 · ΔX i , and the i and k is a positive integer greater than or equal to 1. .
所述的确定奇像差的灵敏度系数S的过程,包括以下步骤:The process of determining the sensitivity coefficient S of the odd aberration includes the following steps:
①选定泽尼克系数中的一项泽尼克系数Zk与相应该泽尼克系数的数值x,根据所选定的一系列离焦位置,利用光刻仿真软件进行仿真逐步获得该泽尼克系数Zk下一系列成像位置仿真偏移量(Δxi,Δyi);① Select one of the Zernike coefficients Z k and the value x of the corresponding Zernike coefficient, and use the lithography simulation software to simulate and gradually obtain the Zernike coefficient Z according to the selected series of defocus positions k Next series of imaging position simulation offset (Δx i , Δy i );
②利用成像位置仿真偏移量(Δxi,Δyi),根据Si=Δxi/x计算出奇像差的灵敏度系数Si,所述的i和k为大于或等于1的正整数。② Using the imaging position simulation offset ( Δxi , Δy i ), calculate the odd aberration sensitivity coefficient S i according to S i = Δxi /x, where i and k are positive integers greater than or equal to 1.
所述的工件台承载的基板的一系列的离焦量为焦面附近选定的离焦范围以内,以一定离焦步进量为间隔的若干个离焦量,其个数应大于4。The series of defocusing amounts of the substrate carried by the workpiece table are within the selected defocusing range near the focal plane, and the number of defocusing amounts should be greater than 4 at intervals of a certain defocusing step amount.
所述的掩模测试标记包含一组水平密集线条与一组垂直密集线条,掩模测试标记的周期与所述光学对准系统使用的对准标记周期相同。The mask test marks include a group of horizontal dense lines and a group of vertical dense lines, and the period of the mask test marks is the same as that of the alignment marks used by the optical alignment system.
所述的掩模测试标记的数量有5个或5个以上,且在曝光视场内均匀分布。The number of the mask test marks is 5 or more, and they are evenly distributed in the exposure field of view.
本发明具有以下优点:The present invention has the following advantages:
1、与在先技术[1]相比,本发明采用的不同离焦量下成像位置偏移量相对于所述奇像差的灵敏度系数变化范围增大,提高了所述奇像差的检测精度。1. Compared with the prior art [1], the variation range of the sensitivity coefficient of the imaging position offset relative to the odd aberration under different defocus amounts adopted by the present invention is increased, and the detection of the odd aberration is improved precision.
2、与在先技术[1]相比,本发明采用的测试标记使用一组水平与垂直密集线条代替了在先技术[1]中两组水平与垂直密集线条,提高了利用对准系统检测掩模测试标记的成像位置的速度,从而提高了奇像差的检测速度。2. Compared with the prior art [1], the test mark adopted in the present invention uses a group of horizontal and vertical dense lines to replace the two groups of horizontal and vertical dense lines in the prior art [1], which improves the use of the alignment system to detect The speed of the imaging position of the mask test marks, thereby improving the detection speed of odd aberrations.
3、与在先技术[1]相比,本发明提出的投影物镜奇像差原位检测方法基于成像平面的离焦来原位检测投影物镜的奇像差,奇像差的检测精度不受投影物镜的数值孔径、部分相干因子设置的限制与影响。3. Compared with the prior art [1], the in-situ detection method for the odd aberration of the projection objective lens proposed by the present invention is based on the defocus of the imaging plane to detect the odd aberration of the projection objective lens in situ, and the detection accuracy of the odd aberration is not affected by the The limitations and effects of the numerical aperture and partial coherence factor settings of the projection objective.
4、与在先技术[1]相比,本发明避免了在检测之前对多种数值孔径、部分相干因子进行优化工作,检测时无需重复设置多种不同的数值孔径、部分相干因子,检测过程简单。4. Compared with the prior art [1], the present invention avoids the optimization of various numerical apertures and partial coherence factors before detection, and does not need to repeatedly set multiple different numerical apertures and partial coherence factors during detection. Simple.
附图说明 Description of drawings
图1在先技术[1]中所述测试标记的结构示意图;The structural representation of the test mark described in the prior art [1] of Fig. 1;
图2投影光刻机结构示意图;Fig. 2 Schematic diagram of the structure of the projection lithography machine;
图3本发明提出的投影物镜奇像差检测技术的检测流程图;Fig. 3 is the detection flowchart of the projection objective lens odd aberration detection technology proposed by the present invention;
图4本发明所述掩模上任一测试标记的结构示意图;Fig. 4 is a schematic structural view of any test mark on the mask of the present invention;
图5本发明不同离焦量下得到的灵敏度系数变化曲线;The sensitivity coefficient change curve obtained under different defocus amounts of Fig. 5 of the present invention;
具体实施方式 Detailed ways
下面通过实施例对本发明作进一步说明。Below by embodiment the present invention will be further described.
本发明应用在如图2所示的投影光刻机中,该光刻机主要包括:产生曝光光束的光源1,用于调整光源1发出光束光强分布的照明系统2,将掩模3上图形成像在基板7上的投影物镜5,承载掩模3并可精确定位的掩模台4,工件台8,用于承载基板7并可精确调整所述基板7的离焦量,用于测量基板7上光刻胶上图形的光学对准系统6。The present invention is applied in a projection photolithography machine as shown in FIG. The projection objective lens 5 with graphics imaged on the
本发明投影物镜奇像差原位检测方法的检测过程如图3所示,经准备工作10后,进入成像位置偏移量获取过程100、灵敏度系数标定过程200与数据处理过程300。成像位置偏移量获取过程100、灵敏度系数确定过程200与数据处理过程300的具体操作步骤如下:The detection process of the in-situ detection method for projection objective lens odd aberration of the present invention is shown in FIG. The specific operation steps of the imaging position offset
成像位置偏移量获取过程100:Imaging position offset acquisition process 100:
(11)测试工艺条件的确定:指光刻胶类型、光刻胶厚度、后烘温度、后烘时间、显影时间等条件,与一般光刻情况相同;(11) Determination of test process conditions: refers to the photoresist type, photoresist thickness, post-baking temperature, post-baking time, developing time and other conditions, which are the same as the general photolithography situation;
(12)测试曝光:调整工件台8,使工件台8承载的基板7位于离焦量Δf1下;光源1发出的光束经照明系统2照射于掩模3,掩模3上的测试标记经投影物镜5成像在涂有光刻胶的基板7上;选择离焦步进量为Δf,在离焦量分别为Δf1+Δf、Δf1+2Δf、Δf1+3Δf、Δf1+4Δf下,将掩模测试标记曝光在处于一系列离焦位置的涂有光刻胶的基板7上;(12) Test exposure: adjust the workpiece table 8 so that the
(13)工艺处理:将上述步骤(12)中被曝光的基板7进行后烘或后烘后显影;(13) Process treatment: post-baking or developing after post-baking the exposed
(14)光学对准测量:利用光学对准系统6分别对上述步骤(13)中的基板7上光刻胶上的掩模测试标记的图形进行对准,得到掩模测试标记在不同离焦量下的成像位置,记为(X,Y);(14) Optical alignment measurement: use the optical alignment system 6 to align the pattern of the mask test mark on the photoresist on the
(15)成像位置偏移量计算:根据掩模3上任一测试标记在曝光视场中成像的理论位置也就是名义位置(Xm,Ym),并利用它与上述步骤(14)中得到的成像位置信息按(1)式计算掩模3上任一测试标记的成像位置偏移量(ΔX,ΔY),(15) Calculation of imaging position offset: According to the theoretical position of any test mark on the mask 3 in the exposure field of view, that is, the nominal position (X m , Y m ), and use it to obtain in the above step (14) Calculate the imaging position offset (ΔX, ΔY) of any test mark on the mask 3 according to formula (1),
由(1)式得到对应于离焦量Δf1、Δf1+Δf、Δf1+2Δf、Δf1+3Δf、Δf1+4Δf的成像位置偏移量
灵敏度系数确定过程200:Sensitivity coefficient determination process 200:
(21)选择一项泽尼克系数Zk与这一项泽尼克系数的数值x,利用光刻仿真软件进行仿真,获得相应的成像位置仿真偏移量;(21) Select a Zernike coefficient Z k and the value x of this Zernike coefficient, and use the lithography simulation software to simulate to obtain the corresponding imaging position simulation offset;
(22)光刻仿真软件仿真:利用上述步骤(11)确定的工艺条件,利用光刻仿真软件仿真实际曝光、后烘、显影过程,得到不同离焦量下掩模测试标记的成像位置仿真偏移量Δxk(Δf1)或Δyk(Δf1),或或或或 (22) Lithography simulation software simulation: Utilize the process conditions determined in the above step (11), use the lithography simulation software to simulate the actual exposure, post-baking, and development processes, and obtain the simulated deviation of the imaging position of the mask test mark under different defocus amounts. displacement Δx k (Δf 1 ) or Δy k (Δf 1 ), or or or or
(23)灵敏度系数确定:一定离焦量下,成像位置仿真偏移量与表征奇像差的泽尼克系数的大小成线性关系。利用上述步骤(22)得到的掩模测试标记的成像位置仿真偏移量Δxk(Δf1)或Δyk(Δf1),成像位置偏移量在离焦量Δf1下相对于泽尼克系数Zk的灵敏度系数按(2)式计算,(23) Determination of sensitivity coefficient: under a certain amount of defocus, the simulated offset of the imaging position is linearly related to the Zernike coefficient representing the odd aberration. Using the imaging position simulation offset Δx k (Δf 1 ) or Δy k (Δf 1 ) of the mask test mark obtained in the above step (22), the imaging position offset is relative to the Zernike coefficient under the defocus amount Δf 1 Sensitivity coefficient of Z k According to formula (2),
由(2)式可得对应于离焦量Δf1+Δf、Δf1+2Δf、Δf1+3Δf、Δf1+4Δf的灵敏度系数为
数据处理过程300:Data processing process 300:
(31)奇像差计算:由上述步骤(15)中得到对应于离焦量Δf1、Δf1+Δf、Δf1+2Δf、Δf1+3Δf、Δf1+4Δf的掩模任一测试标记的成像位置偏移量
(3);(3);
上述步骤(12)中光源1为汞灯或准分子激光器等紫外、深紫外等光源。In the above-mentioned step (12), the light source 1 is a mercury lamp or an excimer laser and other ultraviolet, deep ultraviolet and other light sources.
所述的掩模3上测试标记的数量与分布应保证至少有5个标记处在曝光视场内,且标记在视场中均匀分布。其中任一标记结构应包含一组水平密集线条与一组垂直密集线条两部分,如图4所示。The number and distribution of the test marks on the mask 3 should ensure that at least 5 marks are in the exposure field of view, and the marks are evenly distributed in the field of view. Any of the marking structures should include a set of horizontal dense lines and a set of vertical dense lines, as shown in Figure 4.
所述的测试标记周期与光刻机中光学对准系统所使用的对准标记的周期相同。The period of the test mark is the same as the period of the alignment mark used by the optical alignment system in the lithography machine.
所述的一系列离焦位置指在选定的离焦范围以内,以一定离焦步进量为间隔的若干个离焦位置,其个数应大于4个。The series of out-of-focus positions refers to several out-of-focus positions at intervals of a certain defocus step amount within the selected defocus range, and the number of them should be greater than four.
所述的基板7指具有一定晶格结构的半导体材料晶圆,如硅片等晶圆。The
上述步骤(21)中光刻仿真软件指可精确仿真光刻过程及效果的软件,如PROLITH,SOLID-C等光刻仿真软件。The lithography simulation software in the above step (21) refers to software that can accurately simulate the lithography process and effect, such as PROLITH, SOLID-C and other lithography simulation software.
所述的泽尼克系数中的一项泽尼克系数指表征奇像差中波前倾斜、彗差、三波差的泽尼克系数中的一项泽尼克系数,即表1中的任何一项泽尼克系数。One of the Zernike coefficients in the Zernike coefficients refers to one of the Zernike coefficients that characterize the wavefront tilt, coma, and three-wave aberration in the odd aberration, that is, any one of the Zernike coefficients in Table 1 coefficient.
表1泽尼克系数与其所对应的奇像差Table 1 Zernike coefficient and its corresponding odd aberration
图2为本实施例所用投影光刻机的结构示意图,其中,光源1采用深紫外准分子激光器。工件台9的离焦量范围为0.2um~1.6um,离焦步进量为0.2um。基板7使用硅片。工艺条件为:Sumitomo PAR710型光刻胶、胶厚为1000nm、后烘温度为95°、后烘时间为60s、显影时间为60s;测试标记周期为8um。泽尼克系数为Z7,数值为9.65nm。使用KLA-Tencor公司的PROLITH光刻仿真软件进行仿真。FIG. 2 is a schematic structural diagram of a projection lithography machine used in this embodiment, wherein the light source 1 is a deep ultraviolet excimer laser. The defocusing range of the workpiece table 9 is 0.2um-1.6um, and the defocusing step is 0.2um. A silicon wafer is used for the
光源1发出的激光经照明系统2后照射在掩模3上。在不同的离焦量下,掩模3上测试标记经投影物镜5成像在涂有光刻胶的基板7上。对基板7进行后烘、显影后,利用对准系统6对基板7上光刻胶上掩模测试标记的图形进行对准,得到不同离焦量下掩模测试标记的成像位置。经光刻仿真软件仿真阶段22,得到不同离焦量下成像位置偏移量相对于表征彗差的泽尼克系数Z7的灵敏度系数,如图5所示。The laser light emitted by the light source 1 is irradiated on the mask 3 after passing through the
由图4可知,本发明采用的测试标记为DAMIS中的测试标记的一半,因而利用对准系统检测标记的成像位置的时间缩短一半,所述奇像差的检测速度提高1倍。图5中,灵敏度系数的变化范围为2.1,在先技术[1]中灵敏度系数的变化范围为1.6。可见本发明中的灵敏度系数的变化范围与在先技术[1]相比增大了0.5,因此提高了投影物镜奇像差的检测精度。在成像位置偏移量检测精度一定的情况下,本发明投影物镜奇像差原位检测方法的检测精度与在先技术[1]相比提高了31.3%。It can be seen from FIG. 4 that the test mark used in the present invention is half of the test mark in DAMIS, so the time of using the alignment system to detect the imaging position of the mark is shortened by half, and the detection speed of the odd aberration is doubled. In Fig. 5, the variation range of the sensitivity coefficient is 2.1, and the variation range of the sensitivity coefficient in the prior art [1] is 1.6. It can be seen that the variation range of the sensitivity coefficient in the present invention is increased by 0.5 compared with the prior art [1], thus improving the detection accuracy of the odd aberration of the projection objective lens. Under the condition that the detection precision of imaging position offset is constant, the detection precision of the method for in-situ detection of odd aberration of projection objective lens of the present invention is improved by 31.3% compared with the prior art [1].
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100264509A CN100428058C (en) | 2005-06-03 | 2005-06-03 | In-situ detection method for odd aberration of projection objective lens in lithography machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100264509A CN100428058C (en) | 2005-06-03 | 2005-06-03 | In-situ detection method for odd aberration of projection objective lens in lithography machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1710491A CN1710491A (en) | 2005-12-21 |
CN100428058C true CN100428058C (en) | 2008-10-22 |
Family
ID=35706747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100264509A Expired - Fee Related CN100428058C (en) | 2005-06-03 | 2005-06-03 | In-situ detection method for odd aberration of projection objective lens in lithography machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100428058C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100474115C (en) | 2006-04-04 | 2009-04-01 | 上海微电子装备有限公司 | Aberration field measuring method for imaging optical system of photoetching apparatus |
CN101799640B (en) * | 2010-03-10 | 2012-03-21 | 中国科学院光电技术研究所 | Device and method for determining optimal focal plane position of photoetching machine |
CN102540751A (en) * | 2010-12-28 | 2012-07-04 | 上海微电子装备有限公司 | Method for detecting distortion and curvature of field of projection objective |
NL2008310A (en) | 2011-04-05 | 2012-10-08 | Asml Netherlands Bv | Lithographic method and assembly. |
CN102200697B (en) * | 2011-06-03 | 2012-12-26 | 中国科学院上海光学精密机械研究所 | System and method for detecting wave aberration of photoetching projection objective |
JP6088496B2 (en) * | 2012-05-17 | 2017-03-01 | シチズン時計株式会社 | Aberration correction device and laser microscope |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1405626A (en) * | 2001-09-07 | 2003-03-26 | 联华电子股份有限公司 | An Active Optical Proximity Correction Method |
JP2003163156A (en) * | 2001-11-28 | 2003-06-06 | Toshiba Corp | Exposure method |
CN1423831A (en) * | 2000-12-22 | 2003-06-11 | 株式会社尼康 | Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice |
JP2003273011A (en) * | 2002-02-15 | 2003-09-26 | Asml Netherlands Bv | Lithographic apparatus, alignment method, and device- manufacturing method |
JP2004012598A (en) * | 2002-06-04 | 2004-01-15 | Adtec Engineeng Co Ltd | Projection aligner |
-
2005
- 2005-06-03 CN CNB2005100264509A patent/CN100428058C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1423831A (en) * | 2000-12-22 | 2003-06-11 | 株式会社尼康 | Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice |
CN1405626A (en) * | 2001-09-07 | 2003-03-26 | 联华电子股份有限公司 | An Active Optical Proximity Correction Method |
JP2003163156A (en) * | 2001-11-28 | 2003-06-06 | Toshiba Corp | Exposure method |
JP2003273011A (en) * | 2002-02-15 | 2003-09-26 | Asml Netherlands Bv | Lithographic apparatus, alignment method, and device- manufacturing method |
JP2004012598A (en) * | 2002-06-04 | 2004-01-15 | Adtec Engineeng Co Ltd | Projection aligner |
Also Published As
Publication number | Publication date |
---|---|
CN1710491A (en) | 2005-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10126662B2 (en) | Metrology method and apparatus, lithographic system and device manufacturing method | |
US6646729B2 (en) | Method of measuring aberration in an optical imaging system | |
US8035801B2 (en) | Method for in-situ aberration measurement of optical imaging system in lithographic tools | |
US8908148B2 (en) | Calibration method and inspection apparatus | |
US20070024834A1 (en) | Apparatus and process for determination of dynamic scan field curvature | |
US7442951B2 (en) | Reticle for use in rapid determination of average intrafield scanning distortion having transmissivity of a complementary alignment attribute being different than the transmissivity of at least one alignment attribute | |
JP2017538157A (en) | Method and apparatus for using patterning device topography induced phase | |
CN101320219B (en) | Field measurement method for optical aberration of imaging optical system | |
CN113196177A (en) | Metrology sensor, illumination system, and method of generating a measurement illumination having a configurable illumination spot diameter | |
TWI752647B (en) | Method for inferring a processing parameter such as focus and associated apparatuses and manufacturing method | |
CN116529673A (en) | Metrology method and related metrology and lithographic apparatus | |
CN100428058C (en) | In-situ detection method for odd aberration of projection objective lens in lithography machine | |
CN201166781Y (en) | Photolithography machine projection objective lens idol aberration in-situ detection system | |
CN101221372A (en) | In-situ detection system and detection method for idol aberration of projection objective lens of lithography machine | |
CN101004554A (en) | Measuring Method of Exposure Machine Error | |
US7671979B2 (en) | Apparatus and process for determination of dynamic lens field curvature | |
US7295291B2 (en) | Apparatus and process for the determination of static lens field curvature | |
US7053979B2 (en) | Process for amelioration of scanning synchronization error | |
JP3999775B2 (en) | Method and apparatus for self-referencing dynamic step and intra-scan field lens distortion | |
US20240012339A1 (en) | Metrology method for measuring an etched trench and associated metrology apparatus | |
CN118355329A (en) | Measurement calibration method | |
CN119535898A (en) | Method for monitoring afterimage effect of illumination system of photoetching machine | |
WO2025016662A1 (en) | Method of qualifying a machine such as an exposure apparatus | |
CN115210650A (en) | Method for inferring local uniformity metrics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081022 Termination date: 20110603 |