[go: up one dir, main page]

CN100427527C - Application of organosulfur polymers in cathode materials for secondary magnesium batteries - Google Patents

Application of organosulfur polymers in cathode materials for secondary magnesium batteries Download PDF

Info

Publication number
CN100427527C
CN100427527C CNB2006100274134A CN200610027413A CN100427527C CN 100427527 C CN100427527 C CN 100427527C CN B2006100274134 A CNB2006100274134 A CN B2006100274134A CN 200610027413 A CN200610027413 A CN 200610027413A CN 100427527 C CN100427527 C CN 100427527C
Authority
CN
China
Prior art keywords
organic sulfur
battery
sulfur polymer
positive electrode
polythio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100274134A
Other languages
Chinese (zh)
Other versions
CN1884341A (en
Inventor
努丽燕娜
杨军
谢夫苏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CNB2006100274134A priority Critical patent/CN100427527C/en
Publication of CN1884341A publication Critical patent/CN1884341A/en
Application granted granted Critical
Publication of CN100427527C publication Critical patent/CN100427527C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种有机硫聚合物在二次镁电池正极材料中的应用,将有机硫聚合物作正极,以金属镁为负极,以Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,组成二次镁电池。有机硫聚合物作为二次镁电池的正极材料,具有容量大、电压平台高的特点,首次放电容量可达到110mAh/g以上,稳定放电电压平台可达到1.6V左右;与目前二次镁电池较为理想的材料Mo3S4相比,有机硫聚合物具有制备简单、低成本、结构可设计等优点。

The invention discloses an application of an organic sulfur polymer in the positive electrode material of a secondary magnesium battery. The organic sulfur polymer is used as the positive electrode, metal magnesium is used as the negative electrode, and Mg[AlCl 2 (C 4 H 9 )(C 2 H 5 )] 2 /tetrahydrofuran as the electrolyte to form a secondary magnesium battery. As the positive electrode material of secondary magnesium battery, organic sulfur polymer has the characteristics of large capacity and high voltage platform. The initial discharge capacity can reach more than 110mAh/g, and the stable discharge voltage platform can reach about 1.6V; compared with the current secondary magnesium battery Compared with the ideal material Mo 3 S 4 , organosulfur polymers have the advantages of simple preparation, low cost, and designable structure.

Description

有机硫聚合物在二次镁电池正极材料中的应用 Application of organosulfur polymers in cathode materials for secondary magnesium batteries

技术领域 technical field

本发明涉及一种聚合物在电池正极材料中的应用,特别是一种有机硫聚合物在二次镁电池正极材料中的应用。The invention relates to the application of a polymer in battery cathode materials, in particular to the application of an organic sulfur polymer in secondary magnesium battery cathode materials.

背景技术 Background technique

随着以煤、石油、天然气三大主要能源为代表的化石燃料储量的日益减少,化学电源在高科技器件、绿色低能耗运输和可再生能源的开发利用等方面得到了极大的重视。在现有的一次和二次电池中,锂电池的能量密度最大,因而被广泛研究和应用。然而,由于金属锂的高度活泼性,其可靠性和安全性难以得到保证,尤其是大型动力锂二次电池仍存在诸多安全隐患。因此,在实际的动力电源中仍是采用传统的有毒且低容量的铅酸或镍镉电池。随着对环境、资源领域的不断重视和对电动汽车的渴求,人们在改进现有电池存在问题的同时,也开始研发一些新型、高性能、低成本的绿色化学电源。With the decreasing reserves of fossil fuels represented by the three main energy sources of coal, oil and natural gas, chemical power sources have received great attention in the development and utilization of high-tech devices, green and low-energy transportation, and renewable energy. Among the existing primary and secondary batteries, lithium batteries have the highest energy density, so they are widely researched and applied. However, due to the high activity of metal lithium, its reliability and safety are difficult to be guaranteed, especially in large-scale power lithium secondary batteries, there are still many safety hazards. Therefore, traditional toxic and low-capacity lead-acid or nickel-cadmium batteries are still used in actual power sources. With the continuous emphasis on the environment and resources and the desire for electric vehicles, people have begun to develop some new, high-performance, low-cost green chemical power sources while improving the existing problems of batteries.

鉴于锂电池的巨大成功,与锂处于元素周期表中对角线上的镁,由于其离子半径、化学性质和锂有许多相似之处,且具有良好的物理、化学和机械性能,被认为是很有发展前景高能量密度电池的负极材料;特别是,镁具备价格便宜、安全性高及环境友好的优点,使镁电池在安全和价格两点上有望取得突破。可见,开发实用的可充镁电池意义重大,虽不能与应用于小尺度(如便携式电子仪器)的锂电池竞争,但在大负荷用途方面有潜在优势,被认为是很有望适于电动汽车的一种绿色蓄电池。我国的镁资源非常丰富,储量居世界首位,开发镁电池具有独特的优势。可充镁电池处于初步研究阶段,并有许多未解决的问题,使电池离实用还有一段距离,但可充镁电池的研究,有望开发出高性能、低成本、安全、环保的大型电能储存设备。In view of the great success of lithium batteries, magnesium, which is on the diagonal line with lithium in the periodic table of elements, is considered to be the It is a negative electrode material for high energy density batteries with great development prospects; especially, magnesium has the advantages of low price, high safety and environmental friendliness, which makes magnesium batteries expected to make breakthroughs in terms of safety and price. It can be seen that the development of practical rechargeable magnesium batteries is of great significance. Although it cannot compete with lithium batteries used in small scales (such as portable electronic instruments), it has potential advantages in large-load applications and is considered to be very promising for electric vehicles. A green storage battery. my country's magnesium resources are very rich, the reserves rank first in the world, and the development of magnesium batteries has unique advantages. Rechargeable magnesium batteries are in the preliminary research stage, and there are many unresolved problems, which make the batteries far from being practical. However, the research on rechargeable magnesium batteries is expected to develop high-performance, low-cost, safe and environmentally friendly large-scale electric energy storage equipment.

目前国际上对镁二次电池研究较少,到目前为止,仅有以色列科学家D.Aurbach等人研究的可充镁电池体系是所报道的较为完善的体系(D.Aurbach,Z.Lu,A.Schechter,Y.Gofer,H.Gizbar,R.Turgeman,Y.Cohen,M.Moshkovich,E.Levi,Nature,2000,407:724)。迄今国外公开报道完整装配测试镁二次电池的仅有两例,也相应申请了专利。目前,我国在镁电池方面的工作仍处于起步阶段,近年来已逐渐开始重视这方面的研究(袁华堂,焦丽芳,曹建胜,刘秀生,赵明,王永梅,电化学,2004,10:460;袁望治,劳令耳,黄英才,贵州工学院学报,1996,25:86;于龙,新疆大学硕士研究生学位论文,2004)。At present, there are few researches on magnesium secondary batteries in the world. So far, only the rechargeable magnesium battery system of Israeli scientist D.Aurbach et al. is the relatively perfect system reported (D.Aurbach, Z.Lu, A Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature, 2000, 407:724). So far, there are only two cases of complete assembly and testing of magnesium secondary batteries in foreign countries, and corresponding patents have been applied for. At present, my country's work on magnesium batteries is still in its infancy, and has gradually begun to pay attention to research in this area in recent years (Yuan Huatang, Jiao Lifang, Cao Jiansheng, Liu Xiusheng, Zhao Ming, Wang Yongmei, Electrochemistry, 2004, 10: 460; Yuan Wangzhi, Lao Linger, Huang Yingcai, Journal of Guizhou Institute of Technology, 1996, 25:86; Yu Long, master's degree thesis of Xinjiang University, 2004).

人们在对众多二次电池用的嵌入/脱嵌材料研究中,发现能用作镁电池的正极材料较少,主要有(P.Novák,R.Imhof,O.Haas,Electrochimica Acta,1999,45:351):MoO3、Co3O4、V2O5和MV3O8(H2O)y(M=Li、Na、K、Ca0.5或Mg0.5)钒酸盐、尖晶石型的氧化物、Todorokite型的MgxMnO2·yH2O、Nasicon结构的Mg0.5Ti2(PO4)3和Mg0.5+y(FeyTi1-y)2(PO4)3、Cheverel相的Mo3S4。其中,Mo3S4是目前较为理想的材料,但制备比较困难,需要在真空或氢气气氛下高温合成(D.Aurbach,Z.Lu,A.Schechter,Y.Gofer,H.Gizbar,R.Turgeman,Y.Cohen,M.Moshkovich,E.Levi,Nature,2000,407:724)。In the research on intercalation/deintercalation materials for many secondary batteries, it is found that there are few positive electrode materials that can be used as magnesium batteries, mainly (P.Novák, R.Imhof, O.Haas, Electrochimica Acta, 1999, 45 : 351): MoO 3 , Co 3 O 4 , V 2 O 5 and MV 3 O 8 (H 2 O) y (M=Li, Na, K, Ca 0.5 or Mg 0.5 ) vanadate, spinel type oxide, Todorokite type Mg x MnO 2 ·yH 2 O, Nasicon structure Mg 0.5 Ti 2 (PO 4 ) 3 and Mg 0.5+y (Fe y Ti 1-y ) 2 (PO 4 ) 3 , Cheverel phase Mo 3 S 4 . Among them, Mo 3 S 4 is a relatively ideal material at present, but it is difficult to prepare, and it needs to be synthesized at high temperature under vacuum or hydrogen atmosphere (D.Aurbach, Z.Lu, A.Schechter, Y.Gofer, H.Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature, 2000, 407:724).

作为锂离子电池的正极材料,有机硫聚合物的特点是将导电聚合物和有机硫化物相结合,既具有前者的电子导电性又具有后者高能量密度的特点(杨裕生,王维坤,苑克国,曹高萍,王安邦,电池,2002,32:1)。分子结构中存在着S-S官能团,能够发生电解聚-电聚合反应而具有电化学活性。同无机过渡金属化合物和导电高分子正极材料相比,有机硫聚合物正极材料具有比容量高、价廉、低毒等优点,成为最具有发展前途的锂离子正极材料。高比容量、长循环寿命有机硫聚合物正极材料的开发将极大地推动EV和HEV电动汽车的应用。As a positive electrode material for lithium-ion batteries, organosulfur polymers are characterized by the combination of conductive polymers and organosulfides, which have both the electronic conductivity of the former and the high energy density of the latter (Yang Yusheng, Wang Weikun, Yuan Ke Guo, Cao Gaoping, Wang Anbang, Battery, 2002, 32:1). There are S-S functional groups in the molecular structure, which can undergo electrolytic polymerization-electropolymerization reaction and have electrochemical activity. Compared with inorganic transition metal compounds and conductive polymer cathode materials, organosulfur polymer cathode materials have the advantages of high specific capacity, low price, and low toxicity, and have become the most promising lithium ion cathode materials. The development of high specific capacity and long cycle life organosulfur polymer cathode materials will greatly promote the application of EV and HEV electric vehicles.

发明内容 Contents of the invention

本发明的目的在于把有机硫聚合物用作二次镁电池的正极材料,来拓宽有机硫聚合物在电池中的应用和提高二次镁电池的性能。The purpose of the invention is to use the organic sulfur polymer as the positive electrode material of the secondary magnesium battery, to broaden the application of the organic sulfur polymer in the battery and improve the performance of the secondary magnesium battery.

本发明将有机硫聚合物作为二次镁电池的正极材料,其中有机硫聚合物为多硫代聚苯胺、多硫代聚吡咯、多硫代聚噻吩或多硫代聚苯撑等。具体有二硫代二苯胺、部分二硫代聚苯胺、四硫代二苯胺、聚2’2-双氨基苯氧基二硫化物、聚双苯氨基二硫化物、多硫代聚(4-乙炔基吡啶)、多硫代苯、多硫代聚苯乙烯、聚多硫环戊二烯、多硫代碳炔、多硫代聚苯乙炔或多硫代聚乙炔基环戊二烯等。The present invention uses the organic sulfur polymer as the positive electrode material of the secondary magnesium battery, wherein the organic sulfur polymer is polythiopolyaniline, polythiopolypyrrole, polythiophene or polyphenylene polythio. Specifically, dithiodiphenylamine, part of dithiopolyaniline, tetrathiodiphenylamine, poly 2'2-bisaminophenoxy disulfide, polybisaniline disulfide, polythiopoly(4- ethynylpyridine), polythiobenzene, polythiopolystyrene, polythiocyclopentadiene, polythiocarbyne, polythiopolyphenylene or polythiopolyethynylcyclopentadiene, etc.

本发明有机硫聚合物用作二次镁电池正极材料的应用方法如下:The application method of organosulfur polymer of the present invention as secondary magnesium battery positive electrode material is as follows:

将有机硫聚合物研细,加入以有机硫聚合物为基准的5~8wt%的乙炔黑作为导电剂,以有机硫聚合物为基准的5~10wt%的聚四氟乙烯乳液(浓度为50~60wt%)或聚偏氟乙烯溶液(以N-甲基吡咯烷酮为溶剂,浓度为0.02~0.04g/mL)作为粘结剂,混合成膏状,在3~5MPa压力下压在集流体上,放入温度为60~80℃的烘箱中烘干后,用Φ12~16mm的冲头冲成极片,在1~2MPa的压力下压片后,放入100~120℃的真空烘箱中干燥3~5小时,得到正极;再转移到氩气手套箱中,以金属镁为负极,0.25mol·L-1的Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,制成二次镁电池。Grinding the organic sulfur polymer, adding 5-8 wt% acetylene black based on the organic sulfur polymer as a conductive agent, 5-10 wt% polytetrafluoroethylene emulsion based on the organic sulfur polymer (concentration is 50 ~60wt%) or polyvinylidene fluoride solution (with N-methylpyrrolidone as the solvent, the concentration is 0.02~0.04g/mL) as a binder, mixed into a paste, and pressed on the current collector under a pressure of 3~5MPa , put it in an oven with a temperature of 60-80°C and dry it, punch it into a pole piece with a punch of Φ12-16mm, press it under a pressure of 1-2MPa, and dry it in a vacuum oven at 100-120°C After 3 to 5 hours, the positive electrode was obtained; then transferred to an argon glove box, with metal magnesium as the negative electrode, 0.25mol·L -1 of Mg[AlCl 2 (C 4 H 9 )(C 2 H 5 )] 2 /tetrahydrofuran It is used as an electrolyte to make a secondary magnesium battery.

本发明使用的集流体为铜箔、铝箔或泡沫镍。The current collector used in the present invention is copper foil, aluminum foil or nickel foam.

本发明使用的聚四氟乙烯为电池粘结剂用的聚四氟乙烯。The polytetrafluoroethylene used in the present invention is the polytetrafluoroethylene used for the battery binder.

本发明使用的聚偏氟乙烯为电池粘结剂用的聚偏氟乙烯。The polyvinylidene fluoride used in the present invention is polyvinylidene fluoride for battery binder.

本发明采用有机硫聚合物作为二次镁电池的正极材料,有机硫聚合物中以有机导电基团或导电聚合物为骨架,且在分子内部含有一个或多个-S-S-化学键结构,兼具导电聚合物的导电性能和有机硫化物的高能量密度的特点;利用-S-S-键的断裂和键合来进行镁电池能量的储存与释放;利用有机导电基团或导电聚合物对硫化物发生分子内电催化,提高反应速度,并增加材料的导电性,降低导电剂的用量,提高比容量;放电时,分子链骨架保持完整,S-S键断裂后仍连在主链骨架上,循环稳定性得已提高;增加有机硫聚合物中硫链的长度可以增加材料的比容量。The present invention uses organosulfur polymer as the positive electrode material of the secondary magnesium battery. The organosulfur polymer has an organic conductive group or a conductive polymer as the skeleton, and contains one or more -S-S-chemical bond structures inside the molecule. The conductive properties of conductive polymers and the characteristics of high energy density of organic sulfides; the use of -S-S- bond breaking and bonding to store and release the energy of magnesium batteries; the use of organic conductive groups or conductive polymers to generate energy for sulfides Intramolecular electrocatalysis, increase the reaction speed, increase the conductivity of the material, reduce the amount of conductive agent, and increase the specific capacity; when discharging, the molecular chain skeleton remains intact, and the S-S bond is still connected to the main chain skeleton after the break, cycle stability have been improved; increasing the length of the sulfur chains in organosulfur polymers can increase the specific capacity of the material.

Mo3S4是目前二次镁电池较为理想的材料,但制备比较困难,需要在真空或氢气气氛下高温合成,理论放电容量可达到122mAh/g,实际放电容量为100mAh/g左右,放电电压平台有两个,分别在1.2V和1.0V左右(D.Aurbach,Z.Lu,A.Schechter,Y.Gofer,H.Gizbar,R.Turgeman,Y.Cohen,M.Moshkovich,E.Levi,Nature,2000,407:724)。本发明采用有机硫聚合物作为二次镁电池的正极材料,具有容量大、电压平台高的特点,首次放电容量可达到110mAh/g以上,稳定放电电压平台可达到1.6V左右;并具有制备简单、低成本、结构可设计等优点。Mo 3 S 4 is currently an ideal material for secondary magnesium batteries, but it is difficult to prepare and needs to be synthesized at high temperature in a vacuum or hydrogen atmosphere. The theoretical discharge capacity can reach 122mAh/g, the actual discharge capacity is about 100mAh/g, and the discharge voltage There are two platforms, around 1.2V and 1.0V respectively (D.Aurbach, Z.Lu, A.Schechter, Y.Gofer, H.Gizbar, R.Turgeman, Y.Cohen, M.Moshkovich, E.Levi, Nature, 2000, 407:724). The invention adopts the organic sulfur polymer as the positive electrode material of the secondary magnesium battery, which has the characteristics of large capacity and high voltage platform, the initial discharge capacity can reach more than 110mAh/g, and the stable discharge voltage platform can reach about 1.6V; and it has the advantages of simple preparation , low cost, structure can be designed and so on.

附图说明 Description of drawings

图1是部分二硫代聚苯胺作为二次镁电池正极材料的首次充放电曲线。Figure 1 is the first charge and discharge curve of some dithiopolyaniline as the positive electrode material of the secondary magnesium battery.

图2是部分二硫代聚苯胺作为二次镁电池正极材料的第二次充放电曲线。Fig. 2 is the second charge and discharge curve of some dithiopolyaniline as the positive electrode material of the secondary magnesium battery.

具体实施方式 Detailed ways

下面实施例是对本发明进一步地说明,但不限制本发明的范围。The following examples further illustrate the present invention, but do not limit the scope of the present invention.

实施例1Example 1

在研细的20mg部分二硫代聚苯胺(材料合成过程见文献:唐致远,徐国祥,高分子材料科学与工程,2003,19:175)中,加入1.63mg乙炔黑和1.63mg聚四氟乙烯乳液(浓度为60wt%),混合成膏状,在4MPa压力下压在铜箔上,放入温度为80℃的烘箱中烘干,用Φ12.5mm的冲头冲成极片,在1MPa的压力下压片后,放入100℃左右的真空烘箱中干燥4小时,得到1.5mg正极;再转移到氩气手套箱中,以金属镁为负极,0.25mol·L-1的Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,制成扣式二次镁电池。测试充放电电流密度为25mA·g-1,充放电电压范围为0.3V~2.0V。首次充放电结果如图1所示,首次放电容量为115mAh/g。第二次放电的结果如图2所示,从第二次以后,放电平台基本相同,稳定在1.6V和1.1V。Add 1.63 mg of acetylene black and 1.63 mg of polytetrafluoroethylene to the finely ground 20 mg of partially dithiopolyaniline (see literature for the synthesis process of the material: Tang Zhiyuan, Xu Guoxiang, Polymer Materials Science and Engineering, 2003, 19: 175). Emulsion (concentration: 60wt%), mixed into a paste, pressed on the copper foil under 4MPa pressure, placed in an oven with a temperature of 80°C for drying, punched into pole pieces with a punch of Φ12.5mm, and punched into pole pieces at a pressure of 1MPa After tableting under pressure, put it in a vacuum oven at about 100°C for 4 hours to dry to obtain 1.5 mg of positive electrode; then transfer it to an argon glove box, use metal magnesium as the negative electrode, and use 0.25 mol L -1 of Mg[AlCl 2 (C 4 H 9 )(C 2 H 5 )] 2 /tetrahydrofuran is used as an electrolyte to make a button-type secondary magnesium battery. The test charge and discharge current density is 25mA·g -1 , and the charge and discharge voltage range is 0.3V-2.0V. The first charge and discharge results are shown in Figure 1, and the first discharge capacity is 115mAh/g. The result of the second discharge is shown in Figure 2. After the second discharge, the discharge platform is basically the same, stable at 1.6V and 1.1V.

实施例2Example 2

在研细的20mg四硫代二苯胺(材料合成过程见文献:唐致远,徐国祥,余碧涛,刘春燕,科技进展,2001,8:28)中,加入1.63mg乙炔黑和1.63mg聚四氟乙烯乳液(浓度为60wt%),混合成膏状,在4MPa压力下压在铜箔上,放入温度为80℃的烘箱中烘干,用Φ12.5mm的冲头冲成极片,在1MPa的压力下压片后,放入100℃左右的真空烘箱中干燥4小时,得到1.5mg正极;再转移到氩气手套箱中,以金属镁为负极,0.25mol·L-1的Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,制成扣式二次镁电池。测试充放电电流密度为25mA·g-1,充放电电压范围为0.3V~2.0V。首次放电容量为100mAh/g,分别在1.6V与1.0V处出现两个平台,对应于-S-S-S-S结构不同位置发生断键所引起的,在充电过程中也出现两个平台,为不同的电位区域内发生的电化学反应。若对材料先进行充电处理后可达到110mAh/g的首次放电容量。Add 1.63 mg of acetylene black and 1.63 mg of polytetrafluoroethylene emulsion to 20 mg of finely ground tetrathiodianiline (see literature for the synthesis process of materials: Tang Zhiyuan, Xu Guoxiang, Yu Bitao, Liu Chunyan, Science and Technology Progress, 2001, 8:28). (Concentration: 60wt%), mix it into a paste, press it on the copper foil under the pressure of 4MPa, put it in an oven with a temperature of 80°C, and punch it into a pole piece with a punch of Φ12.5mm. After pressing down the tablet, put it in a vacuum oven at about 100°C and dry it for 4 hours to obtain 1.5 mg positive electrode; then transfer it to an argon glove box, use metal magnesium as the negative electrode, and use 0.25 mol L -1 of Mg[AlCl 2 ( C 4 H 9 )(C 2 H 5 )] 2 /tetrahydrofuran is used as an electrolyte to make a button-type secondary magnesium battery. The test charge and discharge current density is 25mA·g -1 , and the charge and discharge voltage range is 0.3V-2.0V. The first discharge capacity is 100mAh/g, and two platforms appear at 1.6V and 1.0V respectively, corresponding to the bond breakage at different positions of the -SSSS structure, and two platforms also appear during the charging process, which are different potential regions electrochemical reactions that take place inside. If the material is charged first, the first discharge capacity of 110mAh/g can be achieved.

实施例3Example 3

在研细的20mg多硫代聚苯乙烯(材料合成过程见文献:宁雅楠,王维坤,黄雅钦,王安邦,曹高萍,黄明智,化工科技,2004,12:29)中,加入1.63mg乙炔黑和1.63mg聚四氟乙烯乳液(浓度为60wt%),混合成膏状,在4MPa压力下压在铜箔上,放入温度为80℃的烘箱中烘干,用Φ12.5mm的冲头冲成极片,在1MPa的压力下压片后,放入100℃左右的真空烘箱中干燥4小时,得到1.5mg正极;再转移到氩气手套箱中,以金属镁为负极,0.25mol·L-1的Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,制成扣式二次镁电池。测试充放电电流密度为25mA·g-1,充放电电压范围为0.3V~2.0V。在1.5V和1.0V左右出现两个放电平台,且其放电容量随着合成产物硫质量分数的增加而提高,其中当硫质量分数为78%时,放电容量可高达250mAh/g。Add 1.63mg of acetylene black and 1.63mg polytetrafluoroethylene emulsion (concentration: 60wt%), mix it into a paste, press it on the copper foil under the pressure of 4MPa, put it in an oven with a temperature of 80°C and dry it, and punch it with a punch of Φ12.5mm After the pole piece is pressed under a pressure of 1MPa, put it into a vacuum oven at about 100°C and dry for 4 hours to obtain a 1.5mg positive electrode; then transfer it to an argon glove box, use metal magnesium as the negative electrode, and 0.25mol L - 1 of Mg[AlCl 2 (C 4 H 9 )(C 2 H 5 )] 2 /tetrahydrofuran is used as the electrolyte to make a button-type secondary magnesium battery. The test charge and discharge current density is 25mA·g -1 , and the charge and discharge voltage range is 0.3V-2.0V. Two discharge plateaus appeared at around 1.5V and 1.0V, and the discharge capacity increased with the increase of the sulfur mass fraction in the synthesis product. When the sulfur mass fraction was 78%, the discharge capacity could be as high as 250mAh/g.

实施例4Example 4

在研细的20mg多硫代聚苯撑(材料合成过程见文献:王维坤,王安邦,曹高萍,杨裕生,高等学校化学学报,2005,26:918)中,加入1.63mg乙炔黑和1.63mg聚四氟乙烯乳液(浓度为60wt%),混合成膏状,在4MPa压力下压在铜箔上,放入温度为80℃的烘箱中烘干,用Φ12.5mm的冲头冲成极片,在1MPa的压力下压片后,放入100℃左右的真空烘箱中干燥4小时,得到1.5mg正极;再转移到氩气手套箱中,以金属镁为负极,0.25mol·L-1的Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,制成扣式二次镁电池。测试充放电电流密度为25mA·g-1,充放电电压范围为0.3V~2.0V。首次放电容量可达到340mAh/g。Add 1.63 mg of acetylene black and 1.63 mg of polyphenylene to finely ground 20 mg of polythiopolyphenylene (see literature for the synthesis process of the material: Wang Weikun, Wang Anbang, Cao Gaoping, Yang Yusheng, Chemical Journal of Chinese Universities, 2005, 26:918). Vinyl fluoride emulsion (concentration: 60wt%), mixed into a paste, pressed on the copper foil under 4MPa pressure, placed in an oven with a temperature of 80°C for drying, and punched into pole pieces with a punch of Φ12.5mm, After tableting under a pressure of 1 MPa, put it in a vacuum oven at about 100°C for 4 hours to dry to obtain a 1.5 mg positive electrode; then transfer it to an argon glove box, use metal magnesium as the negative electrode, and use 0.25 mol L -1 of Mg[ AlCl 2 (C 4 H 9 )(C 2 H 5 )] 2 /tetrahydrofuran is used as an electrolyte to make a button-type secondary magnesium battery. The test charge and discharge current density is 25mA·g -1 , and the charge and discharge voltage range is 0.3V-2.0V. The first discharge capacity can reach 340mAh/g.

对比例1Comparative example 1

采用二次镁电池中性能最好和最常用的正极材料Mo3S4作为对比(D.Aurbach,Z,Lu,A.Schechter,Y.Gofer,H.Gizbar,R.Turgeman,Y.Cohen,M.Moshkovich,E.Levi,Nature,2000,407:724)。The best and most commonly used cathode material Mo 3 S 4 in secondary magnesium batteries was used as a comparison (D. Aurbach, Z, Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature, 2000, 407:724).

在研细的20mg Mo3S4中,加入1.63mg乙炔黑和1.63mg聚偏氟乙烯溶液(以N-甲基吡咯烷酮为溶剂,浓度为0.02~0.04g/mL),混合成膏状,在4MPa压力下压在铜箔上,放入温度为80℃的烘箱中烘干,用Φ12.5mm的冲头冲成极片,在1MPa的压力下压片后,放入100℃左右的真空烘箱中干燥4小时,得到1.5mg正极;再转移到氩气手套箱中,以金属镁为负极,0.25mol·L-1的Mg[AlCl2(C4H9)(C2H5)]2/四氢呋喃为电解液,制成扣式二次镁电池。测试充放电电流密度为25mA·g-1,充放电电压范围为0.3V~2.0V。首次放电容量为90mAh/g,且放电电压平台有两个,分别在1.2V和1.0V。Add 1.63mg of acetylene black and 1.63mg of polyvinylidene fluoride solution (with N-methylpyrrolidone as solvent, the concentration is 0.02-0.04g/mL) to the finely ground 20mg of Mo 3 S 4 , mix it into a paste, Press it on the copper foil under the pressure of 4MPa, put it in an oven with a temperature of 80°C and dry it, punch it into a pole piece with a punch of Φ12.5mm, press it under a pressure of 1MPa, and put it in a vacuum oven at about 100°C Drying for 4 hours to obtain 1.5 mg positive electrode; then transferred to an argon glove box, using metal magnesium as the negative electrode, 0.25mol·L -1 of Mg[AlCl 2 (C 4 H 9 )(C 2 H 5 )] 2 / Tetrahydrofuran is used as the electrolyte to make a button-type secondary magnesium battery. The test charge and discharge current density is 25mA·g -1 , and the charge and discharge voltage range is 0.3V-2.0V. The first discharge capacity is 90mAh/g, and there are two discharge voltage platforms, 1.2V and 1.0V respectively.

Claims (1)

1. the application of organic sulfur polymer in positive electrode material of secondary Mg battery is characterized in that application method is as follows:
With the organic sulfur polymer porphyrize, adding is that the acetylene black of 5~8wt% of benchmark is as conductive agent with the organic sulfur polymer, the concentration that with the organic sulfur polymer is 5~10wt% of benchmark is that 50~60wt% ptfe emulsion or concentration are that the N-Methyl pyrrolidone solution of 0.02~0.04g/mL polyvinylidene difluoride (PVDF) is as binding agent, be mixed into paste, under 3~5MPa pressure, be pressed on the collector, after putting into temperature and be 60~80 ℃ baking oven oven dry, drift with Φ 12~16mm is washed into pole piece, behind the pressure lower sheeting of 1~2MPa, put into 100~120 ℃ dry 3~5 hours of vacuum drying oven, obtain positive pole; Transferring in the argon gas glove box, is negative pole with the MAGNESIUM METAL again, 0.25molL -1Mg[AlCl 2(C 4H 9) (C 2H 5)] 2/ tetrahydrofuran (THF) is an electrolytic solution, makes secondary Mg battery; Wherein organic sulfur polymer is polythio polyaniline, polythio polypyrrole, polythio Polythiophene or polythio polyhenylene; Collector is Copper Foil, aluminium foil or nickel foam; The tetrafluoroethylene that tetrafluoroethylene is used for the battery binding agent; The polyvinylidene difluoride (PVDF) that polyvinylidene difluoride (PVDF) is used for the battery binding agent.
CNB2006100274134A 2006-06-08 2006-06-08 Application of organosulfur polymers in cathode materials for secondary magnesium batteries Expired - Fee Related CN100427527C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100274134A CN100427527C (en) 2006-06-08 2006-06-08 Application of organosulfur polymers in cathode materials for secondary magnesium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100274134A CN100427527C (en) 2006-06-08 2006-06-08 Application of organosulfur polymers in cathode materials for secondary magnesium batteries

Publications (2)

Publication Number Publication Date
CN1884341A CN1884341A (en) 2006-12-27
CN100427527C true CN100427527C (en) 2008-10-22

Family

ID=37582656

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100274134A Expired - Fee Related CN100427527C (en) 2006-06-08 2006-06-08 Application of organosulfur polymers in cathode materials for secondary magnesium batteries

Country Status (1)

Country Link
CN (1) CN100427527C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764253B (en) * 2009-11-20 2012-01-11 无锡欧力达新能源电力科技有限公司 Secondary aluminum battery and preparation method thereof
CN101740758B (en) * 2010-01-04 2012-11-07 北京航空航天大学 Preparation method of vulcanized conducting polymer composite anode for lithium ion battery
CN103053063B (en) * 2010-08-09 2016-08-03 株式会社Lg化学 Positive electrode current collector coated with primer and magnesium secondary battery comprising same
CN102683744B (en) * 2012-03-26 2014-10-22 上海交通大学 Rechargeable magnesium battery taking oxygen-containing organic matter as cathode material, and preparation method thereof
JP2014191915A (en) * 2013-03-26 2014-10-06 Nitto Denko Corp Electrode for power storage device and power storage device using the same
CN103236533A (en) * 2013-04-22 2013-08-07 中南大学 Potassium vanadate nanobelt material for lithium ion battery and preparation method thereof
CN104078679B (en) * 2014-05-23 2015-08-12 南京中储新能源有限公司 A kind of carbon nanotube conducting sulfide polymer positive pole and secondary aluminium cell
CN113174044B (en) * 2021-03-19 2023-06-09 天目湖先进储能技术研究院有限公司 Modified polyimide binder and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216607A (en) * 2004-01-28 2005-08-11 Nippon Soda Co Ltd Electrode, composition for electrode formation, manufacturing method of electrode, and secondary battery
CN1728418A (en) * 1999-11-23 2006-02-01 分子技术股份有限公司 Lithium anodes for electrochemical cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728418A (en) * 1999-11-23 2006-02-01 分子技术股份有限公司 Lithium anodes for electrochemical cells
JP2005216607A (en) * 2004-01-28 2005-08-11 Nippon Soda Co Ltd Electrode, composition for electrode formation, manufacturing method of electrode, and secondary battery

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
四硫代二苯胺正极材料在锂电池中的应用. 唐致远,徐国祥,余碧涛,刘春燕.化工时刊,第8期. 2001
四硫代二苯胺正极材料在锂电池中的应用. 唐致远,徐国祥,余碧涛,刘春燕.化工时刊,第8期. 2001 *
新型锂电池正极材料多硫代聚苯乙烯的制备. 宁雅楠,王维坤,黄雅钦,王安邦,曹高萍,黄明智.化工科技,第12卷第1期. 2004
新型锂电池正极材料多硫代聚苯乙烯的制备. 宁雅楠,王维坤,黄雅钦,王安邦,曹高萍,黄明智.化工科技,第12卷第1期. 2004 *
部分二硫代聚苯胺电极材料在锂电池中的应用. 唐致远,徐国祥.高分子材料科学与工程,第19卷第3期. 2003
部分二硫代聚苯胺电极材料在锂电池中的应用. 唐致远,徐国祥.高分子材料科学与工程,第19卷第3期. 2003 *
锂电池正极材料多硫化碳炔的制备及电化学性能. 王维坤,王安邦,曹高萍,杨裕生.应用化学,第22卷第4期. 2005
锂电池正极材料多硫化碳炔的制备及电化学性能. 王维坤,王安邦,曹高萍,杨裕生.应用化学,第22卷第4期. 2005 *
锂电池用正极材料多硫代苯的电化学性能. 王维坤,王安邦,曹高萍,杨裕生.物理化学学报,第20卷第12期. 2004
锂电池用正极材料多硫代苯的电化学性能. 王维坤,王安邦,曹高萍,杨裕生.物理化学学报,第20卷第12期. 2004 *
锂电池阴极材料多硫代聚苯撑的制备及电化学性能. 王维坤,王安邦,曹高萍,杨裕生.高等学校化学学报,第26卷第5期. 2005
锂电池阴极材料多硫代聚苯撑的制备及电化学性能. 王维坤,王安邦,曹高萍,杨裕生.高等学校化学学报,第26卷第5期. 2005 *

Also Published As

Publication number Publication date
CN1884341A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
Xu et al. The progress and prospect of tunable organic molecules for organic lithium-ion batteries
Zhang et al. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery
Barghamadi et al. A review on Li-S batteries as a high efficiency rechargeable lithium battery
CN100427527C (en) Application of organosulfur polymers in cathode materials for secondary magnesium batteries
CN103872375B (en) Application method of disulfide in rechargeable magnesium battery
CN106058312B (en) A kind of solid state ionic liquid electrolyte, preparation method and application
CN102969501A (en) Application method of binary metal sulfides in chargeable magnesium battery
CN106654363A (en) Composite solid-state polymer electrolyte and all-solid-state lithium battery
CN103367791B (en) A kind of new type lithium ion battery
CN113113605B (en) Network structure ion conductive adhesive and preparation method and application thereof
CN102082259A (en) Lithium secondary battery electrodes and production method thereof
Wang et al. Three-electron redox enabled dithiocarboxylate electrode for superior lithium storage performance
CN102088086A (en) High-voltage lithium ion battery anode, lithium ion battery using same and preparation method of high-voltage lithium ion battery anode
CN104701541A (en) A kind of WS2 makes positive aluminum ion battery and preparation method thereof
CN103515595A (en) Sulfur/polypyrrole-graphene composite material, preparation method thereof, battery positive electrode and lithium-sulfur battery
CN108711636B (en) Combined electrolyte type dual-ion rocking chair type secondary battery and preparation method thereof
CN104347847A (en) Preparation method of lithium manganate-ternary material composite positive electrode piece
CN108598415A (en) A kind of composite material and preparation method for lithium-sulphur cell positive electrode
CN108199044A (en) A kind of secondary cell and preparation method thereof
Cheng et al. A macaroni-like Li1. 2V3O8 nanomaterial with high capacity for aqueous rechargeable lithium batteries
CN105703003A (en) Comb-shaped polymer, electrolyte and composite electrode for lithium battery, and applications of electrolyte and composite electrode
CN108172406A (en) A kind of sodium ion capacitor using FeS2-xSex material as negative electrode material
CN102522544A (en) Composite anode material for lithium ion battery
CN102456866A (en) A kind of organic radical polymer electrode and its preparation and application
CN110556537B (en) A method for improving the electrochemical performance of anion intercalation electrode materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081022

Termination date: 20110608