[go: up one dir, main page]

CN100426466C - Method for forming flash unit array with reduced word line spacing - Google Patents

Method for forming flash unit array with reduced word line spacing Download PDF

Info

Publication number
CN100426466C
CN100426466C CNB2006100580074A CN200610058007A CN100426466C CN 100426466 C CN100426466 C CN 100426466C CN B2006100580074 A CNB2006100580074 A CN B2006100580074A CN 200610058007 A CN200610058007 A CN 200610058007A CN 100426466 C CN100426466 C CN 100426466C
Authority
CN
China
Prior art keywords
layer
forming
mask
spaced
flash memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2006100580074A
Other languages
Chinese (zh)
Other versions
CN101026094A (en
Inventor
陈宗仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elite Semiconductor Memory Technology Inc
Original Assignee
Elite Semiconductor Memory Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elite Semiconductor Memory Technology Inc filed Critical Elite Semiconductor Memory Technology Inc
Priority to CNB2006100580074A priority Critical patent/CN100426466C/en
Publication of CN101026094A publication Critical patent/CN101026094A/en
Application granted granted Critical
Publication of CN100426466C publication Critical patent/CN100426466C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A method of forming a NAND-type flash memory device comprising: forming a control gate polycrystalline silicon layer on the substrate; forming a mask layer on the control gate polysilicon layer, the mask layer including mask patterns defining a plurality of spaced word lines of the flash memory device, the word lines being spaced apart from one another by a distance X that is less than a minimum feature size F that is imageable by a selected photolithography process for forming at least a portion of the mask layer patterns; and etching the control gate polysilicon layer through the mask layer. The mask layer forming step comprises: forming a first layer on the control gate polysilicon layer and patterning the first layer using a photolithography process to form a first set of spaced mask portions for defining a first set of spaced word lines, with a distance of F +2X between adjacent first set of spaced mask portions; forming spacers on the sidewall edges of the first set of spaced mask portions; forming a second layer between the spacers, the second layer defining a second set of spaced word lines; the spacers are removed to form a mask pattern.

Description

形成具有缩小的字线间距的快闪单元阵列的方法 Method of forming flash cell array with reduced word line pitch

技术领域 technical field

本发明是涉及一种闪存装置和制造所述装置的方法。The present invention relates to a flash memory device and a method of manufacturing the same.

背景技术 Background technique

NAND(与非)型EEPROM(电可擦除可编程只读存储器)或闪存已被开发以用于便携式音乐播放器、移动电话、数码相机等的固态大量储存应用,且其已被认为是硬盘驱动器(HDD)的替代品。因此,希望这些装置具有更大的容量、更低的成本和用于小型化、增加处理速度的缩小的单元大小。NAND (NAND) type EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory has been developed for solid-state mass storage applications in portable music players, mobile phones, digital cameras, etc., and it has been considered as a hard disk Drive (HDD) replacement. Therefore, these devices are desired to have greater capacity, lower cost and reduced unit size for miniaturization, increased processing speed.

通常设计NAND装置结构使得:(1)每一个存储器单元利用一个具有浮动栅极和控制栅极的晶体管;和(2)在设置于基底上的存储器单元阵列与相应的位线之间提供单一的接触窗(contact)。因此,如与传统的EEPROM相比,尽管单元间隔通常由选定的光刻(photolithography)工艺所限制,但缩小了存储器单元所占据的面积,并可提高集成密度。NAND device structures are generally designed such that: (1) each memory cell utilizes a transistor with a floating gate and a control gate; and (2) a single contact window (contact). Therefore, as compared with conventional EEPROM, although the cell spacing is usually limited by the selected photolithography process, the area occupied by the memory cells is reduced and the integration density can be increased.

美国专利5,050,125号(以下简称‘125专利)揭示了一种非易失性半导体存储器,其中每一位线包含一串闪存单元阵列(如‘125专利的图4的横截面图所示)。单元大小或面积由浮动栅极与控制栅极所需的重叠面积所界定。‘125专利的每一单元的单元大小不能缩小到约4F2-5F2以下,其中“F”为光刻成像的最小尺寸,即可由‘125专利的制造工艺中使用的光刻(photolithography)技术获得的最小特征尺寸(feature size)或线宽。目前所知最小特征尺寸约为90nm。结论假设浮动栅极的最小宽度约为1F,且浮动栅极阵列中相邻的浮动栅极之间的间隔的最小宽度也约为1F,同时控制栅极的最小宽度约为1F,且相邻的控制栅极之间的最小间隔约为1F,意味着每一单元在X方向(面向‘125专利的附图4的横截面图的水平方向)至少占据最小值2F,且在Y方向(相对于‘125专利的附图4的所述水平方向的另一个二维方向)至少占据最小值2F到2.5F。US Patent No. 5,050,125 (hereinafter referred to as the '125 patent) discloses a non-volatile semiconductor memory, wherein each bit line includes a string of flash memory cell arrays (as shown in the cross-sectional view of FIG. 4 of the '125 patent). The cell size or area is defined by the required overlap area of the floating gate and control gate. The cell size of each cell of the '125 patent cannot be shrunk below about 4F 2 -5F 2 , where "F" is the minimum dimension for photolithographic imaging, i.e. photolithography used in the fabrication process of the '125 patent The minimum feature size or line width to obtain. The smallest known feature size is about 90nm. Conclusion Assume that the minimum width of the floating gate is approximately 1F, and the minimum width of the space between adjacent floating gates in the floating gate array is also approximately 1F, while the minimum width of the control gate is approximately 1F, and adjacent The minimum spacing between the control gates is about 1F, meaning that each cell occupies at least a minimum of 2F in the X direction (horizontal direction facing the cross-sectional view of Figure 4 of the '125 patent), and at least 2F in the Y direction (relative to The other two-dimensional direction of the horizontal direction in FIG. 4 of the '125 patent) occupies at least a minimum of 2F to 2.5F.

Haspeslagh的美国专利6,580,120号提出了一种具有缩小的字线间距的装置,但利用了复杂的多组字线形成工艺。US Patent No. 6,580,120 to Haspeslagh proposes a device with reduced wordline pitch, but utilizes a complex multi-set wordline formation process.

因此,希望利用可容易地集成的工艺来增加闪存阵列的集成密度。Therefore, it is desirable to increase the integration density of flash memory arrays using processes that can be easily integrated.

发明内容 Contents of the invention

一种形成NAND型闪存装置的方法包含:在基底上形成控制栅极多晶硅层;在所述控制栅极多晶硅层上形成掩膜层,所述掩膜层包括界定闪存装置的数个间隔的字线的掩膜图案,所述字线彼此间隔一段距离X且此距离X小于最小特征尺寸F,所述最小特征尺寸可由用于形成至少一部分所述掩膜层图案的选择的光刻工艺所成像;和通过掩膜层蚀刻控制栅极多晶硅层。其中,所述掩膜层形成步骤包含以下步骤:在所述控制栅极多晶硅层上形成第一层,并使用所述光刻工艺图案化所述第一层以形成第一组间隔的掩膜部分,所述第一组间隔的掩膜部分界定第一组间隔的字线,且相邻的所述第一组间隔的掩膜部分之间间隔F+2X的距离;在所述第一组间隔的掩膜部分的侧壁边缘上形成间隙壁;在所述间隙壁之间形成第二层,所述第二层界定第二组间隔的字线;和移除所述间隙壁,借此形成界定所述数个间隔的字线的所述掩膜图案。A method of forming a NAND flash memory device comprising: forming a control gate polysilicon layer on a substrate; forming a mask layer on the control gate polysilicon layer, the mask layer including a plurality of spaced words defining the flash memory device A mask pattern of lines, said word lines being spaced apart from each other by a distance X less than a minimum feature size F imageable by a selected photolithographic process for forming at least a portion of said mask layer pattern and etching the control gate polysilicon layer through the mask layer. Wherein, the mask layer forming step includes the following steps: forming a first layer on the control gate polysilicon layer, and using the photolithography process to pattern the first layer to form a first set of interval masks Part, the first group of spaced mask parts define the first group of spaced word lines, and the distance between adjacent mask parts of the first group of spaced intervals is F+2X; in the first group forming spacers on sidewall edges of the spaced mask portions; forming a second layer between the spacers, the second layer defining a second set of spaced word lines; and removing the spacers, thereby The mask pattern defining the number of spaced apart word lines is formed.

为让本发明之上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are specifically cited below and described in detail with accompanying drawings.

附图说明 Description of drawings

图1为具有数个NAND存储器单元的闪存的一部分电路图。FIG. 1 is a circuit diagram of a portion of a flash memory having several NAND memory cells.

图2为一示范性存储器装置的单元串的横截面图,其显示出字线间隔。2 is a cross-sectional view of a cell string of an exemplary memory device showing word line spacing.

图2为一示范性存储器装置的单元串的横截面图,其显示出字线间隔。2 is a cross-sectional view of a cell string of an exemplary memory device showing word line spacing.

图3A~3F说明一制造图2的结构的示范性方法。3A-3F illustrate an exemplary method of fabricating the structure of FIG. 2 .

图4A~4D说明一制造SONOS存储器单元结构的步骤。4A-4D illustrate a step in fabricating a SONOS memory cell structure.

主要元件标记说明Description of main component marking

BL0、BL1:位线BL0, BL1: bit lines

WL0、WL1、WL2、...、WLn:字线WL0, WL1, WL2, ..., WLn: word lines

SSL、GSL:选择线SSL, GSL: select line

Mnm:存储器单元M nm : memory cell

SL0、SL1、GSL0、GSL1:选择晶体管SL0, SL1, GSL0, GSL1: select transistors

10:基底10: base

12:三阱区域12: triple well area

14:注入区域14: Injection area

16:栅极介电层16: Gate dielectric layer

18:存储器单元18: Memory unit

20a、20b:选择晶体管20a, 20b: selection transistors

22、122:浮动栅极22, 122: floating gate

24、32、34、124:绝缘层24, 32, 34, 124: insulating layer

26、126:控制栅极26, 126: Control grid

28、128:硅化物层28, 128: silicide layer

30:插塞30: plug

36:导电位线36: Conductive bit line

38:介层窗38: interlayer window

130、130′、134:氧化物掩膜130, 130', 134: oxide mask

132:SiN层132: SiN layer

132′:间隙壁132': spacer wall

200:ONO层200: ONO layer

202、206:绝缘层202, 206: insulating layer

204:储存层204: storage layer

F、X:尺寸F, X: size

具体实施方式 Detailed ways

参照图1,所示为电可擦除可编程只读存储器(EEPROM),包含形成于芯片基底上的存储器单元阵列。如所属技术领域的技术人员将认识到,图1为一NAND闪存阵列的一部分的电路图。譬如行和列解码器、感测电路和其它控制电路的各种元件均未表示,以避免使本发明的揭示变得模糊不清。然而,这些组件是所属技术领域的技术人员所熟知的。Referring to FIG. 1 , an electrically erasable programmable read-only memory (EEPROM) is shown, including an array of memory cells formed on a chip substrate. As will be recognized by those skilled in the art, Figure 1 is a circuit diagram of a portion of a NAND flash memory array. Various elements such as row and column decoders, sensing circuits and other control circuits have not been shown to avoid obscuring the disclosure of the invention. However, these components are well known to those skilled in the art.

存储器阵列包括数个连接到存储器单元Mnm且平行的位线BL0、BL1、...、BLm,其中“n”表示存储器阵列中单元位置的列数,且“m”表示其行数。平行的字线WL0、WL1、WL2、...、WLn绝缘形成于基底上,以便为形成于每一单元位置上的闪存单元Mnm形成控制栅极。选择晶体管SL0、SL1等和GSL0、GSL1等形成于位线BL的各端。The memory array includes several parallel bit lines BL0, BL1, ..., BLm connected to memory cells Mnm , where "n" represents the column number of the cell location in the memory array and "m" represents its row number. Parallel word lines WL0, WL1, WL2, . . . , WLn are insulated on the substrate to form control gates for the flash memory cells M nm formed at each cell site. Selection transistors SL0 , SL1 , etc., and GSL0 , GSL1 , etc. are formed at respective ends of the bit line BL.

将一示范性存储器阵列划分为很多存储器“区块”。每一区块具有若干“页”。一页具有很多存储器“单元”。例如,1Gb的存储器具有1024个区块,且一个区块具有64页。每一页具有2K字节(即16K位)。一字线含有一页或多页。在位线方向上每一区块提供一个单元串或两个单元串。一个单元串具有16位、32位或64位。譬如以下所讨论的SONOS存储器单元的情况下,一个单元储存一个位,或储存两个位。An exemplary memory array is divided into a number of "blocks" of memory. Each block has a number of "pages". A page has many "cells" of memory. For example, a 1Gb memory has 1024 blocks, and one block has 64 pages. Each page has 2K bytes (ie 16K bits). A word line contains one or more pages. Each block provides one cell string or two cell strings in the bit line direction. One cell string has 16 bits, 32 bits or 64 bits. One cell stores one bit, or two bits, such as in the case of the SONOS memory cells discussed below.

在一实施例中,编程、擦除和读取操作条件如下:In one embodiment, programming, erasing and reading operation conditions are as follows:

  擦除 erase   编程 programming   读取 read   选择的WL Selected WL   0V 0V   20V 20V   0V 0V   未选择的WL Unselected WL   0V 0V   10V 10V   4.5V 4.5V   SSL SSL   浮动 floating   VCC VCC   4.5V 4.5V   GSL GSL   浮动 floating   0V 0V   4.5V 4.5V   BL(对0编程) BL (programming to 0)   浮动 floating   0V 0V   N/A N/A   BL(对1编程) BL (to 1 programming)   浮动 floating   VCC VCC   N/A N/A   本体(bulk) Ontology (bulk)   20V 20V   0V 0V   N/A N/A

在这一编程/擦除方法中,将Fowler-Nordheim(FN)穿隧用于NMOS NAND闪存单元的编程和擦除。在编程期间,将一较高的正电压施加于选择的单元的字线上。将一中电压施加到未选择的字线上以打开这些单元。将接地电压或0V施加到位线以写入数据“0”,而施加VCC以写入数据“1”。将0V传送到选择的单元的通道,执行FN穿隧以将电子从通道注入到浮动栅极。当数据为“1”时,字线电压将通道连接起来,且存在可忽略的FN穿隧电流,因此单元未被编程。对于擦除而言,以高电压偏压所述单元的P型阱,并将选择区块中的所有字线接地。电子从浮动栅极FN穿隧到P型阱基底。In this program/erase method, Fowler-Nordheim (FN) tunneling is used for programming and erasing of NMOS NAND flash memory cells. During programming, a higher positive voltage is applied to the word line of selected cells. A voltage is applied to the unselected word lines to turn on the cells. A ground voltage or 0V is applied to the bit line to write data "0", and VCC is applied to write data "1". 0V is delivered to the channel of the selected cell, FN tunneling is performed to inject electrons from the channel to the floating gate. When the data is "1", the word line voltage connects the channels and there is negligible FN tunneling current, so the cell is not programmed. For erasing, the P-type well of the cell is biased with a high voltage and all word lines in the selected block are grounded. Electrons tunnel from the floating gate FN to the P-well substrate.

图2为单元串的侧横截面图。所述单元串包括选择晶体管20a、20b,其中数个NMOS浮动栅极快闪单元晶体管18形成于选择晶体管20a、20b之间。尽管选择晶体管20a、20b显示为双栅晶体管,但也可如图1所示使用单栅晶体管。Fig. 2 is a side cross-sectional view of a cell string. The cell string includes select transistors 20a, 20b, wherein a number of NMOS floating gate flash cell transistors 18 are formed between the select transistors 20a, 20b. Although the select transistors 20a, 20b are shown as double gate transistors, single gate transistors could also be used as shown in FIG. 1 .

在一实施例中,基底10包含p型掺杂硅基底,而p型掺杂硅基底具有形成于其中单元阵列区域中的三阱(triple well)区域12。所述三阱包括围绕p型阱的n型阱。例如,替代实施例可利用n型掺杂的基底和替代阱设置。尽管本文已结合NMOS闪存单元进行了描述,但所述存储器单元也可包含形成于p型基底上的PMOS单元。栅极介电层16热生长于基底10上,且较佳地包含形成为厚度在约70~110

Figure C20061005800700111
之间的SiO2。源极/漏极注入区域较佳地为N+注入区域14,其形成于单元18之间,且形成于单元18与选择晶体管20a、20b之间。在一实施例中,N+注入区域14包含浓度约为1×1018到5×1019atoms/cm3的砷或磷的掺质。In one embodiment, the substrate 10 includes a p-type doped silicon substrate, and the p-type doped silicon substrate has a triple well region 12 formed in a cell array region therein. The triple well includes an n-type well surrounding a p-type well. For example, alternative embodiments may utilize an n-type doped substrate and alternative well arrangements. Although described herein in connection with NMOS flash memory cells, the memory cells may also include PMOS cells formed on a p-type substrate. The gate dielectric layer 16 is thermally grown on the substrate 10, and preferably includes being formed to a thickness of about 70-110
Figure C20061005800700111
between SiO 2 . The source/drain implant regions, preferably N+ implant regions 14, are formed between cells 18 and between cells 18 and select transistors 20a, 20b. In one embodiment, the N+ implanted region 14 contains arsenic or phosphorus dopant at a concentration of about 1×10 18 to 5×10 19 atoms/cm 3 .

每一单元18包含形成于栅极介电层16上的导电浮动栅极22,较佳地包含具有厚度约300~1000

Figure C20061005800700112
之间的多晶硅层,且更佳地约500
Figure C20061005800700113
的多晶硅层。介电层24形成于浮动栅极22上并包含热氧化层,譬如形成为厚度约110~140
Figure C20061005800700114
的SiO2,或具有约110~140
Figure C20061005800700115
之间的有效氧化物厚度的ONO(氧化物/氮化物/氧化物)层。可使用LPCVD(低压化学气相沉积)工艺沉积所述ONO层,其具有从SiH2CL2/O2气体沉积约20厚度的顶部氧化层,具有从SiH2CL2/O2气体沉积约40厚度的底部氧化层,且具有从SiH2CL2/N2气体沉积约80
Figure C20061005800700118
厚度的SiN层。控制栅极26形成自若干平行单元串共用的字线,且控制栅极26形成于介电层24上,且较佳地包含具有约700~1000
Figure C20061005800700119
之间厚度的多晶硅层28。硅化物层28较佳地包含钨(W)硅化物层,可视情况形成于控制栅极/字线26上。Each cell 18 includes a conductive floating gate 22 formed on the gate dielectric layer 16, preferably comprising a thickness of about 300-1000
Figure C20061005800700112
between polysilicon layers, and preferably about 500
Figure C20061005800700113
polysilicon layer. The dielectric layer 24 is formed on the floating gate 22 and includes a thermal oxide layer, for example, formed to a thickness of about 110-140
Figure C20061005800700114
SiO 2 , or with about 110-140
Figure C20061005800700115
The effective oxide thickness in between is the ONO (Oxide/Nitride/Oxide) layer. The ONO layer can be deposited using LPCVD (low pressure chemical vapor deposition ) process, which has about 20 thickness of the top oxide layer, with about 40 thickness of the bottom oxide layer, and has about 80
Figure C20061005800700118
thickness of the SiN layer. The control gate 26 is formed from a word line shared by several parallel cell strings, and the control gate 26 is formed on the dielectric layer 24, and preferably includes a thickness of about 700˜1000
Figure C20061005800700119
The thickness of the polysilicon layer 28 between. The silicide layer 28 preferably comprises a tungsten (W) silicide layer, optionally formed on the control gate/word line 26 .

平坦化绝缘层32形成于所述单元串上,其可包含一个或一个以上个别介电层。通过介电层32形成连接开口(hole)并以多晶硅插塞30填充,以与选择晶体管20电连接。导电位线36,例如包含钨(W),其形成于第二绝缘层34上,并通过导电介层窗(via)38连接到多晶硅插塞30。A planarizing insulating layer 32 is formed over the cell strings, which may include one or more individual dielectric layers. A connection hole is formed through a dielectric layer 32 and filled with a polysilicon plug 30 to be electrically connected to the selection transistor 20 . A conductive bit line 36 , for example comprising tungsten (W), is formed on the second insulating layer 34 and connected to the polysilicon plug 30 through a conductive via 38 .

所属技术领域的技术人员将显而易见,当控制栅极26和硅化物层28(当有其存在时)形成如图1中所示横过若干单元串的字线时,每一单元的浮动栅极22和介电层24由绝缘层围绕,而此绝缘层将个别单元串中的单元彼此分离并与相邻的单元串的单元分离。It will be apparent to those skilled in the art that when the control gate 26 and silicide layer 28 (when present) form a word line across several strings of cells as shown in FIG. 1 , the floating gate of each cell 22 and dielectric layer 24 are surrounded by an insulating layer that separates cells in individual strings from each other and from cells of adjacent strings.

如图2所示,每一晶体管单元18具有通道长度F,其由用于形成存储器阵列图案的光刻工艺所能成像的最小尺寸界定。每一选择晶体管20a与20b较佳地具有长度2F(以避免击穿问题、最小化源极到漏极的漏电流等),并与各自的插塞30间隔距离F。每一插塞具有间距2F。重要的是,每一浮动栅极单元18与相邻的浮动栅极单元18间隔一段小于“F”的距离“X”,并与相邻的选择晶体管20(对于末端单元18而言)间隔此距离。总的单元串长度等于8F+mF+(m+1)X,其中“m”为单元串中单元的总数,通常为16、32或64。在一实施例中,X等于0.03μm且F等于0.09μm并存在16个单元,故总的单元串长度仅为24F+(17/3)F=29.7F。如在现有技术中,如果X等于F,那么总的单元串长度将为41F。另外,再假设X等于1/3F,所述单元大小约为(F+X)2F(或约(2.66F2))而非4-5F2As shown in FIG. 2, each transistor cell 18 has a channel length F defined by the smallest dimension that can be imaged by the photolithography process used to pattern the memory array. Each select transistor 20 a and 20 b preferably has a length 2F (to avoid shoot-through problems, minimize source-to-drain leakage current, etc.), and is spaced a distance F from the respective plug 30 . Each plug has a pitch of 2F. Importantly, each floating gate cell 18 is spaced from an adjacent floating gate cell 18 by a distance "X" less than "F" and from an adjacent select transistor 20 (for an end cell 18) by a distance "X" distance. The total unit string length is equal to 8F+mF+(m+1)X, where "m" is the total number of units in the unit string, usually 16, 32 or 64. In one embodiment, X is equal to 0.03 μm and F is equal to 0.09 μm and there are 16 units, so the total unit string length is only 24F+(17/3)F=29.7F. As in the prior art, if X is equal to F, then the total string length will be 41F. Also, assuming again that X is equal to 1/3F, the cell size is about (F+X)2F (or about ( 2.66F2 )) instead of 4-5F2 .

参照图3A~3F描述了一种形成图2的紧密间隔的字线结构的示范性方法。图3A~3F说明用于创造存储器结构的前段(front-end-of-line,FEOL)工艺步骤。在这里没有讨论用于形成寻址个别存储器单元所需的内连线电路的工艺步骤,即形成诸如接触窗、介层窗、金属线和相应的绝缘层的后段(back-end-of-line,BEOL)工艺。An exemplary method of forming the closely spaced word line structure of FIG. 2 is described with reference to FIGS. 3A-3F . 3A-3F illustrate front-end-of-line (FEOL) process steps for creating a memory structure. The process steps used to form the interconnect circuitry required to address individual memory cells, i.e., the formation of back-end-of-line circuits such as contacts, vias, metal lines, and corresponding insulating layers, are not discussed here. line, BEOL) process.

参照图3A,首先在栅极介电层16上形成用于形成个别存储器单元晶体管的材料堆叠。具体地说,将浮动栅极多晶硅层122沉积为厚度在约300~1000

Figure C20061005800700121
之间。接着,在多晶硅层122上形成ONO介电层124。接着,将控制栅极多晶硅层126沉积为厚度在约700~1000
Figure C20061005800700122
之间。最后,沉积或形成钨硅化物层128于控制栅极多晶硅层126上,使其厚度约为300
Figure C20061005800700123
Referring to FIG. 3A , a material stack for forming individual memory cell transistors is first formed on the gate dielectric layer 16 . Specifically, the floating gate polysilicon layer 122 is deposited to a thickness of about 300-1000
Figure C20061005800700121
between. Next, an ONO dielectric layer 124 is formed on the polysilicon layer 122 . Next, the control gate polysilicon layer 126 is deposited to a thickness of about 700-1000
Figure C20061005800700122
between. Finally, a tungsten silicide layer 128 is deposited or formed on the control gate polysilicon layer 126 to a thickness of about 300
Figure C20061005800700123

参照图3B,沉积第一氧化层或将其形成于硅化物存储器单元堆叠(即,层122、124、126、128)上,并将其图案化和蚀刻以形成被间隔以界定第一组间隔字线和存储器单元的第一组氧化物掩膜130。在一实施例中,氧化物掩膜130的厚度在约900~1500

Figure C20061005800700124
之间,且更佳地约为1000氧化物掩膜130由使用光刻工艺所成像的光刻胶掩膜来图案化和蚀刻的氧化层形成,其中“F”为可成像的最小尺寸。每一掩膜130具有宽度F。接着,将SiN层132沉积于所述结构上,即沉积于氧化物掩膜130和硅化物层128上。譬如通过低压化学气相沉积(LPCVD)工艺将SiN层132沉积为厚度小于F,且在一实施例中约为300。在实施例中,氧化物掩膜130区彼此间隔一段距离F+2X,其中X为图2中所示字线之间的距离。所述距离确实由光刻工艺界定,且其可将特征尺寸界定为小至F。Referring to FIG. 3B, a first oxide layer is deposited or formed over the suicide memory cell stack (ie, layers 122, 124, 126, 128), patterned and etched to form spaces spaced to define a first set of spaces. A first set of oxide masks 130 for word lines and memory cells. In one embodiment, the thickness of the oxide mask 130 is about 900-1500
Figure C20061005800700124
between, and more preferably about 1000 The oxide mask 130 is formed from an oxide layer patterned and etched using a photoresist mask imaged by a photolithography process, where "F" is the smallest dimension that can be imaged. Each mask 130 has a width F. Next, a SiN layer 132 is deposited on the structure, ie on the oxide mask 130 and the silicide layer 128 . For example, the SiN layer 132 is deposited by a low pressure chemical vapor deposition (LPCVD) process to a thickness less than F, and in one embodiment about 300 . In an embodiment, the oxide mask 130 regions are spaced apart from each other by a distance F+2X, where X is the distance between word lines shown in FIG. 2 . The distance is indeed defined by the photolithography process, and it can define feature sizes as small as F.

参照图3C,移除SiN层132的部分而保留氧化物掩膜130侧壁上的SiN侧壁间隙壁132′。端点检测可用于监控所述蚀刻工艺。在一示范性实施例中,可将一使用Ar/CF4反应气体的各向异性干蚀刻工艺用于蚀刻SiN层132。当检测到氧化层130时停止所述蚀刻工艺。因为所述氧化物厚于形成于其间的SiN,所以一旦检测到所述氧化物则相邻的所述氧化物部分的SiN层132就仅剩余一部分。SiN间隙壁132′具有等于“X”的厚度,其为字线间之间隔,而约与层132的沉积厚度相同。Referring to FIG. 3C , portions of the SiN layer 132 are removed leaving SiN sidewall spacers 132 ′ on the sidewalls of the oxide mask 130 . Endpoint detection can be used to monitor the etch process. In an exemplary embodiment, an anisotropic dry etching process using Ar/CF 4 reactive gas may be used to etch the SiN layer 132 . The etching process is stopped when the oxide layer 130 is detected. Since the oxide is thicker than the SiN formed therebetween, once the oxide is detected, only a portion of the SiN layer 132 adjacent to the oxide portion remains. SiN spacers 132' have a thickness equal to "X", which is the space between word lines, and about the same as the deposited thickness of layer 132 .

参照图3D,接着将第二氧化层(图中未表示)沉积于图3C的结构上填充间隙壁132′之间的开口间隔,并将其回蚀以保留第二组间隔氧化物掩膜134。氧化物掩膜130继续存在,但将其指定为130′,因为在通过第二氧化层暴露间隙壁132′期间其可被稍微蚀刻。每一氧化物部分130′、134具有等于F的宽度,并通过宽度等于X的间隙壁132′与相邻的氧化物部分间隔开,其中X小于F。层130′和134共同形成氧化物掩膜,以用于形成间隔的字线和存储器单元。尽管只显示了11个氧化物掩膜部分,但应了解可提供16、32或64个部分来用于形成单元串中的字线数,且可提供额外氧化物部分来用于形成选择晶体管(图中未表示)。Referring to FIG. 3D, a second oxide layer (not shown) is then deposited on the structure of FIG. 3C to fill the open spaces between the spacers 132', and it is etched back to retain the second set of spacer oxide masks 134. . Oxide mask 130 continues, but is designated 130' because it may be slightly etched during exposure of spacers 132' through the second oxide layer. Each oxide portion 130', 134 has a width equal to F and is separated from an adjacent oxide portion by a spacer 132' having a width equal to X, where X is less than F. Layers 130' and 134 together form an oxide mask for forming spaced word lines and memory cells. Although only 11 oxide mask sections are shown, it should be understood that 16, 32, or 64 sections could be provided for forming the number of word lines in a cell string, and additional oxide sections could be provided for forming select transistors ( not shown in the figure).

在替代实施例中,掩膜130、134由SiN形成,且层132(且因此间隙壁132′)由氧化物形成。In an alternative embodiment, masks 130, 134 are formed of SiN, and layer 132 (and thus spacers 132') are formed of oxide.

参照图3E,移除SiN间隙壁132′,并将图3D的氧化物掩膜层用于蚀刻穿透层122、124、126和128,以形成图2的间隔存储器单元18,其具有宽度F且彼此间隔一段距离X。可将使用Ar/CF4反应溶液的干蚀刻工艺用于移除SiN间隙壁132′。可将使用Cl2/HBr溶液的干蚀刻工艺用于蚀刻控制栅极多晶硅层126,且可将相同的溶液用于蚀刻硅化物层128。可将使用CHF3/CHF4/He溶液的干蚀刻工艺用于蚀刻ONO介电层124。最后,可将使用Cl2/HBr溶液的干蚀刻工艺用于蚀刻浮动栅极多晶硅层122。Referring to FIG. 3E, the SiN spacer 132' is removed, and the oxide mask layer of FIG. 3D is used to etch through the layers 122, 124, 126 and 128 to form the spacer memory cell 18 of FIG. 2, which has a width F and are separated by a distance X from each other. A dry etching process using an Ar/CF 4 reaction solution may be used to remove the SiN spacer 132'. A dry etch process using a Cl 2 /HBr solution may be used to etch the control gate polysilicon layer 126 , and the same solution may be used to etch the silicide layer 128 . A dry etching process using a CHF 3 /CHF 4 /He solution may be used to etch the ONO dielectric layer 124 . Finally, a dry etch process using a Cl 2 /HBr solution may be used to etch the floating gate polysilicon layer 122 .

如图3F所示,如以蚀刻工艺移除掩膜部分130′和134,并将注入区域14形成于基底10中相邻的且在其间的个别存储器单元18。As shown in FIG. 3F , mask portions 130 ′ and 134 are removed by an etching process, and implanted regions 14 are formed in substrate 10 adjacent to and between individual memory cells 18 .

也可将替代编程/擦除方法用于图1的存储器单元阵列,所述方法通过BTBT(能带间穿隧)利用热空穴注入以在编程期间移除所储存的电子。穿隧发生在源极/漏极(S/D)接面与穿隧氧化物的交叉点。对n+S/D到基底接面反偏压至一定程度,使得发生软击穿或齐纳(Zener)击穿。当电子在S/D和交叉点从价带穿隧到导带时,所述pn接面具有电流。空穴产生于价带中,且浮动栅极通过在控制栅极上施加负电压而吸引空穴。所述控制栅极上的负电压也增强了BTBT电流。如果没有编程所存取的单元,那么以0V偏压位线,且不反偏压S/D接面。在此条件下没有BTBT穿隧电流。通过使选择区块中的所有单元具有更高的临界值来执行擦除。在擦除期间,电子通过FN穿隧从通道穿隧到浮动栅极。以下表格中总结了编程、擦除和读取条件。An alternative program/erase method can also be used for the memory cell array of Figure 1, which utilizes hot hole injection by BTBT (Band-to-Band Tunneling) to remove stored electrons during programming. Tunneling occurs at the intersection of the source/drain (S/D) junction and the tunnel oxide. The n+S/D-to-substrate junction is reverse biased to such an extent that soft breakdown or Zener breakdown occurs. The pn junction has current flow when electrons tunnel from the valence band to the conduction band at the S/D and crossover points. Holes are generated in the valence band, and the floating gate attracts the holes by applying a negative voltage on the control gate. Negative voltage on the control gate also enhances BTBT current. If the accessed cell is not being programmed, the bit line is biased at 0V and the S/D junction is not reverse biased. There is no BTBT tunneling current under this condition. Erase is performed by selecting all cells in the block to have a higher threshold. During erase, electrons tunnel from the channel to the floating gate through FN tunneling. The programming, erasing and reading conditions are summarized in the table below.

  擦除 erase   编程 programming   读取 read   选择的WL Selected WL   20V 20V   -5V -5V   0V 0V   未选择的WL Unselected WL   20V 20V   10V 10V   4.5V 4.5V   SSL SSL   VCC VCC   10V 10V   4.5V 4.5V   GSL GSL   0V 0V   浮动 floating   4.5V 4.5V   BL(对0编程) BL (programming to 0)   0V 0V   7V 7V   N/A N/A   BL(对1编程) BL (to 1 programming)   0V 0V   0V 0V   N/A N/A   本体 Ontology   0V 0V   0V 0V   N/A N/A

热空穴注入产生陷入穿隧氧化层的空穴,并可降低编程-擦除耐久特性。空穴型陷阱位于漏极接面边缘附近,其影响用于编程的通道热电子注入。现有的空穴型陷阱将降低漏极附近的电场,并使得热电子效率较差。然而,因为所述擦除于整个穿隧氧化物区域由FN穿隧完成,因此,在以上所提出的编程方法中这一机制的影响较低。尽管这一机制在NOR闪存中可引起干扰,但其在NAND闪存中不会引起干扰。未选择的字线具有高电压以使位线电压通过。未选择的字线上的单元不具有BTBT干扰。未选择的区块也具有选择晶体管以保护所述单元。所述位线电压不能传送到所述单元。为确保S/D接面被反偏压,因此S/D需要正偏压。所述偏压来自位线。假设例如选择WL2并对单元编程。WL0和WL1是在选择的字线与位线之间未选择的字线。将WL0、WL1和SSL拉到10V。将WL2设定为-5V。位线上的7V偏压将通过到WL1与WL2之间的S/D区域。所述S/D区域将具有BTBT穿隧电流。经负偏压的WL2将空穴吸引到这一单元的浮动栅极。由于WL2被负偏压且偏压低于擦除状态的Vth,因此所述单元关闭。因此,所述7V偏压将不通过到WL3和其它字线。Hot hole injection creates holes trapped in the tunnel oxide and can degrade program-erase endurance characteristics. Hole-type traps are located near the edge of the drain junction, which affects channel hot electron injection for programming. Existing hole-type traps will reduce the electric field near the drain and make hot electrons less efficient. However, since the erasing is done by FN tunneling over the entire tunnel oxide region, the impact of this mechanism is low in the programming method proposed above. Although this mechanism can cause disturbances in NOR flash, it does not cause disturbances in NAND flash. Unselected word lines have a high voltage to pass the bit line voltage. Cells on unselected word lines do not have BTBT disturb. Unselected blocks also have select transistors to protect the cells. The bit line voltage cannot be delivered to the cell. To ensure that the S/D junction is reverse biased, the S/D needs to be forward biased. The bias voltage comes from the bit line. Assume, for example, that WL2 is selected and the cell is programmed. WL0 and WL1 are unselected word lines between selected word lines and bit lines. Pull WL0, WL1 and SSL to 10V. Set WL2 to -5V. The 7V bias on the bit line will pass to the S/D region between WL1 and WL2. The S/D regions will have BTBT tunneling current. Negatively biased WL2 attracts holes to the floating gate of this cell. Since WL2 is negatively biased and biased below Vth for the erased state, the cell is turned off. Therefore, the 7V bias will not pass to WL3 and other word lines.

图4A~4D说明以上结合图3A~3F而描述的工艺,其适用于例如Haspeslagh的美国专利第6,580,120号中所描述的SONOS(硅/ONO/硅)存储器单元的形成,所述专利以引用的方式全文并入本文中。在图4A~4D中,与图3A~3F中类似的元件符号指的是类似的结构。Figures 4A-4D illustrate the process described above in connection with Figures 3A-3F as applicable to the formation of SONOS (silicon/ONO/silicon) memory cells such as those described in US Patent No. 6,580,120 to Haspeslagh, cited in The method is incorporated in this article in its entirety. In FIGS. 4A to 4D , reference numerals similar to those in FIGS. 3A to 3F refer to similar structures.

如图4A中所示,ONO层200形成于基底10上。ONO层200较佳地具有有效氧化物厚度,其约在110~140

Figure C20061005800700151
之间。层200包含第一绝缘层202、储存层204和第二绝缘层206。可使用LPCVD(低压化学气相沉积)工艺沉积所述ONO层,其具有从SiH2CL2/O2气体沉积约20
Figure C20061005800700152
厚度的顶部氧化层206,具有从SiH2CL2/O2气体沉积约40
Figure C20061005800700153
厚度的底部氧化层202,且具有从SiH2CL2/N2气体沉积约80
Figure C20061005800700154
厚度的SiN储存层204。As shown in FIG. 4A , an ONO layer 200 is formed on a substrate 10 . ONO layer 200 preferably has an effective oxide thickness of about 110-140
Figure C20061005800700151
between. Layer 200 includes a first insulating layer 202 , a storage layer 204 and a second insulating layer 206 . The ONO layer can be deposited using LPCVD (low pressure chemical vapor deposition ) process, which has about 20
Figure C20061005800700152
thickness of the top oxide layer 206 , with approximately 40
Figure C20061005800700153
thickness of the bottom oxide layer 202, and has about 80
Figure C20061005800700154
thick SiN storage layer 204 .

剩余工艺与以上结合图3A~3F所描述的基本上相同。将控制栅极多晶硅层126形成于层200上。视情况形成硅化物层128,之后形成第一组间隔的氧化物掩膜130和SiN层132。The rest of the process is basically the same as described above in connection with FIGS. 3A-3F . A control gate polysilicon layer 126 is formed on layer 200 . A silicide layer 128 is optionally formed, followed by a first set of spaced apart oxide mask 130 and SiN layer 132 .

参照图4B,蚀刻SiN层132以形成SiN间隙壁132′。在图4C中,沉积并蚀刻第二氧化层以暴露SiN间隙壁132′,留下第二组间隔的氧化物掩膜134。如图4D中所示,移除所述SiN间隙壁132′,并接着将所述掩膜组用于蚀刻穿透硅化物层128和顶部多晶硅层126。Referring to FIG. 4B, the SiN layer 132 is etched to form SiN spacers 132'. In FIG. 4C , a second oxide layer is deposited and etched to expose the SiN spacers 132 ′, leaving a second set of spaced apart oxide masks 134 . As shown in FIG. 4D , the SiN spacers 132 ′ are removed, and then the mask set is used to etch through the suicide layer 128 and the top polysilicon layer 126 .

在实施例中,图4D表示最终的单元结构,尽管所示的掩膜部分130′和134被移除。在替代实施例中,从ONO层200到基底10继续蚀刻工艺。在此替代实施例中,形成注入区域(如以上图3F中所示)并将FN穿隧用于进行编程/擦除。以下表格中显示了用于注入实施例的编程/擦除/读取条件以用于NMOS单元。In an embodiment, FIG. 4D shows the final cell structure, although mask portions 130' and 134 are shown removed. In an alternative embodiment, the etch process continues from the ONO layer 200 to the substrate 10 . In this alternative embodiment, implanted regions are formed (as shown above in Figure 3F) and FN tunneling is used for programming/erasing. The program/erase/read conditions for implanted embodiments are shown in the table below for NMOS cells.

  擦除 erase   编程 programming   读取 read   选择的WL Selected WL   0V 0V   12~15V 12~15V   0V 0V   未选择的WL Unselected WL   0V 0V   6~9V 6~9V   4.5V 4.5V   SSL SSL   浮动 floating   6~9V 6~9V   4.5V 4.5V   GSL GSL   浮动 floating   0V 0V   4.5V 4.5V   BL(对0编程) BL (programming to 0)   浮动 floating   0V 0V   N/A N/A   BL(对1编程) BL (to 1 programming)   浮动 floating   6~9V 6~9V   N/A N/A   本体 Ontology   12~15V 12~15V   0V 0V   N/A N/A

如果不存在注入区域,那么将源极侧注入(source side injection)用于进行编程,并将FN穿隧用于擦除。以引用的方式全部并入本文中的美国专利第6,580,120号中描述了所述编程/擦除方法。‘120专利中也描述了一示范性读取条件。If no implanted region exists, then source side injection is used for programming and FN tunneling is used for erasing. The program/erase method is described in US Patent No. 6,580,120, which is incorporated herein by reference in its entirety. An exemplary read condition is also described in the '120 patent.

综上所述,在本发明提出一种形成具有缩小的间隔的字线及其形成单元的方法,此方法具有较佳集成的工艺。缩小的单元间隔改善集成密度,借此缩小装置大小和/或容量。In summary, the present invention proposes a method for forming word lines with reduced spacing and forming cells thereof, which has a better integrated process. The reduced cell spacing improves integration density, thereby reducing device size and/or capacity.

虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,任何所属技术领域的技术人员,在不脱离本发明之精神和范围内,当可作些许之更动与改进,因此本发明之保护范围当视权利要求所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some modifications and improvements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.

Claims (17)

1.一种形成NAND型闪存装置的方法,其特征是包含以下步骤:1. A method for forming a NAND flash memory device, characterized in that it comprises the following steps: 在基底上形成控制栅极多晶硅层;forming a control gate polysilicon layer on the substrate; 在所述控制栅极多晶硅层上形成掩膜层,其中所述掩膜层包括界定所述NAND型闪存装置的数个间隔的字线的掩膜图案,所述字线彼此间隔一定距离X且所述距离X小于最小特征尺寸F,所述最小特征尺寸F由用于形成至少一部分所述掩膜图案的选择的光刻工艺所成像;和A mask layer is formed on the control gate polysilicon layer, wherein the mask layer includes a mask pattern defining a plurality of spaced word lines of the NAND flash memory device, the word lines are spaced apart from each other by a certain distance X and said distance X is less than a minimum feature size F imaged by a selected photolithographic process used to form at least a portion of said mask pattern; and 通过所述掩膜层蚀刻所述控制栅极多晶硅层;etching the control gate polysilicon layer through the mask layer; 其中,所述掩膜层形成步骤包含以下步骤:Wherein, the mask layer forming step comprises the following steps: 在所述控制栅极多晶硅层上形成第一层,并使用所述光刻工艺图案化所述第一层以形成第一组间隔的掩膜部分,所述第一组间隔的掩膜部分界定第一组间隔的字线,且相邻的所述第一组间隔的掩膜部分之间间隔F+2X的距离;A first layer is formed on the control gate polysilicon layer, and the first layer is patterned using the photolithography process to form a first set of spaced mask portions defining A first group of spaced word lines, and a distance of F+2X between adjacent mask parts of the first group of spaces; 在所述第一组间隔的掩膜部分的侧壁边缘上形成间隙壁;forming spacers on sidewall edges of the first set of spaced apart mask portions; 在所述间隙壁之间形成第二层,所述第二层界定第二组间隔的字线;和forming a second layer between the spacers, the second layer defining a second set of spaced apart word lines; and 移除所述间隙壁,借此形成界定所述数个间隔的字线的所述掩膜图案。The spacers are removed, thereby forming the mask pattern defining the plurality of spaced word lines. 2.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是所述间隙壁为氮化硅且所述第一和第二层为氧化物,或所述第一和第二层为氮化硅且所述间隙壁为氧化物。2. The method for forming a NAND flash memory device according to claim 1, wherein the spacer is silicon nitride and the first and second layers are oxides, or the first and second layers is silicon nitride and the spacer is oxide. 3.根据权利要求2所述的形成NAND型闪存装置的方法,其特征是所述间隙壁形成步骤包含以下步骤:3. The method for forming a NAND flash memory device according to claim 2, wherein the spacer forming step comprises the following steps: 将间隙壁层沉积在所述第一层上和所述第一组间隔的掩膜部分之间;和depositing a spacer layer on the first layer and between the first set of spaced apart mask portions; and 从所述第一层上及所述第一组间隔的掩膜部分之间蚀刻所述间隙壁层以形成所述间隙壁。The spacer layer is etched from above the first layer and between the first set of spaced apart mask portions to form the spacers. 4.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是所述第二层形成步骤包含以下步骤:4. The method for forming a NAND flash memory device according to claim 1, wherein said second layer forming step comprises the following steps: 将所述第二层沉积于所述基底上,包括所述第一层和所述间隙壁上;和depositing the second layer on the substrate, including the first layer and the spacers; and 蚀刻所述第二层以暴露所述间隙壁。The second layer is etched to expose the spacers. 5.根据权利要求4所述的形成NAND型闪存装置的方法,其特征是所述第一层具有1000
Figure C2006100580070003C1
的厚度,且所述间隙壁具有300的厚度。
5. The method for forming a NAND flash memory device according to claim 4, wherein the first layer has 1000
Figure C2006100580070003C1
thickness, and the spacer has a 300 thickness of.
6.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是在所述蚀刻步骤之后还包含在所述间隔的字线之间的所述基底中形成注入区域的步骤。6. The method for forming a NAND flash memory device according to claim 1, further comprising a step of forming implanted regions in the substrate between the spaced word lines after the etching step. 7.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是所述控制栅极多晶硅层形成于氧化物/氮化物/氧化物层上。7. The method for forming a NAND flash memory device according to claim 1, wherein the control gate polysilicon layer is formed on the oxide/nitride/oxide layer. 8.根据权利要求7所述的形成NAND型闪存装置的方法,其特征是所述氧化物/氮化物/氧化物层具有在110~140
Figure C2006100580070003C3
之间的有效氧化物厚度。
8. The method for forming a NAND flash memory device according to claim 7, wherein the oxide/nitride/oxide layer has a thickness between 110-140
Figure C2006100580070003C3
The effective oxide thickness between.
9.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是还包含在所述控制栅极多晶硅层上形成硅化物层的步骤。9. The method for forming a NAND flash memory device according to claim 1, further comprising a step of forming a silicide layer on the control gate polysilicon layer. 10.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是还包含以下步骤:10. The method for forming a NAND flash memory device according to claim 1, further comprising the steps of: 在所述基底中的有源区域上形成浮动栅极多晶硅层;和forming a floating gate polysilicon layer over the active area in the substrate; and 在所述浮动栅极多晶硅层上形成介电层,其中所述蚀刻步骤包含蚀刻所述浮动栅极多晶硅层和所述介电层的步骤。A dielectric layer is formed on the floating gate polysilicon layer, wherein the etching step includes etching the floating gate polysilicon layer and the dielectric layer. 11.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是还包含以下步骤:11. The method for forming a NAND flash memory device according to claim 1, further comprising the steps of: 在所述基底上形成第一绝缘层;forming a first insulating layer on the substrate; 在所述第一绝缘层上形成储存层;forming a storage layer on the first insulating layer; 在所述储存层上形成第二绝缘层,其中在所述第二绝缘层上形成所述控制栅极多晶硅层。A second insulating layer is formed on the storage layer, wherein the control gate polysilicon layer is formed on the second insulating layer. 12.根据权利要求1所述的形成NAND型闪存装置的方法,其特征是所述掩膜层为氧化物。12. The method for forming a NAND flash memory device according to claim 1, wherein the mask layer is oxide. 13.一种形成NAND型闪存装置的方法,其特征是包含以下步骤:13. A method of forming a NAND flash memory device, characterized in that it comprises the following steps: 在基底上形成介电层;forming a dielectric layer on the substrate; 在所述介电层上形成多晶硅控制栅极层;forming a polysilicon control gate layer on the dielectric layer; 在所述多晶硅控制栅极层上沉积第一掩膜层;depositing a first mask layer on the polysilicon control gate layer; 蚀刻所述第一掩膜层以形成第一组间隔的掩膜部分且所述第一组间隔的掩膜部分界定第一组间隔的字线,每一掩膜部分具有一定宽度且所述宽度取决于由选择的光刻工艺所成像的最小特征尺寸,相邻的掩膜部分间隔一定距离且所述距离大于所述最小特征尺寸并小于所述最小特征尺寸的三倍;etching the first mask layer to form a first set of spaced mask portions defining a first set of spaced word lines, each mask portion having a width and the width adjacent mask portions are separated by a distance that is greater than the minimum feature size and less than three times the minimum feature size, depending on the minimum feature size imaged by the selected lithographic process; 在所述第一组间隔的掩膜部分的侧壁上形成间隙壁;forming spacers on sidewalls of the first set of spaced apart mask portions; 在所述间隙壁之间形成第二组间隔的掩膜部分且所述第二组间隔的掩膜部分界定第二组间隔的字线;A second set of spaced mask portions are formed between the spacers and define a second set of spaced word lines; 移除所述间隙壁,形成所述第一组间隔的掩膜部分与所述第二组间隔的掩膜部分交替间隔且间隔距离小于所述最小特征尺寸的掩膜图案;和removing the spacers to form a mask pattern in which the first set of spaced mask portions are alternately spaced apart from the second set of spaced mask portions by a separation distance smaller than the minimum feature size; and 通过所述掩膜图案蚀刻所述多晶硅控制栅极层。The polysilicon control gate layer is etched through the mask pattern. 14.根据权利要求13所述的形成NAND型闪存装置的方法,其特征是所述间隙壁与所述第二组间隔的掩膜部分的形成步骤包含以下步骤:14. The method for forming a NAND flash memory device according to claim 13, wherein the forming step of the mask part between the spacer and the second group comprises the following steps: 在所述第一组间隔的掩膜部分上形成牺牲层;forming a sacrificial layer on the first set of spaced mask portions; 蚀刻所述牺牲层以在所述第一组间隔的掩膜部分的侧壁上形成所述间隙壁;etching the sacrificial layer to form the spacers on sidewalls of the first set of spaced mask portions; 在所述第一组间隔的掩膜部分和间隙壁上形成掩膜材料层;forming a layer of masking material over the first set of spaced apart mask portions and spacers; 蚀刻所述掩膜材料层以暴露所述第一组间隔的掩膜部分,其中所述掩膜材料层的部分剩余以形成所述第二组间隔的掩膜部分。The layer of masking material is etched to expose the first set of spaced apart masking portions, wherein portions of the layer of masking material remain to form the second set of spaced apart masking portions. 15.根据权利要求13所述的形成NAND型闪存装置的方法,其特征是所述第一组间隔的掩膜部分为氧化物或氮化硅,所述第二组间隔的掩膜部分为氧化物或氮化硅。15. The method for forming a NAND flash memory device according to claim 13, wherein the mask part of the first group of intervals is oxide or silicon nitride, and the mask part of the second group of intervals is oxide compounds or silicon nitride. 16.根据权利要求13所述的形成NAND型闪存装置的方法,其特征是所述介电层为氧化物/氮化物/氧化物层。16. The method for forming a NAND flash memory device according to claim 13, wherein the dielectric layer is an oxide/nitride/oxide layer. 17.根据权利要求16所述的形成NAND型闪存装置的方法,其特征是将所述介电层形成于浮动栅极多晶硅层上,则所述蚀刻步骤还包含通过所述第一和第二组间隔的掩膜部分蚀刻所述介电层和浮动栅极多晶硅层。17. The method for forming a NAND flash memory device according to claim 16, wherein the dielectric layer is formed on the floating gate polysilicon layer, and the etching step also includes passing through the first and second A set of spaced mask portions etches the dielectric layer and the floating gate polysilicon layer.
CNB2006100580074A 2006-02-24 2006-02-24 Method for forming flash unit array with reduced word line spacing Active CN100426466C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100580074A CN100426466C (en) 2006-02-24 2006-02-24 Method for forming flash unit array with reduced word line spacing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100580074A CN100426466C (en) 2006-02-24 2006-02-24 Method for forming flash unit array with reduced word line spacing

Publications (2)

Publication Number Publication Date
CN101026094A CN101026094A (en) 2007-08-29
CN100426466C true CN100426466C (en) 2008-10-15

Family

ID=38744228

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100580074A Active CN100426466C (en) 2006-02-24 2006-02-24 Method for forming flash unit array with reduced word line spacing

Country Status (1)

Country Link
CN (1) CN100426466C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153478B2 (en) 2013-03-15 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Spacer etching process for integrated circuit design

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050125A (en) * 1987-11-18 1991-09-17 Kabushiki Kaisha Toshiba Electrically erasable programmable read-only memory with NAND cellstructure
US5661053A (en) * 1994-05-25 1997-08-26 Sandisk Corporation Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US6262917B1 (en) * 1999-10-22 2001-07-17 United Microelectronics Corp. Structure of a flash memory device
US6329124B1 (en) * 1999-05-26 2001-12-11 Advanced Micro Devices Method to produce high density memory cells and small spaces by using nitride spacer
US20020045304A1 (en) * 1999-12-30 2002-04-18 Chien-Hsing Lee Fabrication method and structure of flash memory device
CN1387263A (en) * 2002-06-28 2002-12-25 清华大学 Flash memory cell and its preparing process
US6664191B1 (en) * 2001-10-09 2003-12-16 Advanced Micro Devices, Inc. Non self-aligned shallow trench isolation process with disposable space to define sub-lithographic poly space
CN1534757A (en) * 2003-03-28 2004-10-06 旺宏电子股份有限公司 Method for integrating memory cell array region and peripheral circuit region in pitch reduction process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050125A (en) * 1987-11-18 1991-09-17 Kabushiki Kaisha Toshiba Electrically erasable programmable read-only memory with NAND cellstructure
US5661053A (en) * 1994-05-25 1997-08-26 Sandisk Corporation Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US6329124B1 (en) * 1999-05-26 2001-12-11 Advanced Micro Devices Method to produce high density memory cells and small spaces by using nitride spacer
US6262917B1 (en) * 1999-10-22 2001-07-17 United Microelectronics Corp. Structure of a flash memory device
US20020045304A1 (en) * 1999-12-30 2002-04-18 Chien-Hsing Lee Fabrication method and structure of flash memory device
US6664191B1 (en) * 2001-10-09 2003-12-16 Advanced Micro Devices, Inc. Non self-aligned shallow trench isolation process with disposable space to define sub-lithographic poly space
CN1387263A (en) * 2002-06-28 2002-12-25 清华大学 Flash memory cell and its preparing process
CN1534757A (en) * 2003-03-28 2004-10-06 旺宏电子股份有限公司 Method for integrating memory cell array region and peripheral circuit region in pitch reduction process

Also Published As

Publication number Publication date
CN101026094A (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US8194470B2 (en) Methods of forming flash device with shared word lines
JP5350589B2 (en) Transistor with individual gate structure
JP4455017B2 (en) Nonvolatile semiconductor memory device
CN105895636B (en) Charge trapping nonvolatile memory device and method of making and operating the same
US7642606B2 (en) Semiconductor device having non-volatile memory and method of fabricating the same
US20070138535A1 (en) Flash devices with shared word lines
JP2004241558A (en) Nonvolatile semiconductor memory device and manufacturing method thereof, semiconductor integrated circuit, and nonvolatile semiconductor memory device system
CN101207136A (en) Non-volatile memory device and method of operating the same
JP2004014783A (en) Semiconductor device and its manufacturing method
CN106057240B (en) Nonvolatile memory cell and nonvolatile memory cell array including the same
US8530309B2 (en) Memory device and method for fabricating the same
US20150048434A1 (en) Structure and Method of Manufacturing a Stacked Memory Array for Junction-Free Cell Transistors
US7271063B2 (en) Method of forming FLASH cell array having reduced word line pitch
KR20070098463A (en) Semiconductor device and manufacturing method
US8741714B2 (en) Support lines to prevent line collapse in arrays
JP2002368140A (en) Non-volatile semiconductor memory device
JP2006019570A (en) Nonvolatile semiconductor storage device and manufacturing method thereof
JP2010050357A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2009289950A (en) Semiconductor memory device
JP2003051557A (en) Nonvolatile semiconductor storage device
JP2007527614A (en) Isolated transistor memory with improved durability and method of manufacturing the same
US20080093643A1 (en) Non-volatile memory device and fabrication method
CN100426466C (en) Method for forming flash unit array with reduced word line spacing
JP2010050285A (en) Semiconductor storage device
CN100550352C (en) Stacked non-volatile memory element and method of manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant