CN100424540C - Large-aperture optical periscope laser radar 3D scanning device - Google Patents
Large-aperture optical periscope laser radar 3D scanning device Download PDFInfo
- Publication number
- CN100424540C CN100424540C CNB2004100646602A CN200410064660A CN100424540C CN 100424540 C CN100424540 C CN 100424540C CN B2004100646602 A CNB2004100646602 A CN B2004100646602A CN 200410064660 A CN200410064660 A CN 200410064660A CN 100424540 C CN100424540 C CN 100424540C
- Authority
- CN
- China
- Prior art keywords
- ring
- vertical
- vertical rotation
- rotating
- horizontally
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种激光雷达的三维扫描装置。The invention relates to a three-dimensional scanning device of laser radar.
背景技术 Background technique
在光学仪器中经常用到光学扫描,尤其在大气探测,激光雷达扫描,航空相机,激光打标等等系统中。扫描系统中最常用的就是单片平面镜的扫描方式,如:在陆地卫星上光谱扫描仪MSS扫描镜就是一个长轴为33cm,短轴为23cm的表面镀膜的椭圆形平面镜,其与地面和后面的光学系统各成45度,以13.65Hz的频率摆动,实现扫描;利用了单反射镜的水平和垂直旋转,实现了在造船的中3D激光扫描和近距离拍摄照相,此外扫描系统经常应用旋转反射镜鼓、折射棱镜柱、旋转折射光楔、旋转V型反射镜,双平面反射镜旋转扫描。在激光雷达监测系统中多采用旋转主镜筒进行扫描。Optical scanning is often used in optical instruments, especially in atmospheric detection, lidar scanning, aerial cameras, laser marking and other systems. The most commonly used scanning method in the scanning system is the scanning method of a single plane mirror. For example, the MSS scanning mirror of the spectral scanner on the land satellite is an elliptical plane mirror with a long axis of 33cm and a short axis of 23cm. The optical system is at 45 degrees and oscillates at a frequency of 13.65Hz to achieve scanning; the horizontal and vertical rotation of the single mirror is used to realize 3D laser scanning and close-range photography in shipbuilding. In addition, the scanning system often uses rotation Mirror drum, refracting prism column, rotating refracting wedge, rotating V-shaped mirror, double plane mirror rotating scanning. In the lidar monitoring system, the rotating main lens barrel is often used for scanning.
发明内容 Contents of the invention
本发明的目的是提供一种大口径光学潜望式激光雷达三维扫描装置,可以广泛应用到激光雷达系统和扫描成像系统中,尤其是对一些扫描精度要求比较高的系统中。The purpose of the present invention is to provide a large-aperture optical periscope laser radar three-dimensional scanning device, which can be widely used in laser radar systems and scanning imaging systems, especially in some systems that require relatively high scanning accuracy.
一种大口径光学潜望式激光雷达三维扫描装置,包括有平面反射镜,水平旋转机构,和垂直旋转机构,其特征在于垂直旋转箱体上安装有45度平面反射镜,垂直箱体的侧面外圈安装在垂直旋转内环上,垂直旋转内环外圈固定有涡轮,垂直旋转内环之外套有垂直旋转外环,垂直旋转外环与垂直旋转内环之间安装有向心轴承,垂直旋转外环与水平旋转箱体固定连接,水平旋转箱体上固定有支座,支座上固定安装有垂直旋转涡轮涡杆传动机构,和垂直旋转内环上的涡轮配合;水平旋转箱体上安装有45度平面反射镜,与垂直旋转箱体内安装的平面反射镜平行,水平旋转箱体的下方固定安装有水平旋转内环,水平旋转内环外安装有涡轮,水平旋转内环固定在中空的转盘上,转盘下方是固定的基板,基板与转盘上均有圆周槽,圆周槽内分别固定平面支撑环,上下两圆周槽之间有钢球。A large-caliber optical periscope laser radar three-dimensional scanning device, including a plane mirror, a horizontal rotation mechanism, and a vertical rotation mechanism, is characterized in that a 45-degree plane mirror is installed on the vertical rotation box, and the side of the vertical box The outer ring is installed on the vertically rotating inner ring, the outer ring of the vertically rotating inner ring is fixed with a turbine, the vertically rotating inner ring is covered with a vertically rotating outer ring, and a radial bearing is installed between the vertically rotating outer ring and the vertically rotating inner ring. The rotating outer ring is fixedly connected with the horizontally rotating box, and a support is fixed on the horizontally rotating box, and a vertically rotating worm gear transmission mechanism is fixedly installed on the support, which cooperates with the turbine on the vertically rotating inner ring; A 45-degree plane reflector is installed parallel to the plane reflector installed in the vertically rotating box. A horizontally rotating inner ring is fixedly installed under the horizontally rotating box. A turbine is installed outside the horizontally rotating inner ring. The horizontally rotating inner ring is fixed in the hollow On the turntable, there is a fixed base plate under the turntable, and there are circumferential grooves on both the base plate and the turntable, and the plane supporting rings are respectively fixed in the circumferential grooves, and there are steel balls between the upper and lower circumferential grooves.
所述的三维扫描装置,其特征在于所述的平面反射镜固定在镜座上,镜座再固定在水平旋转箱体或垂直旋转箱体上。The three-dimensional scanning device is characterized in that the plane reflector is fixed on a mirror base, and the mirror base is further fixed on a horizontal rotating box or a vertical rotating box.
所述的三维扫描装置,其特征在于所述的转盘下方固定连接在定位内环,基板下方连接有定位外环,定位内环与定位外环之间安装有向心轴承。The three-dimensional scanning device is characterized in that the lower part of the turntable is fixedly connected to the positioning inner ring, the lower part of the substrate is connected to the positioning outer ring, and a centripetal bearing is installed between the positioning inner ring and the positioning outer ring.
所述的三维扫描装置,其特征在于所述的水平旋转箱体外侧安装有配重块。The three-dimensional scanning device is characterized in that a counterweight is installed outside the horizontally rotating box.
本发明的精度指标如下:The accuracy index of the present invention is as follows:
(1)潜望式扫描镜:(1) Periscope scanning mirror:
水平扫描角范围:-180°-180°;Horizontal scanning angle range: -180°-180°;
角速度:>5°/秒;Angular velocity: >5°/sec;
垂直扫描角范围:-5°-95°;Vertical scanning angle range: -5°-95°;
角速度:>5°/秒;Angular velocity: >5°/sec;
(2)两扫描镜转动时,光轴摆动<5′;(2) When the two scanning mirrors rotate, the optical axis swings <5';
(3)两平面反射镜平行偏差<5′;(3) Parallel deviation of two plane mirrors < 5';
(4)潜望式扫描镜的水平扫描和垂直扫描分别有零角度鉴别装置。(4) The horizontal scanning and vertical scanning of the periscope scanning mirror have zero-angle identification devices respectively.
本发明的优点如下:1、在计算机的控制下,利用涡轮蜗杆传动原理实现平面反射镜的旋转,从而使得扫描部分成为一个独立的部件广泛应用到激光雷达系统中,避免了旋转望远镜系统所带来的不便。2、由于它本身是一个独立的系统,从而在安装地点上有了很大余量,可与激光雷达的望远镜分开,大大减小了安装空间上的限制。3、整个扫描系统由计算机控制,控制精度上有了一定的保证,避免了人工操作的不便和不足等。4、扫描精度很高,系统的稳定性好,控制简单、方便。由于系统由独立的安装方式,在安装的空间上没有距离的限制,可以与接收系统远距离对接,安装起来相当方便。采用了计算机的控制技术,避免了人工操作的不便;由于系统中增加了限位装置,从而提高系统运转的可靠性。The advantages of the present invention are as follows: 1. Under the control of the computer, the rotation of the plane reflector is realized by using the worm gear transmission principle, so that the scanning part becomes an independent component and is widely used in the laser radar system, avoiding the problems caused by the rotating telescope system. Inconvenience. 2. Since it is an independent system, there is a large margin in the installation site, and it can be separated from the lidar telescope, which greatly reduces the limitation on the installation space. 3. The entire scanning system is controlled by a computer, which guarantees a certain degree of control accuracy and avoids the inconvenience and shortage of manual operation. 4. High scanning precision, good system stability, simple and convenient control. Since the system has an independent installation method, there is no distance limit on the installation space, and it can be connected to the receiving system at a long distance, which is quite convenient for installation. The computer control technology is used to avoid the inconvenience of manual operation; because the limit device is added to the system, the reliability of the system operation is improved.
附图说明 Description of drawings
图1是本发明结构示意图。Fig. 1 is a schematic diagram of the structure of the present invention.
图2是本发明扫描原理示意图。Fig. 2 is a schematic diagram of the scanning principle of the present invention.
图3是本发明三维扫描机构的扫描空间示意图。Fig. 3 is a schematic diagram of the scanning space of the three-dimensional scanning mechanism of the present invention.
图4涡轮蜗杆传动机构。Figure 4 Worm gear drive mechanism.
图5是增量式角位移编码器的原理示意图。Fig. 5 is a schematic diagram of the principle of an incremental angular displacement encoder.
图6是平面支撑环结构图。Fig. 6 is a structural diagram of a planar support ring.
图7是是平面反射镜座结构图。Fig. 7 is a structural diagram of a plane reflector seat.
图8是垂直旋转箱体剖视图。Fig. 8 is a sectional view of the vertically rotating box.
图9是是垂直旋转箱体立体结构图。Fig. 9 is a three-dimensional structural view of the vertically rotating box.
图10是水平旋转箱体剖视图。Fig. 10 is a sectional view of the horizontally rotating box.
图11是水平旋转箱体立体结构图。Fig. 11 is a three-dimensional structural view of the horizontal rotating box.
图12是平面反射镜结构图。Fig. 12 is a structural diagram of a plane mirror.
具体实施方式 Detailed ways
参见图1~图10。图中各标号:1、平面反射镜,2、平面反射镜座,3、垂直旋转箱体,4、垂直旋转内环,5、垂直旋转外环,6、向心轴承,7、水平旋转箱体,8、水平配重,9、垂直配重,10、蜗轮蜗杆传动机构,11、固定基座,12、定位外环,13、定位内环,14、向心轴承,15、平面支撑环,16、钢球,17、支座,18、水平防护罩,19、水平旋转内环,20、转盘,21、基板,22、蜗杆,23、电机,24、增量式角位移编码器,25、电源线,26、控制线,27、计算机,28涡轮。See Figure 1~Figure 10. Each label in the figure: 1. Plane reflector, 2. Plane reflector base, 3. Vertically rotating box, 4. Vertically rotating inner ring, 5. Vertically rotating outer ring, 6. Centripetal bearing, 7. Horizontally rotating box Body, 8, horizontal counterweight, 9, vertical counterweight, 10, worm gear transmission mechanism, 11, fixed base, 12, positioning outer ring, 13, positioning inner ring, 14, centripetal bearing, 15, plane support ring , 16, steel ball, 17, support, 18, horizontal protective cover, 19, horizontal rotating inner ring, 20, turntable, 21, base plate, 22, worm, 23, motor, 24, incremental angular displacement encoder, 25, power line, 26, control line, 27, computer, 28 turbo.
一种大口径光学潜望式激光雷达三维扫描装置,平面反射镜1固定在镜座2上,共二组,其中一组镜座2再固定在垂直旋转箱体3上,平面反射镜1成45度安装,垂直旋转箱体3的侧面外圈安装在垂直旋转内环4上,垂直旋转内环4外圈固定有涡轮,垂直旋转内环4之外套有垂直旋转外环5,垂直旋转外环5与垂直旋转内环4之间安装有向心轴承6,垂直旋转外环5与水平旋转箱体7固定连接,水平旋转箱体上固定有支座17,支座17上固定安装有垂直旋转涡轮涡杆传动机构10,和垂直旋转内环4上的涡轮配合;另一组平面反射镜1与镜座2安装在水平旋转箱体7上,平面反射镜1也成45度安装,与垂直旋转箱体3内安装的平面反射镜1平行,水平旋转箱体7的下方固定安装有水平旋转内环19,水平旋转内环19外安装有涡轮,水平旋转内环29固定在中空的转盘20上,转盘20下方是中空的固定的基板21,基板21与转盘20都有圆周槽,槽内分别固定平度精度很高的平面支撑环15,钢球16在上下平面支撑环15之间绕中心轴滚动,起支撑和减少摩擦力作用。基板21固定安装在固定基座11上。A large-caliber optical periscope laser radar three-dimensional scanning device. The plane reflector 1 is fixed on the
转盘20下方固定连接在定位内环13,基板21下方连接有定位外环12,定位内环13与定位外环12之间安装有向心轴承14。The lower part of the
图1所示的为通光口径Φ300mm的潜望式扫描的光机系统剖面示意图。本发明在光学系统上采用了潜望式的双平面反射镜结构,两块平面反射镜与主光线成45度平行放置,反射镜根据实际的使用情况镀了高反射膜。由于反射镜45度放置,反射镜上的通光孔径为椭圆形;在通光口径Φ300mm扫描系统中,反射镜的实际口径为长轴a=424mm,短轴c=300mm的椭圆,考虑到加工和装夹,实际的两块平面反射镜做成八角形。潜望式激光雷达三位扫描旋转原理如图2所示,其旋转系统有水平旋转和垂直旋转构成,水平旋转时,两片反射镜整体旋转;垂直旋转时,只有垂直旋转方向的反射镜转动,其扫描空间示意图如图3所示。Figure 1 is a schematic cross-sectional view of the optical-mechanical system for periscope scanning with an optical aperture of Φ300mm. The present invention adopts a periscope double-plane reflector structure in the optical system, and the two plane reflectors are placed parallel to the chief light at 45 degrees, and the reflectors are coated with a high-reflection film according to actual usage conditions. Since the reflector is placed at 45 degrees, the clear aperture on the reflector is elliptical; in the scanning system with clear aperture Φ300mm, the actual aperture of the reflector is an ellipse with major axis a=424mm and minor axis c=300mm, considering the processing And clamping, the actual two planar reflectors are made into an octagon. The three-position scanning rotation principle of the periscope laser radar is shown in Figure 2. Its rotation system consists of horizontal rotation and vertical rotation. When rotating horizontally, the two mirrors rotate as a whole; when rotating vertically, only the mirror in the vertical direction rotates. , and its scanning space schematic diagram is shown in Figure 3.
1.垂直旋转的实现1. Realization of vertical rotation
从图1可以看出,平面反射镜1采用悬挂形式固定在镜座2上,镜座2通过螺钉与重直旋转箱体3连接为一体,箱体与垂直旋转内环4用定位销进行定位连接,提高了定位精度和旋转的稳定性。垂直旋转内环4与蜗轮连接,为了控制转动时光轴的摆动量,在内环4和外环5之间安装了两个大直径向心轴承6;垂直旋转部分通过外环5与水平旋转箱体7衔接。这样,当电机驱动涡轮蜗杆传动机构10时,垂直旋转箱体及其上的平面反射镜实现垂直旋转。而外环5和箱体7可以保持静止状态。It can be seen from Figure 1 that the plane reflector 1 is fixed on the
2.水平旋转的实现2. Realization of horizontal rotation
水平旋转需要考虑系统的安装及其重量等因素,所以水平旋转结构较为复杂。水平旋转的转系如图1所示,平面反射镜1同样采用悬挂形式固定在镜座2上,镜座2固定在箱体7上,整个转动部件最终与旋转内环13连接,旋转内环13与旋转外环12之间为两个大直径向心轴承14,承担整个系统的重量。通过涡轮蜗杆传动机构10的带动实现了整个旋转体系的水平转动,为了减小摩擦力和光轴晃动量,采用了钢球16支撑,并使钢球16在两块高平面度的支撑环15上滚动,用于承受整个扫描机构的重力,避免了向心轴承承受过大的轴向力。Horizontal rotation needs to consider factors such as system installation and weight, so the horizontal rotation structure is more complicated. The rotating system of horizontal rotation is shown in Figure 1. The plane reflector 1 is also fixed on the
钢球的设计实际上就是计算钢球所需的最小直径,其公式为:The design of the steel ball is actually to calculate the minimum diameter required by the steel ball, the formula is:
式中C——钢球材料的许用负荷强度,约为780~980N/cm2 In the formula, C—the allowable load strength of the steel ball material, about 780-980N/cm 2
Qk——计算载荷,其计算公式为Q k ——calculated load, its calculation formula is
Qk=Q0·a1·a2·a3 (2)Q k =Q 0 ·a 1 ·a 2 ·a 3 (2)
其中a1——考虑到座圈转动的系数,此处取1.4;Where a 1 ——Considering the coefficient of the rotation of the seat ring, 1.4 is taken here;
a2——考虑到负荷情况的系数,此处取1.8;a 2 —coefficient considering the load condition, here take 1.8;
a3——考虑到工作时间的系数,此处取2;a 3 ——Considering the coefficient of working hours, take 2 here;
Q0——承受轴向负荷时,钢球受到的最大负荷,计算公式为Q 0 ——When bearing axial load, the maximum load on the steel ball, the calculation formula is
其中Q——轴向总载荷,根据所有载荷约为Q=210kg;Among them, Q - total axial load, according to all loads is about Q = 210kg;
z——使用的钢球数,本系统使用的钢球数为60个;z—the number of steel balls used, the number of steel balls used in this system is 60;
α——钢球受力方向与轴线的夹角,本系统中α为零。α——the angle between the force direction of the steel ball and the axis, and α is zero in this system.
将数据代入,可以得到:Substituting the data, we can get:
Qk=Q0·a1·a2·a3=4.79×1.4×1.8×2=24.15kg=236.7N;Q k =Q 0 ·a 1 ·a 2 ·a 3 =4.79×1.4×1.8×2=24.15kg=236.7N;
所以本系统中使用直径为10mm的钢球强度是足够的。Therefore, the strength of steel balls with a diameter of 10mm is sufficient in this system.
3.涡轮蜗杆传动机构3. Turbine and worm drive mechanism
涡轮蜗杆传动机构如图4所示,涡轮28和蜗杆22由电机23驱动,电机后面连接增量式角位移编码器24,电机和编码器通过电源线25和控制线26与控制系统及计算机27相连。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步距角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。本发明选用的步进电机为两相混合式,步距角为1.8°(经过驱动器细分后为0.36°)。因为扫描机构的转动惯量很大,步进电机在起步和停止时,有可能对一个控制脉冲还没有完全响应,另一个脉冲已经到来了,这种失步现象将大大影响控制精度。解决的办法就是在系统中加入零位角度鉴别装置和增量式角位移编码器24。增量式角位移编码器是一种脉冲盘式角度数字传感器。其原理示意图如图5所示。在圆盘的边缘上刻有相等角距的辐射状缝隙(分为透光和不透光部分)。在开缝圆盘的两侧分别安装光源和光敏元件。当圆盘随工作轴一起转动时,每转过一个缝隙就发生一次光线明暗的变化。通过光敏元件产生一次电信号的变化。再经整形放大,即可得一定幅值和功率的电脉冲输出信号。脉冲数等于转过的缝隙数。将输出的脉冲信号送到计数器中去进行计数,则由得到的计数值就可得到圆盘转角值。The worm gear transmission mechanism is shown in Figure 4, the worm gear 28 and the worm screw 22 are driven by the motor 23, the incremental angular displacement encoder 24 is connected behind the motor, the motor and the encoder communicate with the control system and the computer 27 through the power line 25 and the control line 26 connected. A stepper motor is an actuator that converts electrical pulses into angular displacement. When the stepper driver receives a pulse signal, it drives the stepper motor to rotate a fixed angle (that is, the step angle) in the set direction. The angular displacement can be controlled by controlling the number of pulses, so as to achieve the purpose of accurate positioning, and at the same time, the speed and acceleration of the motor rotation can be controlled by controlling the pulse frequency, so as to achieve the purpose of speed regulation. The stepping motor selected by the present invention is a two-phase hybrid type, and the step angle is 1.8° (0.36° after being subdivided by the driver). Because the moment of inertia of the scanning mechanism is very large, when the stepper motor starts and stops, it may not fully respond to one control pulse, but another pulse has arrived. This out-of-step phenomenon will greatly affect the control accuracy. The solution is to add zero angle discriminator and incremental angular displacement encoder 24 in the system. Incremental angular displacement encoder is a pulse disc angle digital sensor. Its schematic diagram is shown in Figure 5. Radial slits (divided into light-transmitting and opaque parts) with equal angular distances are engraved on the edge of the disc. A light source and a photosensitive element are respectively installed on both sides of the slit disc. When the disc rotates with the working shaft, the light and shade will change every time it turns through a gap. A change in electrical signal is generated by the photosensitive element. After shaping and amplifying, an electric pulse output signal with a certain amplitude and power can be obtained. The number of pulses is equal to the number of slots turned. The output pulse signal is sent to the counter for counting, and the disc rotation angle value can be obtained from the obtained count value.
步进电机两端配有伸出轴,一端接蜗杆,另一端接角位移编码器,用来监测轴的转角。这种计数方法的最小误差为角位移编码器的角度分辨率,即每产生一个脉冲转轴所转过的角度。因此计数方法对控制精度的影响可由下式表示:The two ends of the stepper motor are equipped with a protruding shaft, one end is connected to the worm, and the other end is connected to an angular displacement encoder, which is used to monitor the rotation angle of the shaft. The minimum error of this counting method is the angular resolution of the angular displacement encoder, that is, the angle that the rotating shaft rotates every time a pulse is generated. Therefore, the influence of the counting method on the control accuracy can be expressed by the following formula:
式中Δθ2——角位移编码器的角度分辨率对控制精度的影响(°);In the formula, Δθ 2 ——the influence of the angular resolution of the angular displacement encoder on the control accuracy (°);
N——角位移编码器中的光栅盘旋转一周产生的脉冲数;N——The number of pulses generated by the grating disk in the angular displacement encoder for one revolution;
i——总传动比。i——total transmission ratio.
光栅盘的刻线一般比较密,因此N值很大,再经过1/168的细分,所以采用了角位移编码器以后,角度计数方法对控制精度的影响也就微乎其微了。利用计算机编程实现增量式角位移编码器和电机转动同步,在光电开光和行程开关的严格控制下,实现了扫描机构按给定的角度进行三维空间的扫描。The engraved lines of the grating disk are generally dense, so the N value is very large, and then subdivided by 1/168, so after the angular displacement encoder is used, the influence of the angle counting method on the control accuracy is minimal. Using computer programming to realize the synchronous rotation of the incremental angular displacement encoder and the motor, under the strict control of the photoelectric switch and travel switch, the scanning mechanism can scan the three-dimensional space at a given angle.
对于Φ300mm口径的扫描机构中涡轮蜗杆的计算如下:The calculation of the worm gear in the scanning mechanism with a diameter of Φ300mm is as follows:
(1)蜗杆头数Z1、蜗轮齿数Z2及传动比i的计算:(1) Calculation of worm head number Z 1 , worm gear tooth number Z 2 and transmission ratio i:
根据实际光学和机械尺寸,确定了蜗轮蜗杆的外形尺寸,大致如下:According to the actual optical and mechanical dimensions, the overall dimensions of the worm gear are determined as follows:
蜗轮:外径Φ430mm,内径Φ336mm,厚度35mm;Worm gear: outer diameter Φ430mm, inner diameter Φ336mm, thickness 35mm;
蜗杆:直径Φ35mmWorm: diameter Φ35mm
取模数m=2、5,蜗轮分度圆直径为d2=420mm,则蜗轮齿数为:Take the modulus m=2, 5, and the diameter of the worm gear index circle is d2=420mm, then the number of worm gear teeth is:
Z2=d2/m=420/2.5=168Z 2 =d 2 /m=420/2.5=168
因为本例中的传动比比较大,可以取蜗杆头数Z1=1,传动比为:i=Z2/Z1=168Because the transmission ratio in this example is relatively large, the number of worm heads can be taken as Z1=1, and the transmission ratio is: i=Z 2 /Z 1 =168
所以可以确定:蜗杆头数Z1=1,蜗轮齿数Z2=168,传动比i=168。Therefore, it can be determined that the number of worm heads Z 1 =1, the number of worm gear teeth Z 2 =168, and the transmission ratio i=168.
(2)选择材料并确定其许用应力:(2) Select material and determine its allowable stress:
蜗杆副的材料不仅要求有足够的强度,更重要的是要有良好的减摩耐磨性能,因此采用ZQSn10-1作蜗轮的材料,它的抗胶合和耐磨性能好,允许的滑动速度高,且易于切削加工;蜗杆选用的材料为40Cr,表面淬火到HRC40~45,具有很高的硬度。The material of the worm pair not only requires sufficient strength, but more importantly, it must have good anti-friction and wear resistance properties. Therefore, ZQSn10-1 is used as the material of the worm gear, which has good anti-gluing and anti-wear properties and a high allowable sliding speed. , and easy to cut; the material used for the worm is 40Cr, and the surface is hardened to HRC40-45, with high hardness.
估计正常工作时蜗轮与蜗杆的相对滑动速度不超过0、5m/s,蜗轮的许用接触应力为[σH]=180N/mm2。It is estimated that the relative sliding speed between the worm gear and the worm screw does not exceed 0.5m/s during normal operation, and the allowable contact stress of the worm gear is [σ H ]=180N/mm 2 .
(3)模数m、直径系数q以及几何尺寸的计算:(3) Calculation of modulus m, diameter coefficient q and geometric dimensions:
第一步中已经取m=2、5,取蜗杆分度圆直径为d1=30mm,则直径系数为q=d1/m=30/2.5=12In the first step, m=2 and 5 have been taken, and the diameter of the worm pitch circle is d1=30mm, then the diameter coefficient is q=d 1 /m=30/2.5=12
其他几何尺寸的计算公式以及结果见表1The calculation formulas and results of other geometric dimensions are shown in Table 1
4、配重块的设计4. Design of counterweight
为了使系统运行平稳,还分别对水平和垂直旋转机构进行了配重设计。这部分内容是借助PRO/E软件完成的。在Assembly(装配)模式下先将扫描机构的大致模型设计出来,然后根据每个零件的材料输入零件的密度值,即可对整个模型进行质量属性的分析。In order to make the system run smoothly, counterweights are designed for the horizontal and vertical rotating mechanisms respectively. This part of the content is completed with the help of PRO/E software. In the Assembly (assembly) mode, first design the rough model of the scanning mechanism, and then input the density value of the part according to the material of each part, and then analyze the mass properties of the entire model.
配重分两个部分进行。首先要对垂直旋转机构进行配重,然后对水平旋转机构配重,两个过程方法是一样的,这里只介绍水平旋转机构的配重过程。The counterweight is carried out in two parts. Firstly, the vertical rotation mechanism should be counterweighted, and then the horizontal rotation mechanism should be counterweighted. The two process methods are the same, and only the counterweight process of the horizontal rotation mechanism will be introduced here.
由于水平旋转机构运转时带动垂直旋转机构一起转动,所以对水平旋转机构配重时要加入垂直旋转机构一起分析,这也是必须先对垂直机构进行配重的原因。Since the horizontal rotation mechanism drives the vertical rotation mechanism to rotate together when it is running, the vertical rotation mechanism must be added to the analysis when balancing the horizontal rotation mechanism. This is also the reason why the vertical mechanism must be counterweighted first.
配重前系统的总重量约为G=173公斤。这是配重所要用到的关键参数。为减小重心相对于水平转轴的偏移量,需在相反的方向上添加配重块。应使用密度较大而又廉价的材料,如铸铁等。设计时把配重块安装在离转轴稍远的位置,这样可以在取得同样配重效果的情况下减轻系统的总重量。添加配重块时不必准确计算要添加多少重量,可以在添加一定配重后马上进行质量属性分析,若不满意可以很方便地改变配重的体积(重量)再次进行分析,直到满意为止。The total weight of the system before counterweight is about G = 173 kg. This is the key parameter to use for the counterweight. To reduce the offset of the center of gravity relative to the horizontal axis of rotation, counterweights are added in the opposite direction. Materials with high density and low cost should be used, such as cast iron. In the design, the counterweight is installed at a position slightly away from the rotating shaft, so that the total weight of the system can be reduced while achieving the same counterweight effect. When adding counterweights, it is not necessary to accurately calculate how much weight to add. You can analyze the quality attributes immediately after adding a certain counterweight. If you are not satisfied, you can easily change the volume (weight) of the counterweights and analyze again until you are satisfied.
根据PRO/E软件计算出配重8和9的重量为37公斤,再加上总重为20公斤的基板11和防护罩18,三维扫描系统总重量为230公斤左右。According to the PRO/E software, the weight of the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100646602A CN100424540C (en) | 2004-09-14 | 2004-09-14 | Large-aperture optical periscope laser radar 3D scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100646602A CN100424540C (en) | 2004-09-14 | 2004-09-14 | Large-aperture optical periscope laser radar 3D scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1601324A CN1601324A (en) | 2005-03-30 |
CN100424540C true CN100424540C (en) | 2008-10-08 |
Family
ID=34666413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100646602A Expired - Fee Related CN100424540C (en) | 2004-09-14 | 2004-09-14 | Large-aperture optical periscope laser radar 3D scanning device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100424540C (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100487433C (en) * | 2005-06-07 | 2009-05-13 | 中国科学院安徽光学精密机械研究所 | Vehicular pollution-motoring lidar device based on Raman light source |
CN1936617B (en) * | 2006-10-12 | 2010-04-21 | 中国地震局地震研究所 | Comprehensive low-noise constant-temperature laser receiving system |
CN1952687B (en) * | 2006-11-02 | 2010-12-01 | 中国科学院安徽光学精密机械研究所 | Laser radar optical path automatic collimation method and collimator |
CN101576620B (en) * | 2009-06-08 | 2011-06-15 | 北京理工大学 | Large-caliber optical periscopic non-coaxial laser radar three-dimensional scanning device |
CN101614861B (en) * | 2009-08-12 | 2013-01-02 | 中国航空工业第一集团公司北京长城计量测试技术研究所 | Fixing support body for fixing reflector in injection-molded mirror canal |
CN101697037B (en) * | 2009-09-29 | 2011-08-24 | 陈自明 | Stereoscopic mirror |
CN102063125A (en) * | 2009-11-17 | 2011-05-18 | 陈继文 | Automatic tracing, aiming and positioning device |
CN101900806B (en) * | 2010-05-18 | 2013-03-27 | 北京航空航天大学 | Method and device for real-time compensation of roll angle deviation of airborne laser radar |
CN106600966B (en) * | 2016-11-17 | 2019-07-16 | 武汉万集信息技术有限公司 | A kind of vehicle axles identifying system and method based on laser radar |
CN107643516A (en) * | 2017-09-27 | 2018-01-30 | 北京因泰立科技有限公司 | A kind of 3-D scanning laser radar based on MEMS micromirror |
CN108693088B (en) * | 2018-05-17 | 2021-07-13 | 吉林省洪科光电技术有限公司 | Atmospheric particulate monitoring scanning polarization laser radar system |
WO2020124346A1 (en) * | 2018-12-18 | 2020-06-25 | 深圳市大疆创新科技有限公司 | Laser measuring device and unmanned aerial vehicle |
CN111279158A (en) * | 2019-04-23 | 2020-06-12 | 大族激光科技产业集团股份有限公司 | Grating disc and feedback system |
CN110031863A (en) * | 2019-05-21 | 2019-07-19 | 安徽蓝科信息科技有限公司 | A kind of scanning means based on two wavelength aerosol radars |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268554A (en) * | 1992-06-29 | 1993-12-07 | General Electric Co. | Apparatus and system for positioning a laser beam |
US5546214A (en) * | 1995-09-13 | 1996-08-13 | Reliant Technologies, Inc. | Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section |
CN1205453A (en) * | 1998-06-08 | 1999-01-20 | 北京大学 | Three-dimensional laser scanner |
CN1240970A (en) * | 1998-07-02 | 2000-01-12 | 全友电脑股份有限公司 | Optical path conversion device for multi-lens scanner |
CN2481095Y (en) * | 2001-05-26 | 2002-03-06 | 陈业明 | Optical signal vertical horizontal deflection controller |
-
2004
- 2004-09-14 CN CNB2004100646602A patent/CN100424540C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268554A (en) * | 1992-06-29 | 1993-12-07 | General Electric Co. | Apparatus and system for positioning a laser beam |
US5546214A (en) * | 1995-09-13 | 1996-08-13 | Reliant Technologies, Inc. | Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section |
CN1205453A (en) * | 1998-06-08 | 1999-01-20 | 北京大学 | Three-dimensional laser scanner |
CN1240970A (en) * | 1998-07-02 | 2000-01-12 | 全友电脑股份有限公司 | Optical path conversion device for multi-lens scanner |
CN2481095Y (en) * | 2001-05-26 | 2002-03-06 | 陈业明 | Optical signal vertical horizontal deflection controller |
Non-Patent Citations (1)
Title |
---|
一种改进激光雷达性能的方法. 仲思东等.仪器仪表学报,第25卷第4期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1601324A (en) | 2005-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100424540C (en) | Large-aperture optical periscope laser radar 3D scanning device | |
CN109506560A (en) | Round induction synchrometer dynamic testing angle precision caliberating device and its scaling method | |
CN103063189B (en) | Goniometer verification method based on optical lever | |
CN102658502A (en) | Optical indexing system of circular grating of precise shaft system | |
CN102338165B (en) | Reflection type control method for monitoring angular displacement of turnable bearing | |
CN109724636A (en) | 1D turntable | |
EP2141462B1 (en) | Electronic Device For Measuring Motion Of Screw Mechanism | |
CN102352889B (en) | Control method for improving angular-displacement accuracy of rotary-table bearing | |
US5031443A (en) | Apparatus for measuring bearing torque | |
CN112698206B (en) | Rotating motor eccentric fault simulation mechanism and method | |
US20070041018A1 (en) | Rotary wedge scanner | |
CN102672537A (en) | Precise shafting circular grating optical indexing method | |
JP3779295B2 (en) | Rotary encoder | |
CN208270833U (en) | Moving target surface focusing mechanism | |
KR100228226B1 (en) | Laser scanning device for 3-d shape detection | |
CN216205948U (en) | Manual angle benchmark revolving stage of biax | |
US4637680A (en) | Beam converter in optical measuring instrument | |
CN113847859A (en) | Compact double-shaft manual angle reference rotary table | |
CN211234376U (en) | Prism goniometer | |
CN108858272A (en) | A kind of robot joint structure | |
McIlraith et al. | A radial grating dividing engine of high accuracy | |
JP2000138154A (en) | Tilt stage | |
US5000585A (en) | Apparatus for bearing a shaft | |
JP2005337385A (en) | Device for supporting adjustment of rotary shaft connecting joint, and method of adjusting rotary shaft connecting joint | |
Preliasco | Wide-look-angle gimbal for an airborne electro-optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081008 Termination date: 20091014 |