CN100423092C - 调节记录速度和激光功率的光盘装置 - Google Patents
调节记录速度和激光功率的光盘装置 Download PDFInfo
- Publication number
- CN100423092C CN100423092C CNB2005101286647A CN200510128664A CN100423092C CN 100423092 C CN100423092 C CN 100423092C CN B2005101286647 A CNB2005101286647 A CN B2005101286647A CN 200510128664 A CN200510128664 A CN 200510128664A CN 100423092 C CN100423092 C CN 100423092C
- Authority
- CN
- China
- Prior art keywords
- value
- recording
- laser power
- characteristic
- record
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title abstract description 116
- 230000033228 biological regulation Effects 0.000 title abstract description 33
- 238000012360 testing method Methods 0.000 claims abstract description 183
- 238000000034 method Methods 0.000 claims description 148
- 238000001514 detection method Methods 0.000 claims description 64
- 238000002310 reflectometry Methods 0.000 claims description 23
- 239000000700 radioactive tracer Substances 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 48
- 230000008569 process Effects 0.000 description 40
- 238000005259 measurement Methods 0.000 description 27
- 230000006872 improvement Effects 0.000 description 26
- 230000006870 function Effects 0.000 description 24
- 230000008859 change Effects 0.000 description 22
- 238000002474 experimental method Methods 0.000 description 17
- 230000033458 reproduction Effects 0.000 description 16
- 239000000975 dye Substances 0.000 description 15
- 238000012887 quadratic function Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 12
- 238000012886 linear function Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005755 formation reaction Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 8
- 238000003556 assay Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229920002457 flexible plastic Polymers 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 101100043388 Arabidopsis thaliana SRK2D gene Proteins 0.000 description 1
- 101000863845 Homo sapiens Sedoheptulokinase Proteins 0.000 description 1
- 101100355601 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RAD53 gene Proteins 0.000 description 1
- 101100150096 Schizosaccharomyces pombe (strain 972 / ATCC 24843) spj1 gene Proteins 0.000 description 1
- 102100029990 Sedoheptulokinase Human genes 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 101150087667 spk1 gene Proteins 0.000 description 1
Images
Landscapes
- Optical Recording Or Reproduction (AREA)
Abstract
一种确定在光盘上记录信号用的写入光束的功率的方法,包含:通过在实际记录前在光盘的预定测试区上记录信号而进行测试记录;从光盘的预定测试区再现信号;根据再现信号产生第一记录特性,其中所述第一特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;从第一记录特性获得第二记录特性,其中所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;使用Δβ的优选范围根据获得的第二记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入光束的功率;并且按照第一记录特性并在记录功率范围内确定写入光束的优选功率。
Description
技术领域
本发明涉及光盘记录速度测定方法,用于测定可满意地在光盘例如小型的可记录光盘(CD-R)以及可再写光盘(CD-RW)内记录信息的速度。
本发明还涉及光盘写入激光功率的测定方法,用于测定可满意地在光盘例如小型的可记录光盘(CD-R)以及可再写光盘(CD-RW)内记录信息的写入激光功率值。
背景技术
作为传统的对于光盘例如CD-R和数字多用可记录光盘(DVD-R)的记录方法,以大于标准线速度(一倍速度)的多倍线速度(如,两倍速度,四倍速度,…等)进行高速记录。
通过改变所谓的对策用于按照记录速度的增加来调节写入激光功率,光照时间,光照起始时间等,由此可以忽略各自的记录速度的记录误差进行记录。然而,某些类型的记录光盘不满足高速记录要求,所以,在对于这些光盘以高速进行记录时,极可能产生记录误差。还有,即使可以满足高速记录的光盘的记录,有时基于记录装置和光盘的相容性也会产生记录误差。在出现这种记录误差时,数据区不能正确地再现。
对于实施的光功率控制(OPC:调节激光束的最佳写入功率)包含:在正常记录之前在光盘的预定区域以多个记录速度进行测试记录;获得在所述测试记录速度可进行最佳记录的写入激光功率。然而,在OPC情况下,不能测定可以实际进行记录的优选速度范围。如果对应于欲记录的光盘类型和在光盘上进行记录的装置的结合可以测定最佳记录速度范围,则利用相应的光盘和记录装置的结合抑制记录误差,从而可以在较短的时间内进行记录。然而,一种测定可以获得满意的记录速度范围的有效方法至今还没有提出。
作为按照记录速度放大控制写入激光功率成为最佳的方法,已提出进行最佳功率控制的OPC方法,该方法包含:在正常记录前在光盘的预定区内用多个写入激光功率值进行测试记录;以及从测试记录区的再现结果获得写入激光功率值。
在传统的OPC中,从测试记录区再现的信号获得指示写入激光功率值与β值之间关系的写入激光功率值的β值特性,而采用对应于预定最佳β值的写入激光功率值作为最佳写入激光功率值。另外,β值是一个涉及到再现信号水平或幅度的参数,可以利用(a+b)/(a-b)关系式获得,其中,字母a表示8-14调制(EFM)信号波形的峰值电平(具有“+”号),作为光探测器的回光接收信号,而b(具有“-”号)表示返回信号的底电平。
此外,在传统的OPC中,测定对应于预定最佳β值的写入激光功率值。即,只考虑β值测定写入激光功率值。然而,在光盘的特性随着其类型不同而不同时,在只考虑β值并用简单测定的写入激光功率值记录时将使记录状态的质量水平变坏。例如,写入激光功率值和β值之间的关系通常是线性的,而有时却是非线性关系,如图49所示,这是由于光盘的崎变,染料不均匀性等因素所致。如图29所示,在光盘中,β值和写入激光功率值之间的关系基本上具有线性特性,除了部分BT外(所述例子中,在β值为10附近,以及写入激光功率值为16mw附近)。在采用相应于β值有效改变的β值有效点BT的写入激光功率值(例如16mw)对于具有这种特性的光盘进行记录时,有时不能得到满意的记录状态质量。
发明内容
本发明考虑到上述的情况,所以发明的第一个目的在于提供一种光盘记录速度测定方法,该方法可以测定采用小记录误差获得满意记录的记录速度。本发明的第二个目的在于提供一种光盘写入激光功率测定的方法,用于不管记录光盘的类型如何均能获得可使记录误差降低的写入激光功率值。
为了获得第一个目的,按照本发明,提供一种确定在光盘上记录信号用的写入光束的功率的方法,包含:记录步骤,通过在实际记录前在光盘的预定测试区上记录信号而进行测试记录;再现步骤,从光盘的预定测试区再现信号;根据再现信号产生第一记录特性,其中所述第一特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;从第一记录特性获得第二记录特性,其中所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;确定步骤,使用Δβ的优选范围根据获得的第二记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入光束的功率;并且按照第一记录特性并在记录功率范围内确定写入光束的优选功率。
上述方法还包含:按照再现信号产生第三记录特性,该第三记录特性表示写入光束的功率和多个与记录的特性有关的定性参数中的至少一个之间的关系,而且是从检测包含在光盘的再现信号内的帧同步信号的频率、包含在再现信号内的C1误差、再现信号的抖动、再现信号的偏差、再现信号的的调制度、激光束从光盘的反射率和再现信号的幅度所组成的参数组中选择的;其中确定步骤包括除了所获得的第二记录特性之外还根据所产生的第三记录特性确定记录功率范围。
在上述方法中,所述的记录步骤包含以小于测试记录时的信号写入速率的读出速率再现信号;再现步骤包含通过在测试区上进行多次再现时间而再现多个信号的步骤;所述确定步骤包括确定被分成较高侧和较低侧的记录功率范围,而且所述确定步骤还包括将写入光束的优选功率确定在所确定的记录功率范围的较低侧之内。
根据本发明,还提供一种利用具有优选功率的写入光束在光盘上记录信号的装置,该装置包含:测试记录部分,所述测试记录部分在实际记录前在光盘的预定测试区上进行信号的测试记录;再现部分,从光盘的预定测试区再现信号;产生部分,所述产生部分按照再现信号产生第一记录特性,所述第一记录特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;所述产生部分从第一记录特性进一步产生第二记录特性,其中所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;以及确定部分,所述确定部分使用Δβ的优选范围根据第二记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入激光束的功率;并且按照第一记录特性并在记录功率范围内确定写入光束的优选功率。
根据本发明的另一方面,提供一种利用具有优选功率的写入光束在光盘上记录信号的装置,该装置包含:测试记录部分,所述测试记录部分在实际记录前在光盘的预定测试区上进行信号的测试记录;再现部分,从光盘的预定测试区再现信号;产生部分,按照再现信号产生第一记录特性,所述第一记录特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;所述产生部分从第一记录特性产生第二记录特性,所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;所述产生部分根据再现信号产生第三记录特性,所述第三记录特性表示写入光束的功率和多个与记录的特性有关的定性参数中的至少一个之间的关系,而且是从检测包含在光盘的再现信号内的帧同步信号的频率、包含在再现信号内的C1误差、再现信号的抖动、再现信号的偏差、加到激光束的调制度、激光束从光盘的反射率和再现信号的幅度所组成的参数组中选择的;以及确定部分,所述确定部分使用Δβ的优选范围根据第二记录特性和第三记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入光束的功率并且按照第一记录特性、第二功率特性和第三功率特性并在记录功率范围内确定写入光束的优选功率。
根据本发明的再一方面,提供一种利用将激光束写入光盘测定记录速度的方法。本发明方法所采用的步骤是,在以一个或多个记录速度水平进行实际记录之前在光盘的预定记录区上进行信号的测试记录,同时从光盘的预定区由读出激光束再现信号,并依据再现信号产生第一特性记录速度,所述的第一特性表示激光束的光学特性和信号记录状态的定性参数之间的关系,所述的光学特性或者采用从光盘反射的读出激光束获得的β值表示,或者用写入激光束表示,基于定性参数的预定的优选范围从第一特性产生第二特性,并使第二特性表示记录速度与相应于记录状态的定性参数的预定优选范围的关系特征范围之间的一种关系,以及按照第二特性和预定于获得优选记录状态的光学特征的预定范围测定记录速度的优选值。
按照本发明,对于受到正常记录的光盘进行参数记录,而β值或者写入激光功率值用于将对于记录状态水平的定性参数设定定性参数,所述的记录状态水平由测试记录速度得到。于是,由β值或者写入激光功率值得到的记录速度是可以得到的优选值。所以,可以测定用小的记录误差实现满意记录的记录速度。
另外,上述的方法还包含下述步骤:对应于多种类型的光盘储存多个定性参数的优选范围,在测试记录情况下检测光盘的类型,使产生第二特性的步骤使用相应于光盘检测类型的定性参数的光学范围,以及测定使用相应于光盘的检测类型的光学特征的优选范围的步骤。
还有,在所述的方法中,产生第一特性的步骤采用从由包含在光盘信号再现的信号内的帧同步信号检测的频率,一在再现信号内包含的误差C1,一再现信号的抖动信号,一再现信号的偏差,一加到激光束的调制度,激光束从光盘的反射率以及再现信号的幅度组成的组所选择的定性参数。
按照本发明,提供一种测定用于将信号记录到光盘上的写入光束的功率的方法,本发明的方法由下述步骤执行,在实施记录前,将对光盘的预定测试区上的信号进行测试记录,并再现来自光盘的预定测试区的信号,按照所再现的信号产生一记录特性,表示Δβ与写入光束的功率之间的关系。其中Δβ表示每单位写入光束的功率量β值的偏差,而Δβ值是从再现信号的幅度偏差得到,以及利用Δβ的优选范围按照所产生的记录特性测定写入光束的优选范围。所述的功率对于实现优选的记录是预定的。
按照本发明的方法,从测试记录前再现的信号获得作为β值改变量的写入激光功率值和Δβ之间的关系,考虑Δβ值测定写入激光功率值。所以,可以测定进行满意记录的写入激光功率值,即使采用具有所谓β有效点的特性的光盘也可进行测定,在所述的β有点,对于个别不规则的产品,例如崎变和染料不均匀的光盘,β值有效地相对于写入激光功率值改变。
另外,按照本发明,还提供一种测定将信号记录在光盘上的写入光束的功率的方法。本发明方法的执行步骤是,在实际记录前,对于在光盘的预定测试区上的信号进行测试记录的写入光束的功率的测试方法,从光盘的预定测试区再现信号,按照再现信号产生记录特性,表示写入光束的功率和至少与记录量有关的记录特性的定性参数之一之间的关系,并从由包含在光盘的再现信号内的帧同步信号的频率,包含在再现信号内的C1误差,一再现信号的抖动,一再现信号的偏差,一加到激光束的调制度,一激光束从光盘的反射率以及再现信号的幅度等所组成的组中予以选择,以及测定按照所产生的记录特性在实际记录中所用的写入光束的优选功率。
按照本发明写入激光功率值与β值之间没有关系,但是写入激光功率值与至少一个与记录质量水平有关的参数之间的关系,例如帧同步信号的检测频率,C1误差,从测试记录区的再现信号得到的偏差以及激光功率值需考虑到所述的关系予以测定。所以,可以测定进行满意记录的写入激光功率值,即使光盘具有所谓的β有效点特性也可,在该点对于个别不同的产品例如光盘的崎变和染料不均匀性,β值相应于写入激光功率值会具有有效的改变。
另外,按照本发明,提供测量在光盘上记录信号用的写入光束功率的方法。本发明的方法包含下述步骤,在实际记录之前对于在光盘的预定测试区上的信号进行测试记录的步骤,从光盘的预定测试区再现信号,按照再现信号产生一记录特性,表示写入光束的功率和与记录特性以及从再现信号的幅度偏差得到的β值,一检测包含在光盘的再现信号内的帧同步信号的频率,一包含在再现信号内的C1误差,一再现信号的抖动,一再现信号的偏差,一加到光盘的调制度,一从光盘的激光束的反射率以及再现信号的幅度等所组成的组选择的一个定性测试之间的关系步骤,按照再现信号产生其它记录特性,表示写入光束的功率和其它的定性测试之间的关系,以及按照所产生的记录参数测定实际记录用的写入光束的优选功率。
按照本发明的方法,写入激光功率值和至少两个或多个有关记录质量的性质参数,例如β值,帧同步信号的检测频率,C1误差,抖动之间的关系,并从测试记录区的再现信号得到偏差,通过考虑多个涉及记录水平的参数确定写入激光功率值。所以,即使光盘具有所谓β重要点的特性,也可以确定进行满意记录的写入激光功率值,在所述的点一些参数,例如β值由于不同的产品,如光盘的崎变和染料不均匀性,相对于写入激光功率值会有有效的改变。
附图说明
图1表示本发明第一实施例的光盘记录/再现装置的结构的框图。
图2表示测试区的示意图,其中利用光盘记录/再现装置在光盘内进行测试记录。
图3表示作为光盘记录/再现装置的结构元件的控制器的功能键结构的框图。
图4表示由控制器记录最大速度的导出方法的说明图。
图5表示作为控制器的结构元件的C1误差优选值储存器的储存内容的说明图。
图6表示利用控制器记录最大速度的导出方法的说明图。
图7表示作为控制器的结构元件的β优选值储存器的储存内容的说明图。
图8表示光盘记录/再现装置的CAV操作和CLV操作之间切换时间的说明图。
图9表示在光盘记录/再现装置记录数据时由控制器执行的控制过程的流程图。
图10表示按照光盘记录/再现装置的改进例由控制器记录最小速度的导出方法的说明图。
图11表示按照光盘记录/再现装置的改进例由控制器记录最小速度的导出方法的说明图。
图12表示在光盘/再现装置的改进实施例中CAV和CLV操作之间的切换时间的说明图。
图13A和13B表示由控制器记录最大速度的其它导出方法的说明图。
图14表示由控制器记录最大速度的其它导出方法的说明图。
图15表示光盘记录/再现装置的其它改进例的构成的框图。
图16表示按照光盘记录/再现装置的其它改进例,由控制器记录最大速度的导出方法的说明图。
图17表示另一个光盘记录/再现装置的改进例的构成的框图。
图18表示按照光盘记录/再现装置的其它改进例,由控制器记录最大速度的导出方法的说明图。
图19表示光盘记录/再现装置的另一改进例的构成的框图。
图20表示按照光盘记录/再现装置的另一改进例,由控制器记录最大速度的导出方法的说明图。
图21A-21C表示涉及可用于由光盘/再现装置导出记录速度的记录水平的参数与β值之间关系的曲线图。
图22表示作为光盘记录/再现装置的第二实施例的结构元件的控制器的功能结构的框图。
图23表示作为控制器的结构元件的β优选值信息储存器的储存内容的说明图。
图24表示由光盘记录/再现装置进行的测试记录获得的用于每个激光功率值的β值和C1误差的一个例子的示意图。
图25表示从写入激光功率值和β值之间关系测定最佳写入激光功率值的过程的说明图。
图26表示作为控制器的结构元件的C1误差优选值信息储存器的储存内容的说明图。
图27表示从写入激光功率值和C1误差值之间的关系测定最佳写入激光功率值的过程的说明图。
图28表示另一光盘记录/再现装置在记录时间通过控制器执行的过程的流程图。
图29表示在光盘记录/再现装置的改进例中从写入激光功率值和帧同步信号检测频率测定最佳写入激光功率值的过程的说明图。
图30表示在光盘记录/再现装置的其它改进例中,从写入激光功率值和抖动值之间的关系测定最佳写入激光功率值的过程的说明图。
图31表示在光盘记录/再现装置的其它改进例中,从写入激光功率值和偏差值之间的关系测定最佳写入激光功率值的过程的说明图。
图32表示在光盘记录/再现装置的其它改进例中,从写入激光功率值和RF信号的幅度值之间的关系测定最佳写入激光功率值的过程的说明图。
图33表示在光盘记录/再现装置的其它改进例中,从写入激光功率值和调制度之间的关系测定最佳写入激光功率值的过程的说明图。
图34表示在光盘记录/再现装置的其它改进例中,从写入激光功率值和反射率之间的关系测定最佳写入激光功率值的过程的说明图。
图35表示在光盘记录/再现装置的其它改进例中,测定最佳写入激光功率值的过程的说明图。
图36表示按照本发明第三实施例的光盘记录/再现装置的过程的框图。
图37表示作为第三实施例的光盘记录/再现装置的结构元件的控制器的功能结构的框图。
图38表示按照第三实施例的光盘记录/再现装置中写入激光功率值和C1误差值之间关系测定最佳写入激光功率值的过程的说明图。
图39表示按照第三实施例的光盘记录/再现装置中写入激光功率值和帧同步信号检测频率之间关系测定最佳写入激光功率值的过程的说明图。
图40表示按照第三实施例的光盘记录/再现装置中写入激光功率值和帧同步信号检测频率值之间关系测定最佳写入激光功率值的过程的说明图。
图41表示按照第三实施例的光盘记录/再现装置的改进例中写入激光功率值和C1误差值之间关系测定最佳写入激光功率值的过程的说明图。
图42表示按照第三实施例的光盘记录/再现装置的改进例中写入激光功率值和C1误差值之间关系测定最佳写入激光功率值的过程的说明图。
图43表示按照第三实施例的光盘记录/再现装置的改进例中写入激光功率值和帧同步信号检测频率之间关系测定最佳写入激光功率值的过程的改进例的说明图。
图44表示按照第三实施例的光盘记录/再现装置的改进例中写入激光功率值和帧同步检测信号频率之间关系测定最佳写入激光功率值的过程的其它改进例的说明图。
图45表示按照本发明第四实施例,作为光盘记录/再现装置的结构元件的控制器的功能结构的框图。
图46表示按照第四实施例,写入激光功率值和由光盘记录/再现装置进行的测试记录得到的β值之间关系的实例图。
图47表示按照第四实施例,在光盘记录/再现装置中从写入激光功率值和Δβ值之间关系测定最佳写入激光功率值的过程的说明图。
图48表示按照第四实施例,在光盘记录/再现装置的改进例中测定最佳写入激光功率值的过程的说明图。
图49表示写入激光功率值和从在光盘上进行测试记录的测试区的再现信号获得的β值之间关系的举例说明图。
具体实施方式
下面将引用附图说明本发明的实施例。
A-1.第一实施例的结构
首先,图1表示按照本发明的第一实施例的光盘记录/再现装置结构的示意框图。如图1所示,光盘记录/再现装置包括光接收器10,主轴马达11,RF放大器12,伺服电路13,地址检测电路14,解码器15,控制器16,编码器17,对策电路18,激光驱动器19,激光功率控制电路20,频率发生器21,包络检测电路22,C1误差检测电路23和β检测电路24。主轴马达11是一个转动/驱动用于记录数据的光盘(如CD-R)D的马达。光接收器10具有一个激光两极管,一个光学系统,例如透镜和反光镜,以及一个返回光接收元件。光接收器在记录和再现时用激光束照射光盘D,并从光盘D接收返回的光,以及将受到8-14调制(EFM)的RF信号作为光接收信号输出到RF放大器12。另外,光接收器10具有监视两极管,由光盘D返回的光在两极管内产生电流,所述的电流加到激光功率控制电路20上。
RF放大器12对于从光接收器10提供的并受到EFM调制的信号进行放大,并将放大的RF信号输出到伺服电路13,地址检测电路14,包络检测电路22,β检测电路24和解码器15。解码器15EFM-调制由RF放大器12提供经EFM-调制的RF信号并在再现时产生再现的数据。
另一方面,在记录时,解码器15在再现测试记录区时EFM-调制从RF放大器12提供的RF信号,所述的C1误差检测电路23依据解调信号检测C1误差,并将该误差输出至控制器。所述的C1误差检测电路23利用称为交叉读取Solomon码(CIRC)的误差校正码使EFM解调信号受到误差校正,并检测在一子码帧(98EFM帧)内不能执行的第一误差校正的帧数,即,C1误差的频率。
在进行记录时,本发明的光盘记录/再现装置的过程为,在正常的记录前,使光盘D的内圆周侧上的预定区域(见图2)受到测试记录,并得到一记录速度,在该速度相对于基于测试记录区的再现结果来说可以进行满意的记录。所述的C1误差检测电路23检测测试记录区的再现信号的C1误差,并将误差输出至控制器16。
这里。参见图2说明用于进行光盘D(CD-R)的测试记录的测试区。基于直径为46-50mm的光盘D的区域用作导引区114,而用于记录数据的节目区118和剩余区120位于导引区的外圆周侧。另一方面,还有内圆周侧功率标定区(PCA)112。所述的内圆周侧PCA区112包括一测试区112a和一计数区112b。所述的测试区112a在正常记录过程前受到测试记录。这里,将可以进行大量测试记录的区做成测试区112a,而指示部分在测试记录的端部结束记录的测试区112a的EFM信号被记录在计数区112b内。所以,在光盘D受到测试记录时,读取计数区112b的EFM信号。然后,可以得到欲执行测试记录的测试区112a的位置。在本发明的光盘记录/再现装置中,在正常记录前测试区112受到测试记录。
再参见图1,地址检测电路14从由RF放大器12提供的EFM信号中提取摆动信号分量,并对指示包含在摆动信号分量内的每个位置的时间信息,识别盘和盘类型的信息,例如盘的染料的信息进行解码,并将信息输出到控制器16。
所述的β检测电路24计算β(对称性)值作为在测试记录区再现时涉及从RF放大器12提供的EFM调制的RF信号的再现信号水平的参数,并输出计算结果至控制器16。β值由(a+b)/(a-b)确定,其中,字母b表示受到EFM调制的信号波形的峰值(符号+),而字母b表示信号波形的底电平(符号-)。
包络检测电路22检测光盘D的计数区112b的EFM信号的包络,以便检测光盘D的部分预定测试区,在参数进行前由该测试区部分开始参数记录。
伺服电路13进行主轴马达11的转动控制,以及聚焦控制,跟踪控制以及光接收器10的反馈控制。在本发明的光盘记录/再现装置中,可以在记录时以恒定的角速度切换和执行驱动光盘D的一种恒定角速度(CAV)的方法,以及在将线速度设定为常数时驱动光盘D的一种恒定线速度方法。伺服电路13响应控制器16的控制信号改变CAV控制以及CLV控制。在由伺服电路13进行的CAV控制中,控制由频率发生器21检测的主轴马达11的转数与设定的转数一致。另外,在由伺服电路13进行的CLV控制中,控制主轴马达11,使由RF放大器12提供的EFM-调制的信号的摆动信号指示一设定的线速度放大。
编码器17EFM-调制所提供的记录数据,并输出数据至对策电路18。所述的对策电路18相对于从编码器17提供的EFM信号执行时间轴的校正处理,并对激光驱动器19输出驱动信号。激光驱动器19按照从对策电路18提供的记录数据调制的信号驱动光接收器10的激光两极管,并控制激光功率控制电路20。
激光功率控制电路20控制光接收器10的激光两极管发出的激光功率。具体地说,激光功率控制电路20依据从光接收器10的监测两极管提供的电流值以及由控制器16提供的指示激光功率的最佳目标值的信息控制激光驱动器19,使具有最佳激光功率的激光束从光接收器10发射。
控制器16由中央处理单元(CPU),只读存储(ROM),随机存取存储器(RAM)等构成,并按照ROM内存储的程序控制光盘记录/再现装置的各个装置部件的工作。
首先,控制器16控制各个装置的部件,以在上述的正常或实际记录前对于设定在光盘记录/再现装置内的光盘D的预定区域进行测试记录。另外,控制器16执行用于获得记录速度的记录速度测定处理,在所述的处理中,在利用光盘记录/再现装置受到测试记录的光盘D上可以进行无任何记录误差的满意记录,并依据由β检测电路24检测的β值进行测试记录区的再现时获得的信号,以及由C1误差检测电路23检测的C1误差的计数值等进行记录速度测定。图3表示为获得记录速度而执行记录速度测定处理的控制器16的功能结构。
如图3所示,控制器16具有C1误差优选值储存器200,记录速度-β特性函数储存器201,β优选值储存器202,β-C1误差特性产生部分203,记录速度-β特性产生部分204以及记录速度产生部分205。
在所述的β-C1误差特性产生部分203中,提供由β检测电路24检测β值,以及由C1误差检测电流23检测的C1误差的计数值(下称C1误差值)。之后,在图4A表示多个记录速度(例如,V1,V2,V3;V1<V2<V3)中的每一个的β值和C1误差的计数值之间的关系指示的记录特性可以从所提供的β值和C1误差值得到。为了获得多个记录速度中的每个特性,用三个记录速度V1,V2,V3进行测试记录,并从在每个速度记录的区域的再现信号检测的β值和C1误差值可以获得每个速度的记录特性。此外,代替在每个速度执行测试记录和获得如图3所示的记录特性的方法,例如图3所示的方法,所述方法包括:只在一个记录速度进行测试记录;利用其它的数据依据事先进行的实验结果从测试记录区的再现信号得到速度;依据获得不同于测试记录速度的记录速度的特性。还有,对于某一速度(一个或者多个速度)可以进行一次或者多次测试记录,但是最好进行多次测试记录,使所获得的判断结果更精确。
所述记录速度-β特性产生部分204得到一记录速度特性,该特性基于如上所述的由β-C1误差特性产生部分203获得的对于各个记录速度的β-C1误差特性以及储存在C1误差优选值储存器200内储存的C1误差优选值信息的如图4所示的值和记录速度之间的关系。
如图5所示,在C1误差优选值储存器200中,对于每种类型的光盘D(不同的制造者和染料)储存指示执行满意记录的C1误差值的范围的信息。在所述的例子中,储存指示满意记录可以在C1误差值为0-10(在最大时为98C1误差值)范围内用A型盘执行的信息。这里,储存在C1误差优选值储存器200内的信息是一个对于每种类型的光盘由先期的实验所获得的值。记录速度-β特性产生部分204利用储存在C1误差优选值储存器200内的C1误差优选值信息,利用下述的方法获得如图4B所示的记录速度-β特性。
首先,记录速度-β特性产生部分204从储存在C1误差优选值储存器200内的优选值信息获得对应于由地址检测器电路14检测的光盘D的信息类型的C1误差优选值信息。另外,依据所获得的C1误差优选值信息和如图4A所示的β-C1误差特性产生部分203获得的β-C1误差特性获得用于将C1误差值设定在三个记录速度中的每一个所获得的由C1误差优选值信息指示的范围内的β值的上和下限。例如,在由地址电路14检测的光盘的类型信息是A时,从储存在C1误差优选值储存器200内的C1误差优选值信息获得对应于类型A的优选值信息(0-10)。另外,如图4B所示,可以获得用于设定C1误差值在由所获得的C1误差优选值信息指示的范围1-10内C1误差值的β值的可能的上限值PJ1,PJ2,PJ3和下限值PK1,PK2,PK3。
在获得各个记录速度的β值的可能的上限值PJ1,PJ2,PJ3和下限值PK1,PK2,PK3时,记录速度-β特性产生部分204获得如图4B所示的记录速度与依据所获得的上限值PJ1,PJ2,PJ3和下限值PK1,PK2,PK3,以及储存在记录速度-β特性函数储存器201内的函数信息的β值的可能的上和下限值范围之间的关系。在记录速度-β值特性函数储存器201内,储存指示用于对应于记录速度改变将C1误差值设定在优选范围内的β值的上和下限值的改变的函数信息。这里,依据事先由以大量的记录速度进行的测试记录实验所获得的有关大量的记录速度的β值的上和下限值取得函数信息,并将线性函数储存在本实施例中(即,如图4B中的曲线所示的函数线性改变)。而对于函数信息,对于每种类型的光盘D(不同的制造者和染料)事先储存最佳信息,可以按照光盘D的类型信息选择合适的函数信息。而,β-值的上和下限相对于记录速度的位移可以从函数信息和上限值PJ1,PJ2,PJ3和下限值PK1,PK2,PK3利用图4B所示的线L1和L2限定。在利用线L1和L2作限定时,可以获得指示由β的上限值和β的下限值的β-值的可能范围的值βm与记录速度之间的关系,以及可以获得如图6所示的记录速度-β范围特性。此外,从上述的三个记录速度的特性获得三个上限值PJ1,PJ2,PJ3和下限值PK1,PK2,PK3,利用这些值可以获得β值的可能的βm范围和记录速度之间的关系。在两个函数(即,线性函数Y=ax+b+c,其中c表示随着实际测量的上和下限值改变的值,而a,b是固定值),它们用于被储存在记录速度-β特性函数储存器201内的上和下限值,在获得某种速度V1的上限值PJ1和下限值PK1时,线性函数可用于限定线L1和L2。于是,可以获得β值的可能的范围βm和记录速度之间的关系。用这种方法可以从一速度的β-C1误差特性获得可能的范围βm和记录速度之间的关系。当然,在这种情况下,可以以单一的速度进行测试记录。另外,代替取得如上所述的上和下限值,可以事先保持指示β值的可能范围βm和记录速度之间的关系的函数(即,线性函数Y=AX+B=C,其中,C表示随着实际测量的上限值和对此指定的速度的下限值之间的差变化的值,而A,B是固定值)。β值的可能范围βm和记录速度之间的关系可以从这些函数和速度的上限值和下限值之间的关系的实际测量值得到。
记录速度产生部分205获得一最大速度,在该速度光盘记录/再现装置可以相对于依据由上述的记录速度-β特性产生部分204获得的记录速度-β范围特性和储存在β值优选值储存器202内的β优选值信息的受到用保持满意的记录水平的测试记录的光盘D执行记录。如图7所示,在β优选值储存器202中,储存指示允许对于每种光盘D的类型(不同的制造者和染料)的进行满意记录的起伏范围的值。在所述的举例中,储存指示可以用A型光盘在β位于10或以上的范围内进行满意记录的信息。即,在优选的β值范围内作为目标的下降时对于光盘记录/再现装置很难控制β在一个小的范围值内,因为光盘D的扭曲,染料不均匀等原因。在β优选值储存器202中,考虑到控制用非常小的目标β值的困难,因此储存光盘记录/再现装置可以足以将β值控制在目标范围内,即使光盘D有扭曲,染料不均匀等出现。这里,储存在β优选值储存器202内的信息是一个在先对于每种盘类型由实验获得的值。所述的记录速度产生部分205使用储存在β优选值储存器202的β值范围的优选值信息以获得最大的记录速度,在该速度β位于从图6所示的特性由优选值信息指示的范围内,最大记录速度作为光盘记录/再现装置可以在受到用保持记录水平受到测试记录的光盘D上进行记录的最大速度。图6的例子表示β值的范围βm的优选值信息是10或以上的情况。在这种情况下,得到特性线L3与线L4相交,βm=10时的记录速度最大值作为记录的最大速度。
回到图1,在本发明的光盘记录/再现装置内的控制器16控制硬件,以根据上述获得的记录最大速度进行CAV和CLV之间的切换。具体地说,控制器16控制伺服电路13,以便在最内圆周侧上记录时利用CAV方法。在用这种方法开始记录后,控制器16基于从地址检测电路提供的地址信息确定光盘D的径向位置,并以预定的角速度驱动主轴马达11。在这种情况下,在对应于如上所述获得的最大速度检测径向位置时,控制器输出将CAV方法切换到CLV方法的控制信号至伺服电路18。如图8所示,在转数相应于最内圆周位置的12倍速度的线速度时以CAV方法驱动主轴马达11。在线速度达到转数的最大速度(16倍速度)时检测径向位置。于是,控制器16输出切换CLV至伺服电路13的控制信号。之后,在CLV方法中,伺服电路13以16倍的速度驱动主轴马达11。
还有,在以CAV方法记录时,控制器16相继将指示最佳激光功率的目标值的信息按照线速度输出至激光功率控制电路20。即,在执行CAV控制时,随着记录线速度相继改变,所以输出指示相继改变线速度的激光功率最佳目标值的信息。具体地说,在外圆周侧径向光盘的记录。即,在线速度增加时,作为目标值的大激光功率相继输出至激光功率输出电路20。这里,可以参考由事先的实验得到的数据表获得对应于电流线速度的最佳激光功率的目标值,或者可以用所谓的OPC方法获得。所述的OPC方法包括:在正常记录前在最内圆周部分进行光盘D的测试记录;以及从由读出记录部分得到的再现信号在每个线速度获得最佳激光功率的目标值。
A-2第一实施例的操作
上面已经描述了按照本发明的第一实施例的光盘记录/再现装置的结构。下面将参见由图8所示的控制器16进行的流程图说明由如上所述结构的光盘记录/再现装置的记录操作。
首先,在用户将光盘D放置在光盘记录/再现装置内并指令记录开始时,在所设置光盘D(Sa1步)的测试区112a进行记录测试。然后,控制器16利用从测试记录区的再现信号检测到的β值和C1误差值去驱动最大的记录速度,在该速度光盘记录/再现装置对应于设置的光盘D进行满意的记录(Sa2步)。
之后,控制器16指示伺服电路13以CAV方法驱动光盘D(Sa4步),并以CAV方法进行记录。在以这种方式开始CAV方法的记录时,控制器16将指示相应于线速度改变的最佳激光功率的目标值的信息输出至激光功率控制电路20,以便随着线速度的增加使激光功率增加。由此,激光功率控制电路20反馈控制激光功率,以便获得从控制器16提供的目标值。
另外,控制器16依据从地址检测电路检测到的地址信息判断是否光盘D的记录位置的线速度达到上述的最大记录速度(Sa4步)。这里,在判断到记录位置的线速度没有达到最大线速度时,控制器16以CAV方法连续进行记录。在欲记录的所有数据被记录时,记录过程结束(Sa5步判断“YES”)。另一方面,在Sa4步判断记录位置的线速度达到最大记录速度时,控制器将指示记录方法从CAV方法切换至CLV方法的控制信号输出到伺服电路13,并以CLV方法执行记录(Sa6步)。
之后,在用CLV方法记录时,控制器16判断是否记录结束(Sa7步)。在欲记录的所有数据被记录时,或者用户指示记录结束时,判断结果是“YES”,于是记录过程结束。
在本实施例中,在正常数据记录过程前进行测试记录,并从测试记录区的再现信号可以获得对于光盘D取得满意记录的最大记录速度。还有,在进行正常记录时,CAV记录进行到直至获得最大的记录速度。在最大的记录速度达到后,CVA记录以该速度进行。所以,不用赋予一满意的记录质量水平就可以在短时间内记录数据。于是,在用户不用告知光盘D的相应记录速度或者光盘D与光盘记录/再现装置相兼容的情况下指令记录时,在短时间内可以以满意的记录水平进行自动记录数据。
A-3改进例
本发明不限于上述的实施例,对此可作出各种如下的改进。
(改进例1)
在上述的实施例中,直至达到与测试记录的结果一致的最大记录速度时才进行CAV记录。在达到最大速度记录后,执行CLV记录。然而,可以从开始以最大记录速度或者较低的速度进行CLV记录。
另外,上述获得的最大记录速度是12倍的速度,而用户指令16倍速度的CLV记录。在这种情况下,会将不能以16倍速度的CLV记录取得满意记录的信息告知用户,可使用户再次设定记录速度。另外,在用户设定的记录速度大于由上述获得的最大记录速度时,不用用户如上述那样再次设定速度,就可以自动地设定最大的记录速度或者较低的记录速度。在这种情况下,需估计以改变/设定记录速度进行记录所需的时间,并将估计的时间告知用户。
(改进例2)
另外,在上述的实施例中,可以获得可能进行满意记录的最大记录速度,然而,也需考虑进行低速记录时记录水平受到破坏的情况(如图10所示,在低速时用于将C1误差值受到在优选范围内的β值的范围βm减小的情况)。在这种情况下,如图11所示,可以获得由β优选值信息指示的某一速度值(在所示例中为10或以上)作为最小记录速度Vmin。
如图12所示,在用这种方法获得的具有最小记录速度的正常记录时,以大于所获得的最小记录速度(所述例中为4倍速度)的记录速度进行CLV记录,并可以切换至CAV记录,此时CAV记录的线速度超过最小记录速度。
(改进例3)
另外,在本实施例中,以β值为基础得到记录速度,但是并不限于此,也可以依据写入激光功率值获得记录速度。在这种情况下,控制器16从C1误差检测电路23提供的C1误差值的多个记录速度中的每个获得下写入激光功率值和图13A所示的C1误差值之间的关系。这里,如图13A所示,在写入激光功率值用作为参考而不是β值时,记录功率值也随着较高的记录速度而增加。所以,依据写入激光功率值获得作为参考的记录速度。之后,由OPC获得的每个速度和最佳写入激光功率值PL1,PL2,PL3的特性被用于得到功率值的上限值PJ1’,PJ2’,PJ3’和下限值PK1’,PK2’,PK3’的差值与最佳写入激光功率值之比,此时,C1误差值不大于对于每个从最佳写入激光功率值的速度的参考值,即,从最佳写入激光功率值得到所允许的功率值的比例(%)。例如,利用下述的等式可获得对于记录速度V1的上允许范围值PJ01(%)。
PJ01=(PJ1’-PL1)/PL1*100
采用这种方式,如图13B所示,可获得在各个记录速度内写入激光功率的允许上限范围值PJ01,PJ02,PJ03和允许下限范围值PK01,PK01,PK03。另外,如图14所示,可以获得写入激光功率值的允许范围和记录速度之间的关系,以及可获得写入激光功率值的优选范围Pm指示预定值Pm1时的记录速度,并作为最大的记录速度。
(改进例4)
还有,在本实施例中,依据C1值小于预定值的β范围获得记录速度。然而,涉及记录水平的参数不限于C1误差,也可利用其它的参数。例如,如图15所示,代替C1误差检测电路23,提供帧同步信号检测和计数器电路140。提供帧同步信号检测电路140a和用于由帧同步信号检测电路140a检测的对帧同步信号的检测频率进行计数的计数器电路140b,而不用C1误差值。由计数器电路140b计数的帧同步信号的检测频率可用于获得记录速度。这里,类似于前述的实施例,帧同步信号检测电路140a和计数器电路140b对测试记录区的再现信号进行EFM-调制,同时从所获得的信号检测EFM帧同步信号,计数检测频率,并对控制器16输出计数结果。
一种使用帧同步信号的检测频率而不是C1误差值的方法包括:获得帧同步信号的检测频率和对于从检测电路140提供的帧同步信号的检测频率的多个如图16A所示的记录速度中的每一个的β值依据从β检测电路24提供的β值之间的关系。该方法还包括:对于各个记录速度(V1,V2,V3)获得β值的上限值SPJ1,SPJ2,SPJ3和下限值SPK1,SPK2,SPK3,以便获得由先前的实验得到的帧同步信号(例如,90或以上)的检测频率的范围,因此可以保持如图16B所示的满意的记录水平;依据利用先前由实验获得的函数(在本例中为线性函数)得到记录速度β范围特性,该特性指示记录速度和指示β值范围的值βm之间的关系。在用这种方法得到记录速度β值范围后,采用类似于本实施例中的记录速度产生部分,可以得到记录最大速度。
另外,如图17所示,提供抖动检测电路160替代C1误差检测电路23,并可以使用由抖动检测电路160检测的抖动值替代C1误差值来得到记录速度。。这里,抖动检测电路160具有均衡器,限幅器,锁相回路(PLL)电路,以及抖动测量单元。由RF放大器12提供的RF信号通过均衡器,而通过均衡器的信号由限幅器二进制,然后将二进制的RF信号加到PLL电路和抖动测量单元。在PLL电路中,从二进制的RF信号产生时钟信号,并将所产生的时钟信号送到抖动测量单元,抖动测量单元测量抖动作为记录位的标准偏差和偏差时钟和二进制RF信号的参考长度偏差。
一种使用抖动值替代C1误差值的方法包括:得到抖动值和从由抖动检测电路160提供的抖动值的多个如图18A所示的记录速度中的每个速度的β值以及由β检测电路24提供的β值之间的关系。还包括:对于各个记录速度(V1,V2,V3)得到β值的上限值JPJ1,JPJ2,JPJ3以及下限值JPK1,JPK2,JPK3,以便获得由先前图18B所示的可以保持满意记录水平的实验所得到的抖动值的范围(在本实施例中抖动值为35或以下);并利用由先前的实验得到的函数(在本例中为线性函数)获得指示记录速度和指示β值范围的值βm之间关系的记录速度β范围特性。在利用这种方法得到记录速度β范围特性之后,类似于实施例中的记录速度产生部分可以得到记录的最大速度。
此外,如图19所示,提供偏差检测电路180代替C1误差值检测电路23。并可以使用由偏差检测电路180检测的偏差值替代C1误差值,获得记录速度。这里,偏差检测电路180类似于抖动检测电路160具有均衡器,限幅器和PLL电路。另外,代替抖动测量单元,还提供一偏差测量单元用于检测从PLL电路提供的时钟以及从限幅器提供的二进制RF满意度之间的偏差(记录位和参考长度偏差)。
一种利用偏差值代替C1误差值的方法包括:获得偏差值和从偏差检测电路180提供的偏差值的对于图20A所示的多个记录速度中的每个的β值以及从β值检测电路24提供的β值之间的关系,该方法还包括:对于各个记录速度(V1,V2,V3)的上限值DPJ1,DPJ2,DPJ3和下限值DPK1,DPK2,DPK3,以便由可以保持如图20B所示的满意记录水平的先前实验所得到的偏差值的范围(在本实施例中为-20≤偏差值≤20);以及利用由先前的实验获得的函数用于得到指示记录速度和指示β值的范围的值βm之间关系的记录速度β范围特性。在采用这种方法获得记录速度β值范围特性之后,类似于本实施例的记录速度产生部分,可以得到记录最大速度。
另外,替代C1误差值,在再现测试记录区时,可以利用从RF放大器12提供的参数,例如RF信号的幅度,调制度以及反射率得到记录速度。这里,RF信号的幅度值与β值之间的关系具有一种特性,即,幅度值随着β值的上升而增加的特性,并且幅度值提高至某种程度直至达到如图21A所示的饱和。类似于上述的实施例,对于多个记录速度中的每个速度获得所述的特性,即,对于每个记录速度可以获得由先前的实验得到的在RF信号的幅度的范围内的β值的上和下限值。之后,类似于上述的实施例可以获得所述的记录速度。
还有,调制度和β值之间的关系具有类似于图21B所示的RF信号的幅度的特性。类似于前述的实施例,对于多个记录速度中的每个速度可以获得上述的特性,并对于每个记录速度可以获得由先前的实验得到的在调制度范围内的β值的上限值和下限值。之后,类似于上述的实施例,可以得到所述的记录速度。另外,假设RF信号的最大值是Imax,而最小值是Imin,则由调制度=(Imax-Imin)/Imax的关系式获得调制度。
另外,反射率和β值之间的关系具有线性函数的特性,其中如图21C所示,反射率随β值的增加而下降。类似于上述的实施例,得到对于多个记录速度中的每个速度的特性,并对于每个记录速度可以获得由先前的实验得到的在反射率范围内的β值的上限值和下限值。之后,类似于上述的实施例,可以获得记录速度。另外,可以使RF信号通过低通滤波器以及求平均值得到反射率。
此外,在上述的实施例中,可以得到代替C1误差值的每个参数和β值之间的关系,然后获得记录速度。然而,如改进实施例所述,为了得到记录速度可以获得每个参数和写入激光功率值之间的关系。
另外,可以利用多个参数(例如,C1误差值和抖动值)来获得各个记录速度。例如,在获得最大记录速度时,可以利用两个参数得到的记录速度中的低速度作为最大记录速度。在获得最小记录速度时,可以利用利用两个参数得到的记录速度中的较高的速度作为最小记录速度。
(改进例5)
还有,在前述的实施例中,描述了利用CD-R作为光盘D的例子。然而,本发明也可使用于CD-RW,DVD-R,DVD-随机存取储存器(DVD-RAM)等的记录。
(改进例6)
此外,用于执行包括测定记录速度过程的记录处理的控制器16可以由特殊使用的硬件电路构成。另外,在控制器16由中央处理器(CPU)等构成时,可以通过执行储存在例如只读储存器(ROM)内的程序由软件实现处理。在由软件利用上述方法进行处理时,各种可以用计算机实现记录处理的记录介质,例如CD-ROM和软磁盘可以供用户使用,或者可以通过传输媒体例如互联网将程序提供给用户。
如上所述,按照本发明的第一方面,在对于某种光盘记录时,可以测定具有一些记录误差的记录速度范围。
B-1第二实施例的构成
本发明的第二实施例基本上与第一实施例的某些构成相同。因此,参见图1,提供按照本发明第二实施例的光盘记录/再现装置的构成说明如图1所示,所述的光盘记录/再现装置包括光接收器10,主轴马达11,RF放大器12,伺服电路13,地址检测器电路14,解码器16,控制器16,编码器17,对策电路18,激光驱动器19,激光功率控制电路20,频率发生器21,包络检测电路22,C1检测电路23和β检测电路24。
主轴马达11是一个供记录数据的用于旋转/驱动光盘(如,CD-R)D的马达。光接收器10具有一个激光二极管,一光学系统例如透镜和反射镜,以及返回光接收元件。在进行记录和再现时,光接收器用激光束照射光盘D,再从光盘D接收返回的光,并输出受到8-14调制(EFM)的RF信号,作为RF放大器12的光接收信号。另外,光接收器10具有监视二极管,由光盘D返回的光在所述的监视二极管内产生电流,并将所述的电流供给激光功率控制电路20。
所述的RF放大器12对来自光接收器10的RF信号进行放大,并受到WFM调制,以及对伺服电路13,地址检测电路13,包络检测电路22,β检测电路24和解码器15输出经放大的RF信号。解码器15对来自RF放大器12的经调制的RF信号进行EFM解调,并在再现时产生再现数据。
另一方面,在进行记录时,解码器15对于在再现测试记录数据时由RF放大器12提供的RF信号进行EFM解调,C1误差检测电路23依据解调信号检测C1误差,并将该误差输出至控制器。所述的C1误差检测电路23利用所谓交错读出Solomon码(CIRC)的误差校正码,使EFM解调信号受到误差校正,并检测在一子码帧(98EFM帧)内不能进行第一误差校正的帧数,即,C1误差的频率。
按照本发明第二实施例的光盘记录/再现装置,其构成可用于在正常记录前采用由用户设定的记录速度在光盘D的内圆周侧的预定区(见图2)进行测试记录,并在进行如上记录时,依据测试记录区的再现结果获得对于光盘D进行满意记录的记录速度。在用光盘记录/再现装置进行测试记录时,采用15个阶段改变写入激光功率值,并对于一个写入激光功率值的一个子码帧记录EFM信号,以及记录对于15帧的所有的EFM信号。
这里,将参见图2再次描述执行光盘D(CD-R)测试记录的区域。将具有直径为46-50mm的光盘D的区域作为导引区114,并在导引区的外圆周侧上制取记录数据用的节目区118和剩余区120。另一方面,还具有一个内圆周侧功率校正区(PCA)112。所述的内圆周侧PCA区112包括一测试区112a和一计数区112b。在正常记录过程前测试区112a受到测试记录。这里,将进行大量测试记录的区作为测试区112a,而在测试记录结束指示结束记录的测试区112a的部分的EFM信号被记录在计数区112b内。所以,在光盘D受到测试记录时,读出计数区112b的EFM信号。于是,可以见到执行测试记录的测试区112a的位置。在本发明的光盘记录/再现装置中,测试区112在正常记录前已受到测试记录。
再回到图1,地址检测电路14从EF放大器12提供的EFM信号中提取抖动信号成分,并对指示包括在抖动信号成分内的每个位置的时间信息(地址信息)解码,识别信息(光盘ID)用于识别光盘以及盘类型,例如盘的染料,并向控制器16输出信息。
所述的β检测电路24在再现测试记录区时将β值作为对于从RF放大器12提供的EFM调制的RF信号的再现记录水平的参数进行计算,并将计算结果输到控制器16。利用等式(a+b)/(a-b)测定β值,其中,字母a表示受到EFM调制的信号波形的峰值电平(+号),而,字母b表示底电平(-号)。
所述的包络检测电路22检测光盘D的计数区112b的EFM信号的包络,以便检测在进行参数记录前开始测试记录的光盘D的预定测试区的部分。
所述的伺服电路13进行主轴马达11的转动控制,以及聚焦控制,跟踪控制和光接收器10的反馈控制。在本发明的光盘记录/再现装置中,以恒定线速度(CLV)的方法进行记录,由用户设定线性的记录速度驱动光盘D。所述的伺服电路13执行CLV控制,用于按照从控制器16提供的设定速度指示的控制信号以设定的线速度驱动主轴马达。这里,在利用伺服电路13进行CLV的控制中,控制主轴马达11以便线速度放大,以便从RF放大器12提供EFM调制信号的抖动信号。
编码器17对提供的记录数据进行EFM调制,并将数据输出到对策电路18(strategy circuit)。对策电路18对于由编码器17提供的EFM信号进行时间轴校正等处理,并将信号输出至激光驱动器19。激光驱动器19按照由对策电路18提供的用记录数据调制的信号驱动光接收器10的激光二极管,并控制激光功率控制电路20。
所述的激光功率控制电路20控制从光接收器10的激光二极管所发出的激光功率。具体地说,激光功率控制电路20基于从光接收器10的监测二极管提供的电流值,以及指示从控制器16提供的激光功率的最佳目标值的信息控制激光驱动器19,以便由光接收器10发射具有最佳激光功率的激光束。
首先,控制器16控制各个装置部件,以便对于在如上所述的正常记录前设定在光盘记录/再现装置内的光盘D的预定区执行上述的测试记录。而且,控制器16依据由β检测电路24,以及由C1误差检测电路23等检测的C1误差的检测频率的计数值(下面称为C1误差值)检测的β值测定对于由用户以在再现参数记录区时所获得的信号设定的记录速度进行记录用的最佳写入激光功率值,并控制激光功率控制电路20,使得在进行正常记录时,从光接收器10发射的激光束具有确定的最佳激光功率值。图22说明控制器16用于获得最佳写入激光功率值的过程的关键结构。
如图22所示,控制器16具有C1误差优选值信息储存器250,β优选值信息储存器251,激光功率值规定部分252,激光功率范围规定部分253,以及最佳激光功率值确定部分254。
所述的激光功率规定部分252获得指示写入激光功率值和在正常记录前从OPC获得的结果(多个写入激光功率值和相应于各个激光功率值的β值)得到的β值之间关系的记录功率-β特性。所述的激光功率值规定部分252依据所述的记录功率-β特性,储存在β优选值信息储存器251内的β优选值信息,以及从地址检测电路14提供的盘类型信息规定写入激光功率值。如图23所示,对于光盘D的每种类型(制造者,染料等),在β优选值储存器251内,储存用于进行最佳记录的指示β值的β优选值信息,储存β值=“0”作为在本例中对于A型光盘的β值优选值信息。这里,储存在β优选值储存器251内的信息是一个对于由先前的实验用不同类型的光盘获得的值。此外,不仅对于每种类型的光盘可以储存一优选的β值,而且还可以对每个记录速度(一倍速度,四倍速度,八倍速度)储存在β优选值储存器251内。
例如,如图24获得OPC结果(相应于15个类型的写入激光功率值的β值和C1误差值)时,激光功率规定部分252获得指示写入激光功率值和图25所示的由写入激光功率值表示的β值以及OPC结果的β值之间关系的β功率特性。另外,激光功率值规定部分252获得从相应于储存在β优选值储存器251内的大量光盘类型的β优选值信息的地址检测电路14提供的光盘类型信息的β优选值信息。还有,在β优选值储存器251内储存每个记录速度(一倍速度,四倍速度,八倍速度,…)的优选β值时,可以得到相应于所设定的记录速度的β优选值信息。此外,所述的激光功率值规定部分252是指依据OPC结构获得的β-功率特性(见,图25),并对应于由所获得的β优选值信息所指示的β值规定一写入激光功率值Pt。
激光功率范围规定部分253获得指示写入激光功率值和从在正常记录前由OPC获得的结果(相应于各个激光功率值的多个写入激光功率值以及C1误差值)得到的C1误差值之间关系的写入功率-C1误差特性激光功率范围规定部分253规定写入激光功率的可能的上限值和下限值,即,一个基于写入功率-C1误差特性,储存在C1误差优选值储存器250内的C1误差优选值信息,以及由地址检测电路14提供的盘类型信息的写入激光功率的可能值的范围。如图26所示,在C1误差优选值储存器250中,对于光盘D的每种类型(制造者,染料等)储存指示执行最佳记录用的C1误差值的可能范围的C1误差优选值信息,储存C1误差值=“0-10”作为对于所述实施例的A型光盘的C1误差优选值信息。此外,在C1误差优选值储存器250内,不仅对于每种类型的光盘而且对于每个记录速度(一倍速度,四倍速度,八倍速度,…)均可以储存指示优选C1误差值的可能范围的信息。
例如,在获得如图24所示的OPC结果时,激光功率范围规定部分253获得指示写入激光功率值和从如图27所示的写入激光功率值的C1误差值以及OPC结果的C1误差值之间关系的功率-C1误差特性。还有,激光功率范围规定部分253从相应于储存在C1误差优选值储存250内的大量光盘类型的C1误差优选值信息的地址检测电路14所提供的盘的类型信息获得C1误差值信息。另外,在C1误差优选值储存150内储存每个记录速度(一倍速度,四倍速度,八倍速度…)的C1误差值的优选范围,并可获得对应于设定的记录速度的C1误差优选值信息。还有,激光功率范围规定部分253是指依据OPC结果获得的功率-C1误差特性(见,图27),并获得将C1误差值设定在由所获得的C1误差优选值信息指示的C1误差值的范围内的写入激光功率的上限值PJ(在本实施例中为16mv)和下限值PK(在本实施例中为13mv),并规定可能的范围Pm(写入激光功率的13-16mv)。
最佳激光功率值确定部分254依据由激光功率规定部分252规定的写入激光功率值Pt,和由如上述的激光功率范围规定部分253规定的写入激光功率的有效范围Pm确定最佳写入激光功率值。具体地说,最佳激光功率值确定部分254判断是否由激光功率值规定部分252规定的写入激光功率值位于由激光功率范围规定部分253规定的写入激光功率值的有效范围Pm内。在判断到所述的写入激光功率值位于所述范围Pm内时,将所述的写入激光功率值Pt确定为最佳写入激光功率值。另一方面,在写入激光功率值Pt位于Fm范围内时,再次进行OPC,可以采用类似于上述的方法进行基于OPC结果确定最佳写入激光功率值的处理过程。然而,在写入激光功率值没有位于Pm范围内时,确定的方法包括:确定写入激光功率值Pt和上限值PJ或者下限值PK(接近写入激光功率值Pt)的平均值作为最佳写入激光功率值。于是,可以不仅考虑β值,而且还考虑C1误差值来确定最佳写入激光功率值。
控制器16将指示从如上所述的OPC结果获得的最佳写入激光功率值提供至如图1所示的激光功率控制电路20,而激光功率控制电路20控制激光驱动器19,使得从光接收器19发射至光盘D的记录激光束的功率值与最佳写入激光功率值一致。
B-2.操作
上面说明了按照本发明第二实施例的光盘记录/再现装置的结构。由上述构成的光盘记录/再现装置进行记录时间的操作将参见按照储存在ROM内的程序由图28所示的控制器16执行的过程流程图予以说明。
首先,用户在光盘记录/再现装置中设置光盘D,并指令以某种记录速度开始记录。然后,控制器16控制各个装置部件,以采用OPC(Sb1步)执行光盘D的测试区112a内的参数记录。具体地说,将测试记录用的信号送到编码器17,并控制激光功率控制电路20,使写入激光功率值在15个阶段内受到改变。采用这种方式控制各个装置的部件,即,对每个写入激光功率值记录一子码帧用的EFM信号,并对于所有的15帧记录EFM信号进行测试记录。
在控制各个部件执行测试记录时,控制器16依据从测试记录区的再现信号获得的OPC结果确定如上所述的最佳写入激光功率值(Sb2步)。之后,控制器16控制激光功率控制电路20,伺服电路13等,以便由用户设定的记录速度和如上述确定的最佳激光功率值执行记录,并对应于光盘D进行记录过程(Sb3步)。
在本实施例中,在正常记录前进行测试记录,依据β值和指示从测试记录的再现信号得到的记录状态的水平的C1误差值测定最佳写入激光功率值,并可以用测定的写入激光功率值进行记录。也就是,只考虑常用的OPC中的β值测定最佳写入激光功率值。然而,按照本发明,可以不仅考虑β值,而且还考虑C1误差值测定最佳写入激光功率值。所以,与只考虑β值的功率测定方法相比较,可以减低由于各个光盘D产品的差别(卷曲,崎变,染料不均匀等)引起记录水平变坏。例如,在利用对于β值有效改变的具有β值有效改变点特性的光盘(见图48)进行对应于β有效点的写入激光功率值记录时。但是,有时不能获得满意的记录状态水平。然而,在本实施例中,不仅考虑β值,而且还考虑其它有关记录水平的参数来测定最佳写入激光功率值。所以,可以抑制由β改变点所引起的记录水平变坏。
B-3改进例
可以用如下不同的方式改进第二实施例。
B-3-1改进例1
第二实施例的方法包含:
对应于多个写入激光功率值,从测试记录区的再现信号测量β值和C1误差值;并利用这些参数测定最佳激光功率值。然而,所述方法可以包含:从测试记录区的再现信号获得对于记录状态品质的其它参数;并利用所获得的参数测定最佳写入激光功率值。
例如,如图15所示,采用帧同步信号检测电路140a和计数器电路140b替代第二实施例中的C1误差检测电路23。除了β值外,可以利用由帧同步信号检测电路140a和计数器电路140b检测的帧同步信号检测频率测定最佳写入激光功率值。这里,类似于第二实施例,帧同步信号检测电路140a和计数器电路140b对测试记录区的再现RF信号进行EFM调制,并从所获得的信号检测EFM帧同步信号,以及对检测频率计数,并将频率输出到控制器16。
在利用帧同步信号的检测频率代替C1误差值时,即,使用β值和帧同步信号的检测频率测定最佳写入激光功率值时,类似于第二实施例,首先,从帧同步信号检测电路140a和计数器电路140b提供的帧同步信号的检测频率,和从β检测电路24提供的β值获得指示写入激光功率值和β值之间关系的写入功率-β特性。另外,如图29所示,获得指示写入激光功率值和帧同步信号检测频率之间关系的写入功率-帧同步信号检测频率特性。
所述方法还包括:类似于第二实施例,对应于由预-储存β优选值信息指示的β值规定写入激光功率值Pt;引用如图29所示的写入功率-帧同步信号检测频率;获得在由预-储存帧同步信号检测频率优选值信息指示的范围内(在本实施例中,帧同步信号检测频率为90或以上)设定频率和规定写入激光功率的可能范围SPm用的写入激光功率的上限值SPJ(在本实施例中为16.5mW)和下限值SPK(在本实施例中为12.5mW)。
在从β值规定写入激光功率值Pt时,写入激光功率的可能范围由帧同步信号检测频率规定,并且如同第二实施例,所述的写入激光功率值Pt位于SPm范围内,以及将写入激光功率值Pt确定为最佳写入激光功率值。另一方面,在写入激光功率值Pt不在范围SPm内时,再次执行OPC,同时可以依据类似于上述的OPC结果进行测定最佳写入激光功率值的过程。然而,在写入激光功率值Pt不在SPm范围内时,测定方法包括:测定写入激光功率值Pt和上限值SPJ或下限值SPK(接近于写入激光功率值Pt)的平均值作为最佳写入激光功率值。于是,不仅β值,而且帧同步信号的检测频率均可以测定最佳写入激光功率值。
另外,如图17所示,提供抖动检测电路160代替C1误差检测电路23,所以可以由抖动检测电路160而不是C1误差值所检测到的抖动值来确定最佳写入激光功率值。这里,抖动检测电路160包括均衡器,限幅器锁相回路(PLL)电路和抖动测量部件。从RF放大器12提供的RF信号通过均衡器,并由限幅器对通过均衡器的信号进行二进制。另外,二进制的RF信号被加到PLL和抖动测量部件。在PLL电路中,由二进制的RF信号产生时钟信号,并将所产生的时钟信号送到抖动测量部件。所述的抖动测量部件从时钟和二进制RF信号测量抖动作为记录位的标准偏差以及参考长度偏差。
在利用抖动值而不是C1误差值时,即,在利用β值和抖动值测量最佳写入激光功率值时,首先,类似于第二实施例,获得指示写入激光功率值和从抖动检测电路160提供的抖动值以及从β检测电路24提供的β值之间的关系的写入功率-β特性(见,图25)和从β检测电路24提供的β值。另外,也可以如图30所示,获得指示写入激光功率值和抖动值之间关系的写入功率-抖动特性。
所述的方法还包括:类似于第二实施例,规定对应于由预-储存的β优选值信息指示的β值的写入激光功率值Pt(见,图25);引用图30所示的写入功率-抖动特性;并获得写入激光功率的上限值JPJ(本例中为16.9mW)和下限值JPK(本例中为12.1mW),用于将该值设定在由预储存到抖动优选值信息指示的范围内(在本例中为抖动值35或小于该值),并规定写入激光功率的可能范围JPm。
在用这种方法从β值规定写入激光功率值Pt时,由抖动值规定写入激光功率值的可能范围JPm,以及如第二实施例,写入激光功率值Pt位于范围JPm内,并将该写入激光功率值Pt作为最佳写入激光功率值。另一方面,在写入激光功率值Pt不在范围JPm内时,再次进行OPC,并可以基于类似于上述的OPC结果进行测定最佳写入激光功率值的过程。另外,在写入激光功率值Pt不在范围JPm内时,测定方法包括将写入激光功率值Pt和上限值JPJ或下限值JPK(接近于写入激光功率值)的平均值作为最佳写入激光功率值。
此外,如图19所示,用偏差检测电路180代替C1误差检测电路23,并可以利用由偏差检测电路180检测的偏差值测定最佳写入激光功率值。这里。偏差检测电路180包括均衡器,限幅器和类似于抖动检测电路160的PLL电路。还有,代替抖动测量部件,采用偏差测量部件从PLL电路提供的时钟信号以及从限幅器提供的二进制RF信号进行偏差测量(记录位和记录长度的偏差)。
在采用偏差值而不用C1误差值时,即,在利用β值和偏差值测量最佳写入激光功率值时,首先,类似于第二实施例,写入功率-β特性(见,图25)指示写入激光功率值和从偏差检测电路180提供的偏差值所获得的β值以及从β检测电路24提供的β值之间的关系。而,写入功率-偏差特性指示写入激光功率值和图31所示的偏差值之间的关系。
所述的方法还包括:规定由对应于类似于第二实施例的预-储存β优选值信息指示的β值写入激光功率值Pt(见,图25);引用图31所示的写入功率-偏差特性;以及获得写入激光功率的上限值DPJ(在本例中为14.5mW)和下限值DPK(在本例中为12mW),用于将由预-储存偏差优选值信息指示的值设定在范围(在本例中为-20-20的偏差值)内,并规定写入激光功率的可能范围DPm。
在采用这种方法由β值规定写入激光功率值Pt时,写入激光功率值的可能范围DPm由偏差值规定,并且写入激光功率值Pt位于类似于第二实施例的范围DPm内,可以将写入激光功率值视为最佳写入激光功率值。另一方面,在写入激光功率值不在范围DPm内时,再次进行OPC,依据OPC的结果进行类似于上述的最佳写入激光功率值测定的过程。另外,在写入激光功率值不在范围DPm内时,测定的方法包括测量写入激光功率值Pt和上限值DPJ或下限值DPK(接近于写入激光功率值Pt)的平均值作为最佳写入激光功率值。
另外,代替C1误差值,可以采用例如在再现测试记录区时从RF放大器12提供的RF信号的幅度,调制度以及反射率等值作为参数来测定最佳写入激光功率值。这里,写入激光功率值和RF信号的幅度值之间的关系基于下述特性,即,幅度值随着写入激光功率值的上升而上升,而且幅度值上升到某一程度时达到饱和,如图32所示。在利用RF幅度值测定最佳写入激光功率值时,在再现如上所述的测试记录区时从RF放大器12提供的RF信号得到写入功率-幅度特性。所述的方法还包括:引用所获得的特性;由获得的写入激光功率的上限值RPJ和下限值RPK用于将写入激光功率设定在由RF信号的幅度的预-储存的优选值信息指示的范围内,并规定写入激光功率值的可能范围RPm。另外,类似于第二实施例,可以依据范围RPm和由β值规定的写入激光功率值Pt测定最佳写入激光功率值。
此外,调制度和写入激光功率值之间的关系具有类似于图33所示的RF信号的幅度与写入激光功率值之间的关系。在利用调制度测定最佳写入激光功率值时,可以从上述的再现测试记录区时RF放大器2提供的RF信号得到写入功率-调制度特性。所述的方法还包括:引用所获得的特性;获得写入激光功率的上限值HPJ和下限值HPK,引用将写入激光功率设定在由调制度的预-储存的优选值信息指示的范围内,并规定写入激光功率值的可能范围HPm。另外,类似于第二实施例,可以依据范围HPm和从类似于第二实施例的β值规定的写入激光功率值Pt来测定最佳写入激光功率值。还有,假设RF信号的最大值是Imax,而最小值是Imin,则利用调制度公式,调制度=(Imax-Imin)获得调制度。
还有,反射率和写入激光功率值之间的关系具有线性函数的特性,其中反射率随着写入激光功率值的增加而下降,见图34。在利用反射率测定最佳写入激光功率值时,可以在再现如上所述的测试记录区时从RF放大器12提供的RF信号得到写入功率-反射率特性。所述的方法还包括:引用所获得的特性;获得写入激光功率的上限值HSPJ和下限值SHPK,用于将写入激光功率设定在由反射率的预-储存优选值信息指示的范围内,并规定写入激光功率值的可能范围HSPm。另外,类似于第二实施例,可以依据范围HSPm和从β值规定的写入激光功率值Pt测定最佳写入激光功率值。还有,可以通过从RF放大器12提供的RF信号以及平均信号获得反射率。
B-3-2改进例2.
在第二实施例以及先前的改进例中,从按照测试记录的结果所获得的β值规定一点的写入激光功率值,而从其它的参数(C1误差值,帧同步信号的检测频率,抖动值,偏差值,RF信号的幅度,调制度和反射率)获得写入激光功率值的可能范围。然而,所示的方法可以包括:利用其它的参数规定一个点的写入激光功率值;并利用β值规定写入激光功率的可能范围。
另外,所述的方法可以包括:利用两个或多个参数,例如记录状态的水平,如C1误差值,帧同步信号的检测频率,抖动值,RF信号的幅度,调制度和反射率,来测定最佳写入激光功率值。例如,所述方法可以包括:利用C1误差值规定一点的写入激光功率值;利用帧同步信号的检测频率规定写入激光功率值的可能范围;以及依据所规定的写入激光功率值和范围来测定最佳写入激光功率值。
另外,在第二实施例中,一点的写入激光功率值可以由一个参数规定(例如在第二实施例中的β值),而写入激光功率值的可能范围由其它参数(在第二实施例中的C1误差值)规定。在由参数规定的预定的写入激光功率值位于由其它的参数规定的范围内时,一点的写入激光功率值作为最佳写入激光功率值。然而,还可以由其它的方法测定最佳写入激光功率值。例如,从β值规定的的写入激光功率值和从C1误差值规定的一点的写入激光功率值的平均值作为最佳写入激光功率值。
还有,可以利用两个涉及记录状态水平的参数,例如β值和C1误差值获得最佳写入激光功率值。然而,也可以采用前述参数(C1误差值,帧同步信号的检测频率,抖动值,偏差值,EF信号的幅度,调制度和反射率)中的三个或多个。例如,在使用三个参数,如,β值,C1误差值,和帧同步信号的检测频率值,类似于第二实施例所述获得最佳写入激光功率值时,写入激光功率值Pt由写入功率-特性(见,图25)规定,而写入激光功率值的可能范围从写入功率-C1误差特性和写入功率-帧同步信号检测频率特性获得。例如,如图35所示,在写入激光功率值的可能范围由写入功率-C1误差值规定时,写入激光功率值的可能范围SPm由写入功率-帧同步信号检测频率规定,而最佳写入激光功率值可以依据叠加至范围SPm上(范围KPm=本例中的范围Pm)的部分范围Pm的范围KPm,以及写入激光功率值Pt来规定。
C.第三实施例
下面将参见图36和37说明按照本发明第三实施例的光盘记录/再现装置。如图36所示,按照本发明第三实施例的光盘记录/再现装置不同于按照本发明第二实施例的光盘记录/再现装置在于,在第二实施例中没有提供β检测电路24。C1误差检测电路利用在再现类似于第二实施例中的测试记录区时由1RF放大器12所提供的RF信号测量C1误差,并输出C1误差值作为对控制器16的测量结果。
第三实施例中的控制器16在测定最佳写入激光功率值的方法上不同于第二实施例中的控制器16。图37表示在第三实施例中利用控制器16测定最佳写入激光功率值过程的控制器16的功能结构。如图37所示,控制器16具有C1误差优选值储存器220,以及最佳写入激光功率值测定部分221。
所述的最佳写入激光功率值测定部分221得到指示写入激光功率值和由正常记录前进行的OPC所获得结果(多个写入激光功率值和对应于该写入激光功率值的C1误差值)的如图38所示的C1误差值之间关系的写入功率-误差特性。最佳写入激光功率值测定部分221依据储存在C1误差优选值储存器220中的C1误差优选值信息,以及从地址检测电路14提供的盘类型信息规定写入激光功率值。在C1误差优选值储存220中,对于每种类型(不同的制造和染料)的光盘D储存用于执行最佳记录的指示C1误差值的抖动优选值信息。这里,储存在C1误差优选值储存器220内的信息是一个由先前实验对于每个光盘获得的值。
在获得指示写入激光功率值和如图38所示的C1误差值之间关系的功率-C1误差特性时,最佳写入激光功率值测定部分221可以获得对应于储存在C1误差优选值储存器220内的大量光盘类型的从C1误差优选值信息的地址检测电路14提供的对应于光盘类型的C1误差优选值信息CJK(可以等于0)。另外,最佳写入激光功率值测定部分221引用依据OPC结果获得的功率-C1误差特性,并测定对应于由所获得的误差值信息指示的C1误差值的写入激光功率值Pt’。还有,控制器16控制激光功率控制电路20的各个装置部件,使得具有测定的写入激光功率值Pt’的激光束从光接收器10发射至光盘D。
按照第三实施例,可以考虑C1误差值,而不是β值来作为参数测定最佳写入激光功率值。例如,对于在β值具有有效改变点的特性的光盘进行对应于该β有效点的写入激光功率值的记录。由此,在某些情况下就不能得到满意的记录状态水平。然而,在本实施例中,部件考虑β值,而且还考虑其它有关记录状态的水测定最佳写入激光功率值。所以,可以抑制由β有效点引起的记录状态水平的变坏。
还有,在第三实施例中,提供C1误差检测电路23从测试记录区的再现信号检测C1误差值,并将在指示预-储存的优选值的C1误差值的写入激光功率值作为最佳写入激光功率值。然而,所述的方法可以包括:检测有关记录状态,例如抖动值,帧同步信号的检测频率,偏差值和RF信号的幅度的水平的参数;以及利用这些参数中的任一个测定最佳写入激光功率值。
还有,在第三实施例中,将对应于C1误差优选值储存器220中储存的C1误差值的优选值CJK的写入激光功率值Pt’作为最佳写入激光功率值。然而,在最佳写入激光功率值不是从β参数而是从其它参数测定时,可以利用下述方法。
例如,在从测试记录区的RF信号检测帧同步信号的检测频率时,可以得到如图39的实线所表示的写入功率-帧同步信号检测频率特性。在获得该特性时,测定最佳写入激光功率值的方法首先包括:获得接近写入功率-帧同步信号检测频率特性二次函数作为利用最小均方方法(图39中由点划线表示的)由实线表示的测试记录的结果。例如,在二次函数用帧同步信号检测频率(SYEQ)=ap2+bp+c表示时(其中P表示指示写入激光功率值的可变值,而a,b,c表示固定值),微分该二次函数,就可以得到每单位写入激光功率的帧同步信号检测频率的变量=ap+b(下面称为ΔNSYEQ)。用这种方法得到的ΔNSYEQ和写入激光功率值之间的关系可以用如图40所示的线性函数表示,引用图40表示的写入功率-ΔNSYEQ特性,和对应于预-储存的优选ΔNSYEQ值SK的写入激光功率值Pt″作为最佳写入激光功率值。
还有,为了从由EFM-解调测试记录区的RF信号得到的信号检测C1误差值,和测定最佳写入激光功率值,类似于利用帧同步信号检测频率测定最佳写入激光功率值,接近于如图41所示的写入功率-C1误差值特性的二次函数可以通过最小均方方法(由图41所示的点划线)获得。例如,类似于利用帧同步信号的检测频率,微分所示的二次函数,并得到如图42所示的写入功率-ΔC1误差特性。引用图42所示的写入功率-ΔC1误差特性,并测定对应于预-储存的优选的ΔC1误差值的写入激光功率值PCt作为最佳写入激光功率值。
另外,在上述的改进例中,利用最小均方方法获得接近于写入功率-帧同步信号检测频率的二次函数,或者写入功率-误差特性。在利用微分二次函数获得的线性函数表示的ΔNSYEQ或ΔC1误差特性指示优选值时的写入激光功率值作为最佳值。然而,可使用的方法包含:获得类似于上述的接近写入功率-帧同步信号检测频率的二次函数;在由所获得的二次函数(点划线)的曲线和指示帧同步信号检测频率=0的线所限定的部分区域设定为S时,测定具有区域S的40%的写入激光功率值。在这种情况下,可以由先前的实验获得具有该区域比率的写入激光功率值,并储存由实验结果获得的区域比率。
另外,如图44所示,代替前述的测定具有区域S的比率的最佳写入激光功率值,获得类似于如上述获得的二次函数的曲线和表示预设的帧同步信号检测频率值(在本实施例中帧同步信号检测频率=50)的线F50相交作为写入激光功率值PSK,PSJ。并从这些值可以测定最佳写入激光功率值。例如,如图44所示,由下式得到最佳写入激光功率值PS。
PS=(PSJ-PSK)*0.4+PSK
利用该等式,得到写入激光功率值PSK和PSJ之间的值(PSJ的60%的值)作为相交值,是PSK的40%值,并可以作为最佳写入激光功率值。
另外,使用检测帧同步信号的检测频率和C1误差值的方法,由最小均方法利用二次函数表示各特性,并对二次函数微分或得到由二次函数曲线包围的区域,并获得最佳写入激光功率值,该方法不仅可用于如帧同步信号检测频率和C1误差参数的测定,也可用于如抖动值参数的测定。
D第四实施例
下面将说明按照本发明第四实施例的光盘记录/再现装置。按照第四实施例的光盘记录/再现装置的结构基本上类似于第二实施例的光盘记录/再现装置,其不同点在于用控制器16测定最佳写入激光功率值的方法上。所以,下面将参见图45说明由第四实施例的光盘记录/再现装置的控制器6测定最佳写入激光功率值的方法,图中表示用于测定最佳写入激光功率值的过程的控制器16的功能结构。
如图45所示,第四实施例中的控制器45具有Δβ值储存器300,β有效点检测器301,和最佳写入激光功率值测定部分302。
所述的β有效点检测器301获得指示写入激光功率值和在正常记录前从OPC得到的结果(多个激光功率值和对应于各个激光功率值的β值)所表示在图46上的β值之间关系的写入功率-β特性。另外,如图47所示,获得指示每单位写入激光功率值的β值改变量,即β值的微分值Δβ,和写入激光功率值之间关系的写入功率-Δβ特性。
所述的β有效点检测器301检测β值和写入激光功率值之间关系中各部分的不同,即,依据写入功率-Δβ特性的β值具有有效改变的β有效点和储存在Δβ值储存器300中的Δβ值信息。所述Δβ储存300储存用于检测由先前的实验获得的β有效点的Δβ值的阈值BTS。如图46所示,所述的β有效点BT是与其它部分相比具有较小Δβ值的部分。所以,可以将检测的Δβ值小于储存在Δβ储存器300中的Δβ值的部分作为β有效点。在图46的例子中,接近15-16mW的写入激光功率值的部分是β有效点BT。从图47可见,β值有效点的部分(接近写入激光功率值的部分)的Δβ值小于任何其它部分的值。所述的β有效点检测器301检测Δβ值小于储存在Δβ值储存器300内的Δβ值的阈值BTS的部分作为β有效点BT,并获得对应于该β值有效点BT的写入激光功率值(下限值PBK至上限值PBJ)。
另外,除了用于检测β值有效点BT的Δβ值的阈值BTS外,用于规定写入激光功率值的可能范围的Δβ值的阈值BCS被储存在Δβ值储存器300内。最佳写入激光功率值测定部分参见图47所示的写入功率-Δβ特性,并规定写入激光功率值的范围(PBm1,PBm2),其中Δβ值大于储存在Δβ储存器300中的阈值BCS。还有,最佳写入激光功率值测定部分302测定写入激光功率值,该值小于如上所述的由β有效点检测器301获得的对应于β值有效点BT的写入激光功率值PBK,并且属于写入激光功率值的范围PBm1和PBm2,由此测定的写入激光功率值作为最佳写入激光功率值。
在第四实施例中的控制器16控制光盘记录/再现装置的各个装置部件,使所述的记录以上述测定的最佳写入激光功率值进行。为了对于具有β有效点特性的光盘进行记录,使所进行记录的光盘具有写入激光功率值(在本实施例中为15.5mW,见图47)对应于β值具有有效改变的β值有效点的特性。因此,在某些情况下不能得到满意的记录水平。然而,在本实施例中,如上所述获得Δβ值和检测β有效点,使写入激光功率值小于对应于β有效点的写入激光功率值时进行记录。所以,因为β有效点从而可以阻止记录水平的变坏。
此外,在获得Δβ值并用于测定最佳写入激光功率值时,其它的参数(C1误差值,帧同步信号检测频率,抖动值,偏差值,反射率)可用于测定最佳写入激光功率值。例如,在除了Δβ值外还应用帧同步信号检测频率的C1误差值时,类似于第四实施例从写入功率-Δβ特性获得写入激光功率值的可能范围。还有,写入激光功率值的可能范围可以从写入功率-C1误差特性和写入功率-帧同步信号检测频率特性获得。例如,如图48所示,从写入功率-C1误差特性规定写入激光功率值的可能范围Pm,以及从写入功率-帧同步信号检测频率特性规定写入激光功率值的可能范围SPm,还可以从写入功率-Δβ特性规定写入激光功率值的可能范围PBm。在这种情况下,可以测定设在范围Pm,SPm,BPm的叠加部分的范围KPm内的写入激光功率值为最佳写入激光功率值。
E改进例
还有,本发明不限于上述的各种实施例,还可以作如下的各种改进。
在各个实施例中,用恒定的线速度CLV方法进行记录,其中主轴马达11以恒定的线速度驱动光盘D。然而,可以采用以恒定的角速度驱动光盘D的CAV方法进行记录。在采用恒定的角速度CAV方法进行记录时,在记录位置趋于盘的外圆周侧时,记录线速度增加。所以,需要按照记录线速度的改变来改变写入激光功率值。因此,在进行记录时,所述的CAV方法包括:在不同点实施例中,对于多个记录线速度需进行如上述的测定最佳写入激光功率值的过程;获得指示多个记录速度和对应于多个记录速度的最佳写入激光功率值之间关系的记录速度-最佳写入激光功率特性;引用所述的记录速度-最佳功率特性;并按照记录线速度的改变来改变最佳写入激光功率值。
另外,在上述的第二和第三实施例和改进例中,从测试记录区的再现信号获得两个或多个参数,例如β值和C1误差值(第三实施例),并将所获得的参数引用测定最佳写入激光功率值。然而,在检测各个参数的电路的能力不足时,以及采用与以高速度记录得到最佳写入激光功率值的记录速度相同的高速度再现记录区时,则采用相同的时间测量多个参数的过程就不能跟上再现速度。因此,有时不能精确地从再现参数获得诸如β值和C1误差值。所以,需提出减少获得参数的取样周期(如,两倍的周期)。然而,在获得C1误差值时,最大的C1误差数是48(通常是98),但存在精度方面的问题。
考虑到利用高速记录的OPC,即以高记录速度进行OPC精确地获得多个参数的困难,则以低于记录速度的速度进行再现,并从低的再现速度获得的再现信号测量多个参数,从而可以更精确地得到多个参数。
另外,其它的方法包括:以高速进行OPC的记录;将记录区的再现进行多次;并对多次再现所获得的各个再现信号所测量的参数进行平均,以提高参数的测量精度。还有,将第一再现信号只用于测量β值,而第二再现信号用于获得C1误差值。采用这种方法可以将每个所获得的再现信号用于测量任一类的参数。当然,可以采用低于记录速度的速度进行多个再现。
另外,在不同的实施例中,例如使用CD-R如同使用上述的光盘D一样。然而,本发明也可用于CD-RW,DVD-R,DVD随机存取储存器(DVD-RAM),相变-重写的(PC-RW)等的记录。
还有,对于用于执行包括最佳写入激光功率值的测定过程的记录过程的控制器16可以由专用的硬件电路,中央处理单元(CPU)等构成。当执行储存器,例如只读储存器(ROM)储存的程序时,由软件实现处理过程。在用这种方式由软件进行处理过程时,可以将不同的记录介质,例如CD-ROM和其内记录由计算机实现处理的程序的软磁盘提供给用户,或者通过传输介质例如互联网将程序提供给用户。
如上所述,按照本发明的第二方面,不管欲记录各个光盘产品的差别,均可以减少产生记录误差。
Claims (7)
1. 一种确定在光盘上记录信号用的写入光束的功率的方法,包含:
记录步骤,通过在实际记录前在光盘的预定测试区上记录信号而进行测试记录;
再现步骤,从光盘的预定测试区再现信号;
根据再现信号产生第一记录特性,其中所述第一特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;
从第一记录特性获得第二记录特性,其中所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;
确定步骤,使用Δβ的优选范围根据获得的第二记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入光束的功率;并且
按照第一记录特性并在记录功率范围内确定写入光束的优选功率。
2. 根据权利要求1所述的方法,还包含:
按照再现信号产生第三记录特性,该第三记录特性表示写入光束的功率和多个与记录的特性有关的定性参数中的至少一个之间的关系,而且是从检测包含在光盘的再现信号内的帧同步信号的频率、包含在再现信号内的C1误差、再现信号的抖动、再现信号的偏差、再现信号的调制度、激光束从光盘的反射率和再现信号的幅度所组成的参数组中选择的;
其中确定步骤包括除了所获得的第二记录特性之外还根据所产生的第三记录特性确定记录功率范围。
3. 如权利要求1所述的方法,其中所述的再现步骤包含以小于测试记录时的信号写入速率的读出速率再现信号。
4. 如权利要求1所述的方法,其中再现步骤包含通过在测试区上进行多次再现时间而再现多个信号的步骤。
5. 如权利要求1所述的方法,其中所述确定步骤包括确定被分成较高侧和较低侧的记录功率范围,而且所述确定步骤还包括将写入光束的优选功率确定在所确定的记录功率范围的较低侧之内。
6. 一种利用具有优选功率的写入光束在光盘上记录信号的装置,该装置包含:
测试记录部分,所述测试记录部分在实际记录前在光盘的预定测试区上进行信号的测试记录;
再现部分,从光盘的预定测试区再现信号;
产生部分,所述产生部分按照再现信号产生第一记录特性,所述第一记录特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;所述产生部分从第一记录特性进一步产生第二记录特性,其中所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;以及
确定部分,所述确定部分使用Δβ的优选范围根据第二记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入光束的功率;并且按照第一记录特性并在记录功率范围内确定写入光束的优选功率。
7. 一种利用具有优选功率的写入光束在光盘上记录信号的装置,该装置包含:
测试记录部分,所述测试记录部分在实际记录前在光盘的预定测试区上进行信号的测试记录;
再现部分,从光盘的预定测试区再现信号;
产生部分,按照再现信号产生第一记录特性,所述第一记录特性表示作为写入光束功率的函数的β值的特性,β值是根据再现信号的幅度获得的;所述产生部分从第一记录特性产生第二记录特性,所述第二记录特性表示作为写入光束功率的函数的Δβ的特性,而Δβ表示单位写入光束的功率量的第一特性中的β值的变化;所述产生部分根据再现信号产生第三记录特性,所述第三记录特性表示写入光束的功率和多个与记录的特性有关的定性参数中的至少一个之间的关系,而且是从检测包含在光盘的再现信号内的帧同步信号的频率、包含在再现信号内的C1误差、再现信号的抖动、再现信号的偏差、加到激光束的调制度、激光束从光盘的反射率和再现信号的幅度所组成的参数组中选择的;以及
确定部分,所述确定部分使用Δβ的优选范围按照第二记录特性和第三记录特性确定记录功率范围,该Δβ的优选范围是为实现优选记录而预定的,从而在记录功率范围内确定写入光束的功率并且按照第一记录特性、第二记录特性和第三记录特性并在记录功率范围内确定写入光束的优选功率。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-28774 | 2001-02-05 | ||
JP200128774 | 2001-02-05 | ||
JP2001028774 | 2001-02-05 | ||
JP200158866 | 2001-03-02 | ||
JP2001-58866 | 2001-03-02 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021025509A Division CN1252687C (zh) | 2001-02-05 | 2002-01-25 | 调节记录速度和激光功率的光盘装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1805021A CN1805021A (zh) | 2006-07-19 |
CN100423092C true CN100423092C (zh) | 2008-10-01 |
Family
ID=36866989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101286647A Expired - Fee Related CN100423092C (zh) | 2001-02-05 | 2002-01-25 | 调节记录速度和激光功率的光盘装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100423092C (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5737289A (en) * | 1994-05-31 | 1998-04-07 | Sony Corporation | Data recording apparatus adapted for recording data signals onto an optical recording medium |
JPH10312568A (ja) * | 1997-05-09 | 1998-11-24 | Ricoh Co Ltd | 光ディスク装置 |
US5862103A (en) * | 1995-04-10 | 1999-01-19 | Nikon Corporation | Magneto-optical recording method capable of determining optimum laser beam intensities |
US6157609A (en) * | 1998-09-14 | 2000-12-05 | Matsushita Electric Industrial Co., Ltd. | Recording medium, recording apparatus and recording method |
-
2002
- 2002-01-25 CN CNB2005101286647A patent/CN100423092C/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5737289A (en) * | 1994-05-31 | 1998-04-07 | Sony Corporation | Data recording apparatus adapted for recording data signals onto an optical recording medium |
US5862103A (en) * | 1995-04-10 | 1999-01-19 | Nikon Corporation | Magneto-optical recording method capable of determining optimum laser beam intensities |
JPH10312568A (ja) * | 1997-05-09 | 1998-11-24 | Ricoh Co Ltd | 光ディスク装置 |
US6157609A (en) * | 1998-09-14 | 2000-12-05 | Matsushita Electric Industrial Co., Ltd. | Recording medium, recording apparatus and recording method |
Also Published As
Publication number | Publication date |
---|---|
CN1805021A (zh) | 2006-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1252687C (zh) | 调节记录速度和激光功率的光盘装置 | |
KR100288783B1 (ko) | 광기록매체의 기록 광파워 검출저장 및 이를 이용한 기록 광파워 조절장치와 그 방법 | |
US6678228B1 (en) | Method and apparatus for recording information in which the average power of a pulse is adjusted according to control data | |
US8045438B2 (en) | High frequency modulation of a light beam in optical recording | |
EP1286344A2 (en) | Optical disc apparatus with laser power control matching linear recording velocity | |
KR101161673B1 (ko) | 복조 장치, 디스크 드라이브 장치, 위상 조정 방법 | |
CN100423092C (zh) | 调节记录速度和激光功率的光盘装置 | |
US20050219981A1 (en) | Recording apparatus and recording method | |
US20100195459A1 (en) | Adjustment Method Of Optimum Write Power And Optical Write/Retrieval Device | |
JP2001034945A (ja) | ディスクドライブ装置、及び未記録領域検出方法 | |
KR100782611B1 (ko) | 노후된 광디스크의 최적 기록광파워 검출장치 및 검출방법 | |
US7450482B2 (en) | Method for optimizing write parameters of optical storage medium and recording device therefor | |
US20040145993A1 (en) | Writing waveform controlling method and optical disk apparatus | |
JP4474372B2 (ja) | 光学的情報記録方法および光学的情報記録装置 | |
CN101404163B (zh) | 再现条件控制方法、光盘驱动装置 | |
EP1750257B1 (en) | Optical disc drive apparatus and signal recording method | |
US7417931B2 (en) | Information recording method, information recording apparatus and information recording medium | |
WO2005096277A1 (ja) | 情報記録装置、情報記録方法及び情報記録プログラム | |
JP2004139649A (ja) | 情報記録装置とホスト装置 | |
CN102290058A (zh) | 记录设备、记录方法和程序 | |
CN101025954A (zh) | 确定光盘装置中的最佳擦除功率的方法 | |
JP4023406B2 (ja) | 再生信号処理回路及びこれを備えた光ディスク装置 | |
US20090147647A1 (en) | Information recording method and information recording/reproducing apparatus | |
JP2003187445A (ja) | 情報記録装置 | |
US7596065B2 (en) | Optical disk recording and reproducing device allowing simple and fast setting of an optimum record power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081001 Termination date: 20140125 |