CN100422107C - Method for preparing magnesia-alon ceramic material by using waste magnesia-carbon brick and magnesia-alumina-carbon brick - Google Patents
Method for preparing magnesia-alon ceramic material by using waste magnesia-carbon brick and magnesia-alumina-carbon brick Download PDFInfo
- Publication number
- CN100422107C CN100422107C CNB200610012954XA CN200610012954A CN100422107C CN 100422107 C CN100422107 C CN 100422107C CN B200610012954X A CNB200610012954X A CN B200610012954XA CN 200610012954 A CN200610012954 A CN 200610012954A CN 100422107 C CN100422107 C CN 100422107C
- Authority
- CN
- China
- Prior art keywords
- magnesia
- waste
- carbon brick
- alumina
- carbon bricks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 29
- 239000011449 brick Substances 0.000 title claims abstract description 28
- 239000002699 waste material Substances 0.000 title claims abstract description 28
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- -1 10-60% Substances 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 238000000498 ball milling Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 3
- 206010013786 Dry skin Diseases 0.000 claims 1
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 239000011819 refractory material Substances 0.000 abstract description 8
- 238000005245 sintering Methods 0.000 abstract description 8
- 238000000465 moulding Methods 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 238000004064 recycling Methods 0.000 abstract description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种利用废旧镁碳砖和镁铝碳砖制备镁阿隆陶瓷材料的方法,属废旧耐火材料的回收再利用,目的是成本低、易于工业化生产。本发明采用10-60%的废旧镁碳砖和90-40%的废旧镁铝碳砖为原料,经过粉碎、混合、干燥、压力成型和加热烧结处理多个步骤,制备镁阿隆陶瓷材料;XRD结果表明合成MgAlON的含量达到95%以上,具有和常规方法制备的镁阿隆陶瓷一样优异的性能;断口SEM照片显示其断裂方式主要以沿晶为主偶见穿晶断裂,说明其力学性能很好。
The invention discloses a method for preparing magnesia-alone ceramic materials by using waste magnesia-carbon bricks and magnesia-alumina-carbon bricks, which belongs to the recycling and reuse of waste refractory materials, and aims at low cost and easy industrial production. The present invention uses 10-60% of waste magnesia-carbon bricks and 90-40% of waste magnesia-alumina-carbon bricks as raw materials, and undergoes multiple steps of crushing, mixing, drying, pressure molding and heating and sintering to prepare magnesia-aron ceramic materials; The XRD results show that the content of the synthesized MgAlON reaches more than 95%, which has the same excellent properties as the magnesium-alon ceramics prepared by conventional methods; the SEM photos of the fracture show that the fracture mode is mainly intergranular and occasionally transgranular fracture, indicating its mechanical properties very good.
Description
技术领域 technical field
本发明涉及耐火材料制备,特别是一种废旧耐火材料的回收再利用。The invention relates to the preparation of refractory materials, in particular to the recovery and reuse of waste refractory materials.
背景技术 Background technique
钢铁工业每年要产生大量的废旧耐火材料,在我国目前只有很小一部分废旧耐火材料被二次使用或降级使用,主要是用作土壤调节剂或耐火浇注料中的骨料。但由于镁碳砖和镁铝碳砖等废旧耐火材料在二次使用或降级使用中存在着较大污染以及使用寿命短等问题,绝大部分废旧耐火材料都作为固体废弃物被掩埋掉,这不仅污染环境,而更重要的是浪费了可利用的资源。国内外目前还缺乏对废旧耐火材料进行回收和再利用的有效方法。The iron and steel industry produces a large amount of waste refractory materials every year. In my country, only a small part of waste refractory materials are used for secondary use or downgraded, mainly as soil conditioners or aggregates in refractory castables. However, due to the large pollution and short service life of waste refractory materials such as magnesia-carbon bricks and magnesia-alumina-carbon bricks in the secondary use or downgrade use, most of the waste refractory materials are buried as solid waste. Not only pollute the environment, but more importantly waste the available resources. At present, there is still a lack of effective methods for recycling and reusing waste refractory materials at home and abroad.
发明内容 Contents of the invention
本发明目的就是克服上述已有技术的不足,提供一种成本低、易于工业化生产的利用废旧镁碳砖和镁铝碳砖制备镁阿隆陶瓷材料的方法。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a method for preparing magnesia-aron ceramic materials by using waste magnesia-carbon bricks and magnesia-alumina-carbon bricks, which is low in cost and easy for industrial production.
本发明以废旧镁碳砖和镁铝碳砖为原料,利用其所含主要成分MgO、C和Al2O3,通过碳热还原氮化法制备镁阿隆(MgAlON)陶瓷材料。The invention uses waste magnesia-carbon bricks and magnesia-alumina-carbon bricks as raw materials, and utilizes the main components contained in them, MgO, C and Al 2 O 3 , to prepare magnesia-alon (MgAlON) ceramic materials through a carbothermal reduction and nitriding method.
本发明方法是:The inventive method is:
(1)按配方组配原料;原料配方按质量百分比计是:废旧镁碳砖,10-60%,废旧镁铝碳砖,90-40%;(1) Raw materials are assembled according to the formula; the raw material formula is: waste and old magnesia-carbon bricks, 10-60%, waste and old magnesia-alumina-carbon bricks, 90-40%;
其中,废旧镁碳砖所含主要成分按质量百分比计是:MgO,75-90%;C,10-25%;废旧镁铝碳砖所含主要成分按质量百分比计是:MgO,10-17%;Al2O3,75-82%;C,8-15%;Among them, the main components contained in waste magnesia-carbon bricks are: MgO, 75-90%; C, 10-25%; the main components contained in waste magnesia-carbon bricks are: MgO, 10-17% %; Al 2 O 3 , 75-82%; C, 8-15%;
(2)粉碎、混合;将原料在行星式球磨机中球磨6小时,研磨至粒径小于5μm;(2) Pulverizing and mixing; ball milling the raw materials in a planetary ball mill for 6 hours until the particle size is less than 5 μm;
(3)干燥;放入100℃干燥箱内干燥5小时;(3) dry; put into 100 ℃ drying box and dry for 5 hours;
(4)压力成型;按照0.5mL/10g的比例添加聚乙烯醇粘结剂,拌匀,在40MPa的压力下机压成型;(4) Pressure molding; add polyvinyl alcohol binder according to the ratio of 0.5mL/10g, mix well, and machine press molding under a pressure of 40MPa;
(5)加热烧结处理;通入纯度为99.99%的氮气,氮气压力为0.1-20MPa,温度为1500-1850℃,保温时间为2-6h。(5) Heating and sintering treatment: nitrogen gas with a purity of 99.99% is introduced, the pressure of the nitrogen gas is 0.1-20 MPa, the temperature is 1500-1850° C., and the holding time is 2-6 hours.
本发明适合于利用废旧镁碳砖和镁铝碳砖制备镁阿隆陶瓷材料。按照本发明方法生产的镁阿隆(MgAlON)陶瓷材料,XRD结果表明合成MgAlON的含量达到95%以上,具有和常规方法制备的镁阿隆陶瓷一样优异的性能;断口SEM照片显示其断裂方式主要以沿晶为主偶见穿晶断裂,说明其力学性能很好。本发明方法成本低、易于工业化生产,还可以减少环境污染。The invention is suitable for preparing magnesia-aron ceramic materials by using waste magnesia-carbon bricks and magnesia-alumina-carbon bricks. According to the magnesium alon (MgAlON) ceramic material produced by the inventive method, the XRD result shows that the content of synthetic MgAlON reaches more than 95%, and has the same excellent performance as the magnesium alon ceramic prepared by conventional methods; the fracture SEM photo shows that its fracture mode is mainly The transgranular fracture is mainly intergranular, indicating that its mechanical properties are very good. The method of the invention has low cost, is easy to industrialized production, and can also reduce environmental pollution.
附图说明 Description of drawings
图1为1500℃烧结温度下合成镁阿隆陶瓷材料的X射线衍射结果图;Fig. 1 is the X-ray diffraction result diagram of synthetic magnesium aron ceramic material under the sintering temperature of 1500 ℃;
图2为1700℃烧结温度下合成镁阿隆陶瓷材料的X射线衍射结果图;Fig. 2 is the X-ray diffraction result figure of synthetic magnesium aron ceramic material under the sintering temperature of 1700 ℃;
图3为1500℃烧结温度下合成镁阿隆陶瓷材料的扫描电镜照片;Fig. 3 is the scanning electron micrograph of synthetic magnesium aron ceramic material under the sintering temperature of 1500 ℃;
图4为1700℃烧结温度下合成镁阿隆陶瓷材料的扫描电镜照片。Fig. 4 is a scanning electron micrograph of a magnesium-aron ceramic material synthesized at a sintering temperature of 1700°C.
具体实施方式1Specific implementation mode 1
本发明较具体的方法之一是:One of the more specific methods of the present invention is:
(1)按配方组配原料;原料配方按质量百分比计是:废旧镁碳砖,30%,废旧镁铝碳砖,70%;(1) Raw materials are assembled according to the formula; the raw material formula is: waste and old magnesia-carbon bricks, 30%, waste and old magnesia-alumina-carbon bricks, 70%;
(2)粉碎、混合;将原料在行星式球磨机中球磨6小时,研磨至粒径小于5μm;(2) Pulverizing and mixing; ball milling the raw materials in a planetary ball mill for 6 hours until the particle size is less than 5 μm;
(3)干燥;放入100℃干燥箱内干燥5小时;(3) dry; put into 100 ℃ drying box and dry for 5 hours;
(4)压力成型;按照0.5mL/10g的比例添加聚乙烯醇粘结剂,拌匀,在40MPa的压力下机压成型;(4) Pressure molding; add polyvinyl alcohol binder according to the ratio of 0.5mL/10g, mix well, and machine press molding under a pressure of 40MPa;
(5)加热烧结处理;通入纯度为99.99%的氮气,氮气压力为0.1MPa,升温至1500℃(5℃/min),保温时间为2h。(5) Heating and sintering treatment: Nitrogen gas with a purity of 99.99% is introduced, the nitrogen pressure is 0.1 MPa, the temperature is raised to 1500° C. (5° C./min), and the holding time is 2 hours.
制得的镁阿隆陶瓷材料的结构表征:XRD结果显示合成出纯的MgAlON(图1),SEM照片显示(图3)MgAlON呈粒状,晶粒直接发育生长在一起,且从断口形貌看材料非常致密,其断裂方式主要以沿晶断裂为主。Structural characterization of the prepared magnesium-alon ceramic material: XRD results showed that pure MgAlON was synthesized (Figure 1), and SEM photos showed (Figure 3) that MgAlON was granular, and the grains directly grew together, and from the fracture morphology The material is very dense, and its fracture mode is mainly intergranular fracture.
具体实施方式2Specific implementation mode 2
本发明较具体的方法之二是:Two of the more specific methods of the present invention are:
(1)按配方组配原料;原料配方按质量百分比计是:废旧镁碳砖,50%,废旧镁铝碳砖,50%;(1) Raw materials are assembled according to the formula; the raw material formula is: waste and old magnesia-carbon bricks, 50%, waste and old magnesia-alumina-carbon bricks, 50%;
(2)粉碎、混合;将原料在行星式球磨机中球磨6小时,研磨至粒径小于5μm;(2) Pulverizing and mixing; ball milling the raw materials in a planetary ball mill for 6 hours until the particle size is less than 5 μm;
(3)干燥;放入100℃干燥箱内干燥5小时;(3) dry; put into 100 ℃ drying box and dry for 5 hours;
(4)压力成型;按照0.5mL/10g的比例添加聚乙烯醇粘结剂,拌匀,在40MPa的压力下机压成型;(4) Pressure molding; add polyvinyl alcohol binder according to the ratio of 0.5mL/10g, mix well, and machine press molding under a pressure of 40MPa;
(5)加热烧结处理;通入纯度为99.99%的氮气,氮气压力为0.1MPa,升温至1700℃(5℃/min),保温时间为5h。(5) Heating and sintering treatment: Nitrogen gas with a purity of 99.99% is introduced, the nitrogen pressure is 0.1 MPa, the temperature is raised to 1700° C. (5° C./min), and the holding time is 5 hours.
制得的镁阿隆陶瓷材料的结构表征:XRD结果显示合成出纯的MgAlON,由于其原料配比与实施方式1不同,所以合成的镁阿隆也处在不同的固溶区域,其XRD图的主峰峰位较图1略有漂移(图2),SEM照片显示(图4)MgAlON在高温条件和保温时间延长的情况下反应进行的更加完全,且从断口形貌看材料致密,其断裂方式主要以穿晶断裂为主,其性能较实施方式1有很大提高。Structural characterization of the prepared magnesium-alon ceramic material: XRD results show that pure MgAlON is synthesized. Since its raw material ratio is different from that of embodiment 1, the synthesized magnesium-alon is also in a different solid solution region. The XRD pattern The position of the main peak is slightly shifted compared with that in Figure 1 (Figure 2), and the SEM photo shows (Figure 4) that MgAlON reacts more completely under high temperature conditions and prolonged holding time, and the material is dense from the fracture morphology, and its fracture mode It is mainly based on transgranular fracture, and its performance is greatly improved compared with Embodiment 1.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200610012954XA CN100422107C (en) | 2006-07-14 | 2006-07-14 | Method for preparing magnesia-alon ceramic material by using waste magnesia-carbon brick and magnesia-alumina-carbon brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200610012954XA CN100422107C (en) | 2006-07-14 | 2006-07-14 | Method for preparing magnesia-alon ceramic material by using waste magnesia-carbon brick and magnesia-alumina-carbon brick |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1887785A CN1887785A (en) | 2007-01-03 |
CN100422107C true CN100422107C (en) | 2008-10-01 |
Family
ID=37577065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200610012954XA Active CN100422107C (en) | 2006-07-14 | 2006-07-14 | Method for preparing magnesia-alon ceramic material by using waste magnesia-carbon brick and magnesia-alumina-carbon brick |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100422107C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456738B (en) * | 2009-01-04 | 2011-11-16 | 北京科技大学 | Method for synthesizing MgAlON/beta-sialon composite ceramic material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101429042B (en) * | 2008-11-28 | 2012-06-27 | 首钢总公司 | Method for synthesis of MgAION with used sliding plate brick, magnesium-carbon brick and Al/AlN |
CN101962300A (en) * | 2010-08-25 | 2011-02-02 | 湖南湘钢宜兴耐火材料有限公司 | Regeneration method of steelmaking carbonic crushed brick |
CN106396690B (en) * | 2016-04-12 | 2020-05-01 | 瑞泰马钢新材料科技有限公司 | Novel magnesium-aluminum-carbon brick manufactured by utilizing carbon-containing residual ladle lining brick and production method and application thereof |
JP6279052B1 (en) * | 2016-10-27 | 2018-02-14 | 黒崎播磨株式会社 | Magnesia carbon brick and method for producing the same |
JP6624133B2 (en) * | 2017-03-16 | 2019-12-25 | 品川リフラクトリーズ株式会社 | Manufacturing method of magnesia-spinel fired brick |
CN111960836B (en) * | 2020-08-28 | 2022-07-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Ramming material for reducing oxidation of magnesia carbon brick of electric furnace and preparation and use methods thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1262257A (en) * | 1999-01-28 | 2000-08-09 | 北京科技大学 | Process for preparing 'Meialong' magnesium ceramics with natural minerals as raw materials |
WO2006054233A2 (en) * | 2004-11-19 | 2006-05-26 | Koninklijke Philips Electronics N.V. | Light-emitting device with inorganic housing |
-
2006
- 2006-07-14 CN CNB200610012954XA patent/CN100422107C/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1262257A (en) * | 1999-01-28 | 2000-08-09 | 北京科技大学 | Process for preparing 'Meialong' magnesium ceramics with natural minerals as raw materials |
WO2006054233A2 (en) * | 2004-11-19 | 2006-05-26 | Koninklijke Philips Electronics N.V. | Light-emitting device with inorganic housing |
Non-Patent Citations (2)
Title |
---|
反应烧结法制备MgAlON的合成机理及烧结行为的研究. 张厚兴.耐火材料,第36卷第5期. 2002 |
反应烧结法制备MgAlON的合成机理及烧结行为的研究. 张厚兴.耐火材料,第36卷第5期. 2002 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456738B (en) * | 2009-01-04 | 2011-11-16 | 北京科技大学 | Method for synthesizing MgAlON/beta-sialon composite ceramic material |
Also Published As
Publication number | Publication date |
---|---|
CN1887785A (en) | 2007-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100422107C (en) | Method for preparing magnesia-alon ceramic material by using waste magnesia-carbon brick and magnesia-alumina-carbon brick | |
CN108516849B (en) | Zirconium mullite brick for cement kiln and preparation method thereof | |
CN107879753A (en) | A kind of carborundum magnesia-aluminum spinel composite fire-resistant material | |
CN102603343B (en) | Fireproof material of furnace bottom of blast furnace hearth and preparation method of fireproof material | |
CN101654371A (en) | Magnesium aluminum spinel-corundum-Sialon complex phase high-temperature resistant material and preparation method thereof | |
CN109081697A (en) | It is a kind of to prepare B4The method of C/SiC composite ceramic | |
CN106588059A (en) | Prefabricated member for lime rotary kiln and preparation method of prefabricated member | |
CN106045529A (en) | Iron runner castable containing 80% of waste refractories or above | |
CN102603266A (en) | Method for sintering brick from coal gangue | |
CN108395218A (en) | A kind of low carbon magnesia carbon brick and preparation method thereof prepared using modified magnesia | |
CN101798222A (en) | Al2O3-Ni-C-B4C composite ceramic and preparation method thereof | |
CN103553647A (en) | Method for preparation of silicon nitride bonded silicon carbide refractory material by using silicon cutting waste mortar | |
CN105801140A (en) | Preparation method of sialon bonded corundum-silicon carbide composite refractory material | |
CN112645697A (en) | High-density corundum mullite brick for hazardous waste disposal rotary kiln | |
CN103951446A (en) | Method for preparing beta-SiAlON multiphase material by using ceramic polishing waste residue and coal gangue | |
CN102603328A (en) | A Fe-Si3N4-SiC composite refractory material and its preparation and application | |
CN106866118A (en) | One kind does not burn high-purity magnesia-calcium brick and preparation method thereof | |
CN103896606B (en) | A kind of blast furnace ceramic cup refractory materials | |
CN100497255C (en) | Method for preparing beta-sialon porous material | |
CN102583277A (en) | Method for manufacturing silicon nitride in ribbon-like fiber shape | |
CN110590334A (en) | A kind of silicon carbide whisker in-situ composite lithium ceramic material and preparation method thereof | |
CN101429043B (en) | Method for synthesis of sialon-corundum composite material with used sliding plate brick, and silicon, aluminium powder | |
CN102424586A (en) | A kind of preparation method of SiC refractory raw material powder | |
CN101607821B (en) | Method for utilizing gasifier slag to synthesize Ca-alpha-Sialon | |
CN100534953C (en) | Method for preparing SiAlON ceramic powder by using andalusite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SHANDONG HAOYE NEW MATERIAL DEVELOPMENT CO., LTD. Free format text: FORMER OWNER: SHANXI NEW FURNACE GROUP CO., LTD. Effective date: 20150226 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 030003 TAIYUAN, SHAANXI PROVINCE TO: 030100 TAIYUAN, SHAANXI PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20150226 Address after: Dong Huang Shui town of Yangqu County in Shanxi province 030100 Taiyuan Guxian Village East Patentee after: SHANXI HAOYE NEW MATERIAL DEVELOPMENT CO., LTD. Patentee after: University of Science and Technology Beijing Address before: 030003 No. 5, new street, Mt. Hengshan Road, Shanxi, Taiyuan Patentee before: Shanxi New Furnace Group Co., Ltd. Patentee before: University of Science and Technology Beijing |