CN100421172C - Magnetic Tunnel Junction Memory Cell Structure - Google Patents
Magnetic Tunnel Junction Memory Cell Structure Download PDFInfo
- Publication number
- CN100421172C CN100421172C CNB2003801024111A CN200380102411A CN100421172C CN 100421172 C CN100421172 C CN 100421172C CN B2003801024111 A CNB2003801024111 A CN B2003801024111A CN 200380102411 A CN200380102411 A CN 200380102411A CN 100421172 C CN100421172 C CN 100421172C
- Authority
- CN
- China
- Prior art keywords
- tunnel junction
- magnetic tunnel
- group
- electric conductor
- drain electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 47
- 239000004020 conductor Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims 7
- 239000012772 electrical insulation material Substances 0.000 claims 4
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 description 33
- 239000002184 metal Substances 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 25
- 238000000034 method Methods 0.000 description 20
- 230000004913 activation Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910015136 FeMn Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
一种存储设备,包括磁隧道结存储单元,具有磁隧道结结构和读取开关。在一个示例中,读取开关与用于对磁隧道结结构进行写入的导电体相连。在另一示例中,所述读取开关是通过深通孔触点与磁隧道结结构电连接的晶体管。在另一示例中,所述存储设备包括多个磁隧道结存储单元和分别与所述单元关联的多个导电体,用于将信息写入到关联磁隧道结结构中。每一个读取开关与和除了其中存在读取开关的单元之外的其他磁隧道结单元关联的导电体相连。
A storage device, including a magnetic tunnel junction memory unit, has a magnetic tunnel junction structure and a read switch. In one example, the read switch is connected to an electrical conductor for writing to the magnetic tunnel junction structure. In another example, the read switch is a transistor electrically connected to the magnetic tunnel junction structure through a deep via contact. In another example, the memory device includes a plurality of magnetic tunnel junction memory cells and a plurality of electrical conductors respectively associated with the cells for writing information into the associated magnetic tunnel junction structures. Each read switch is connected to electrical conductors associated with other magnetic tunnel junction cells than the cell in which the read switch is present.
Description
本申请要求2002年10月30日递交的待审美国临时申请No.60/422,225的基于35U.S.C 119(e)(1)的优先权,并且包括在此作为参考。This application claims priority under 35 U.S.C 119(e)(1) of pending U.S. Provisional Application No. 60/422,225, filed October 30, 2002, and is incorporated herein by reference.
技术领域 technical field
本发明涉及数据存储领域,更具体地,涉及一种磁隧道结设备存储单元结构。The invention relates to the field of data storage, and more particularly relates to a memory unit structure of a magnetic tunnel junction device.
背景技术 Background technique
磁阻随机存取存储器(MRAM)是一种高速、低电压、高密度、非易失性存储器,其中通过施加磁场,将信息比特存储到磁隧道结(MTJ)结构中,并且通过测量其磁阻从MTJ中获得该信息比特。MRAM相对于其他技术的优点包括:快速读取和写入、非易失性、接近无限的循环能力、全比特可变更性和简单的单元结构的组合。Magneto-resistive random-access memory (MRAM) is a high-speed, low-voltage, high-density, non-volatile memory in which information bits are stored in a magnetic tunnel junction (MTJ) structure by applying a magnetic field, and by measuring its magnetic Obtain this information bit from MTJ. The advantages of MRAM over other technologies include: a combination of fast read and write, non-volatility, near-infinite cycle capability, full bit changeability, and simple cell structure.
MTJ夹在由薄绝缘层分离的两个铁磁(FM)层之间。特别有用的MTJ结构是其中通过对反铁磁性层的交换偏置来锁住铁磁层之一(ispinned)。对于MRAM的应用,将MTJ结构设计为具有稳定的磁状态,对应于MTJ设备中的FM层的平行和逆平行朝向。更具体地,MTJ材料堆通常由薄介电阻挡层分离的两个磁性层构成。将具有强交换耦合的反铁磁性材料层(例如FeMn或IrMn,设置为与底磁性层接触,在一个方向上锁住其。该层通过Ru的薄层与下一磁性层分离,创建了合成反铁磁体。在该合成反铁磁体结构中的磁性层之间的强交换以一个方向来固定固定层的磁性极化,并且防止固定层在写操作期间切换。假定以下事实:MTJ设备充当具有取决于前述的自由磁体对锁住磁体的相对方向的两个离散磁阻值的可变电阻器,通过估算MTJ磁阻,使用读取电路来获得MTJ设备的状态。The MTJ is sandwiched between two ferromagnetic (FM) layers separated by a thin insulating layer. A particularly useful MTJ structure is one in which one of the ferromagnetic layers is pinned by exchange biasing the antiferromagnetic layer. For MRAM applications, the MTJ structure is designed to have stable magnetic states corresponding to the parallel and antiparallel orientations of the FM layers in the MTJ device. More specifically, a stack of MTJ material is typically composed of two magnetic layers separated by a thin dielectric barrier. A layer of antiferromagnetic material with strong exchange coupling, such as FeMn or IrMn, is placed in contact with the underlying magnetic layer, locking it in one direction. This layer is separated from the next magnetic layer by a thin layer of Ru, creating a synthetic Antiferromagnet. The strong exchange between the magnetic layers in this synthetic antiferromagnet structure fixes the magnetic polarization of the pinned layer in one direction and prevents the pinned layer from switching during write operations. Assume the fact that the MTJ device acts as a A readout circuit is used to obtain the state of the MTJ device by estimating the MTJ reluctance from a variable resistor of two discrete reluctance values depending on the aforementioned relative orientation of the free magnet to the locked magnet.
集成存储单元具有用于制造MTJ可扩展构造处理、以及用于对MTJ进行写入的电路和用于读取MTJ的电路。如同大多数集成处理那样,通过减少组件的数量、简化构造处理和/或减少存储单元表面积,可以实现更低的成本。The integrated memory cell has a scalable construction process for fabricating the MTJ, and circuitry for writing to and reading from the MTJ. As with most integration processes, lower cost can be achieved by reducing the number of components, simplifying the construction process, and/or reducing the memory cell surface area.
发明内容 Contents of the invention
存储设备包括磁隧道结存储单元,具有磁隧道结结构和读取开关。在一个示例中,读取开关与导电体相连,用于对磁隧道结结构进行写入。在另一示例中,所述读取开关是通过深通孔触点与磁隧道结结构电连接的晶体管。The storage device includes a magnetic tunnel junction memory unit, which has a magnetic tunnel junction structure and a read switch. In one example, the read switch is connected to the electrical conductor for writing to the magnetic tunnel junction structure. In another example, the read switch is a transistor electrically connected to the magnetic tunnel junction structure through a deep via contact.
在另一示例中,所述存储设备包括多个磁隧道结存储单元和分别与所述单元关联的多个导电体,以便将信息写入关联磁隧道结结构。每一个读取开关与和除了其中存在读取开关的单元之外的其他磁隧道结单元关联的导电体相连。In another example, the memory device includes a plurality of magnetic tunnel junction memory cells and a plurality of electrical conductors respectively associated with the cells for writing information into the associated magnetic tunnel junction structures. Each read switch is connected to electrical conductors associated with other magnetic tunnel junction cells than the cell in which the read switch is present.
附图说明 Description of drawings
为了更完整地理解本发明,参考以下结合附图所采用的详细描述,其中:For a more complete understanding of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings, in which:
图1示出了传统MTJ MRAM单元;Figure 1 shows a conventional MTJ MRAM cell;
图1A示出了图1所示的MTJ MRAM单元的一部分的示意图;Figure 1A shows a schematic diagram of a part of the MTJ MRAM cell shown in Figure 1;
图2示出了根据本发明典型实施例的磁存储结构;FIG. 2 shows a magnetic storage structure according to an exemplary embodiment of the present invention;
图2A示出了根据本发明另一实施例的磁存储结构;Figure 2A shows a magnetic storage structure according to another embodiment of the present invention;
图3示出了图2和图2A所示的磁存储结构的示意图。FIG. 3 shows a schematic diagram of the magnetic storage structure shown in FIG. 2 and FIG. 2A .
具体实施方式 Detailed ways
将参考当前的优选典型实施例来描述本申请的大量创新启示。然而,应该理解,该类实施例仅提供了许许多多优选用途和创新启示的几个示例。通常,在本申请的说明书中所进行的声明不必界定任意的各种要求保护的发明。而且,一些声明可以应用于一些发明特征,但是不可以应用于其他特征。在整个附图中,应该注意,将使用相同的参考数字或字母来指定具有相同功能的类似或等效元件。为了简明,已经省略了会使本发明的主题不清楚的已知功能和结构的详细描述。The numerous innovative teachings of the present application will be described with reference to presently preferred exemplary embodiments. However, it should be understood that such embodiments provide only a few examples of the many many preferred uses and innovative teachings. In general, statements made in the specification of the present application do not necessarily define any of the various claimed inventions. Furthermore, some statements may apply to some inventive features but not to others. Throughout the drawings, it should be noted that the same reference numerals or letters will be used to designate similar or equivalent elements having the same function. Detailed descriptions of known functions and constructions that would make the subject matter of the present invention unclear have been omitted for conciseness.
图1示出了MTJ MRAM单元100的传统示例的横截面。该图平行于和/或切通各个元件,如以下所描述的。单元100的元件包括MTJ114;导电层102,作为针对MTJ 114中所存储的比特的比特“写入”线和“读取”线进行操作;导电层104,作为字“写入”线操作;以及FET 106,具有源极108、漏极110和栅极112,作为用于读取所存储的比特的开关进行操作。典型地,写入线102和104彼此垂直,如从单元100的上方所看到的,并且位于分离的平行平面内。FIG. 1 shows a cross-section of a conventional example of an
MTJ114形成于写入线102和104的交点处,如别处所描述的。MTJ 114的一侧与线102电连续,而通过电路径116,使另一侧与FET106的源极108电连续,如以下进一步描述的。线104和MTJ 114是电中断的。MTJ 114 is formed at the intersection of
FET 106的漏极110与地118相连。通常,FET 106通常是不导通的,从而没有电流可以从线102通过MTJ 114、路径116和源极108流入“地”。当将适当的电流选择性地瞬时施加到线102和104时,其在MTJ 114中创建了正交磁场。这些场以MTJ 114的低磁阻状态(RPARALLEL)或其高磁阻状态(RANTIPARALLEL),选择性地写或设置MTJ 114。随后,可以通过向线102施加来自电流源的电流并且向FET的栅极112施加信号,来读取MTJ 114的状态,所述信号作用于源极108和漏极110之间的导电。读出流过-或低或高的-MTJ 114、路径116和导通FET106到“地”118的电流的幅度,以确定MTJ 114是处于高阻状态还是低阻状态。高阻状态引起比低阻状态更低的电流通过元件114、116和106。The
MRAM可以包括大量并行比特线(BL)102、以及正交的、与位于每一个字线-比特线交叉点处的MTJ 114相互平行的字线(WL)104。An MRAM may include a large number of parallel bitlines (BL) 102, and orthogonal wordlines (WL) 104 that are mutually parallel to an MTJ 114 located at each wordline-bitline intersection.
通过典型的集成电路技木来制造单元100,其中利用光刻(lithographic)、掺杂和其他处理来形成各种导体、半导体和绝缘体的区域和层。例如,图1中的地118包括柱状导电金属触点120,在一端与FET的扩散区110(即漏极)电连续,而在另一端与延伸到图中的平面中和之外的公共导电地线122电连续,并且与其他单元100(未示出)的类似触点120电连续。类似地,路径116部分包括柱状电触点124,在一端处与FET 106的源极108相连,在另一端处与充当路径116的一部分的金属元件126相连。
如图所示,触点120和124是共面的;此外,金属元件126和金属地线122是共面的。事实上,同时形成元件120、124,并且稍后同时由沉积的金属层(M1)来形成金属元件122、126。具体地,在形成FET 106之后,在硅衬底128中和上,通过传统的掺杂和沉积技术,FET 106和衬底的周围区域由电绝缘层130覆盖。所述层130用于在制造单元期间并在稍后的使用中保护FET 106。最终,层130具有等于触点124、120的高度的深度。典型地,这通过将层130沉积为略大于所需的深度,然后通过平面化技术(例如化学-机械抛光)去除多余的部分来实现。As shown,
在制造层130之后,通过已知的光刻技术和其他类似技术来选择性地对其进行蚀刻以制造通孔或孔132、134,通过层延伸,并且在其底部暴露源极和漏极108和110。然后,将金属沉积或填充到通孔132、134中,从而使这样形成的触点120、124分别与触点110和源极108电连续。After fabrication of
接下来,形成金属层M1,覆盖层130和触点120、124的末端,导电层M1与所述末端电连续。最终,由于平面化步骤的应用,层M1的深度采用元件126和地线122的所需厚度。接下来,使用光刻技术来去除层M1的多余金属,留下元件126和地线122。Next, a metal layer M1 is formed, covering the
路径116包括触点142,与元件126电连续。通过首先将绝缘层144沉积在层M1、地线122和元件126的平面化顶表面上,然后,通过选择性蚀刻或其他去除技术,形成通过其中的通孔146,形成触点142。然后,用触点142的金属来填充通孔146,并且以任何方便的方式来实现层144和触点142的顶表面的共面性。
接下来,将第二金属层(M2)涂覆在层144和触点142的顶表面上,随后,进行平版印刷选择性蚀刻或其他去除技术,以便去除层M2上的所选部分,以制造与触点142电连续的字写入线104和共面导电构件150。接下来,在线104和构件150的平面化顶表面上、以及在线104和构件150的间隔中,形成绝缘层152。接下来,在通过层152延伸的通孔156中形成与构件150的顶表面电连续的触点154。Next, a second metal layer (M2) is coated on the top surface of
在绝缘层152的平面化顶表面的顶部上,沉积金属层160,随后,对层160的选择性去除留下金属构件162,在一端处与触点154的顶部电连接,而具有与构件104的顶表面间隔且电绝缘的“自由”端。使用类似的技术在构件162的“自由”端的顶表面上制造MTJ 114,且与构件162的“自由”端电连接。此外,实现已知的技术来设置附加金属层(M3),由其形成MTJ比特线(BL)102,位于MTJ 114的顶部且与MTJ 114电连续。On top of the planarized top surface of the insulating
最后,实现已知的技术来设置另一金属层(M4),由其形成金属线300,通常垂直于金属BL 102且与金属BL 102电绝缘。使用具有相对较低的电阻的金属线300来降低聚合字线112的电阻。单独聚合将给字线112提供有害的长RC延迟。通常,金属线300具有大约0.1ohm/sq的薄层电阻,旁路到具有大约5ohm/sq的薄层电阻的聚合字线112。如图1A所示,每128条比特线,将金属线122旁路到聚合字线112,这是传统MRAM配置的典型方案。例如,可以使用从DRAM技术中已知的被称为绑结(stitch)的技术来提供该旁路。所述绑结实现了金属线300和聚合字线112的欧姆组合,这降低了总RC延迟,因此增加了存取时间。Finally, known techniques are implemented to provide another metal layer (M4), from which
注意,金属层M1包括元件122和126,M2包括元件104和150,M3包括元件102,以及M4包括元件300。如可以看到的,传统MTJ MRAM的结构包括多个精细层和处理。层和相关沉积操作、蚀刻和其他去除操作和/和其他光刻操作的数量的减少将减少制造成本,和/或每单位容量提供更多的存储。本发明的一个方面减少了层数,更具体地,金属层,由此,有利地实现减小制造成本和/或降低单元容量。Note that metal layer M1 includes
图2示出了根据本发明典型实施例的MTJ存储设备200的横截面。存储设备200包括比特线102和字线104,用于如上所述操作MTJ 114。此外,可以通过上述传统集成电路技术来制造存储设备200。然而,使用本发明的连接和激活方案,从当前存储设备200中消除了层M1和M4(从图1中)。为了通过金属层(即分别为M4和M1)保持在传统MRAM单元100中所设置的优选低欧姆读取字线和低欧姆地,使当前连接和激活方案的线104为多功能的。即,除了用于实现MTJ 114中的磁场的线104之外,还使用线104来降低聚合WL 112的高欧姆特性,并且提供低欧姆地。FIG. 2 shows a cross-section of an
为了根据当前连接和激活方案提供低欧姆读取字线,将每一个单元的金属字线104旁路到其聚合WL 112。图2和3将该旁路示为项33。图3示出了图2所示的MTJ存储设备200的示意图。例如,可以通过绑结技术来提供旁路,类似于针对图1A所述的金属线300到聚合WL112的绑结。与相应激活方案组合的线104的高级信号连接(此后在图3被称为和表示为Adr(n)104)(如以下所述)用于取消M4(图1)。To provide a low-ohmic read wordline according to the current connection and activation scheme, each cell's
为了提供低欧姆地,还在绑结处理中,将每一个单元的Adr(n)104旁路到相邻单元(在图3中示为项35,并且由图2中的虚线来示出)的扩散地110。因此,与以下所述的激活方案组合的Adr(n)104还执行M1(图1中)的金属地线122的功能,因此,可以取消其。因此,可以将触点150直接应用于触点124的顶表面,进一步取消了触点142,进一步减小了器件200的总高度。To provide a low ohmic ground, Adr(n) 104 of each cell is bypassed to the adjacent cell (shown as
以下描述了根据图2和3所示的磁存储结构的典型读取/写入激活方案。首先,为了对特定MTJ单元114进行写入,选择性地将适当电流瞬时地施加到与MTJ单元114关联的写入线BL(n)102和Adr(n)104。例如,为了对图3中的单元“A”进行写入,将写入电流(例如,大约5mA)施加到Adr(1)和BL(0)。这里,Adr(1)的电压大约为0.25V,等于5mA×50ohm。此外,由于将聚合WL(1)绑结33到Adr(1),必须将开关“D”和“E”的输出保持在低电压(例如0.25V)以防止在写入期间被导通。由于每一个开关106的扩散区绑结到相邻写入线Adr(n)104,因此,通过将必须的0.25伏特信号施加到所有其他Adr(n),将开关“D”和“E”的输出保持在低电平。A typical read/write activation scheme according to the magnetic memory structure shown in FIGS. 2 and 3 is described below. First, to write to a
为了读取单元“A”,将电流施加到BL(O),并且通过经由Adr(1)将激活信号施加到栅极,并且经由其他Adr(n)将地参考施加到开关输出,导通开关“D”,以便通过开关“D”来实现导通,对其进行传感以确定单元“A”的MTJ的状态。更具体地,将Adr(1)上拉到高电平(例如,大约1.8V),并且使所有其他Adr(n)变为低电平(例如,地=0V)以提供地连接。可以包括传统电路来传感电流流过的幅度以确定MTJ 114是处于高阻状态还是低阻状态。高阻状态引起了比低阻状态更低的电流。To read cell "A", current is applied to BL(O) and the switch is turned on by applying an active signal to the gate via Adr(1) and a ground reference to the switch output via the other Adr(n) "D" for conduction through switch "D", which is sensed to determine the state of the MTJ of cell "A". More specifically, Adr(1) is pulled high (eg, about 1.8V) and all other Adr(n) are driven low (eg, ground=0V) to provide a ground connection. Conventional circuitry may be included to sense the magnitude of current flow to determine whether the
当前连接和激活方案的组合提供了单一多功能金属线中的、图1所示的传统MTJ单元配置的金属层M1和M4和写入线的功能。The combination of the current connection and activation scheme provides the functionality of the metal layers M1 and M4 and the write line of the conventional MTJ cell configuration shown in Figure 1 in a single multifunctional metal line.
现在参考图2A,示出了本发明的另一实施例。在该实施例中,将触点154、150和124(图2所示)通过组合到单一深触点250中。典型地,传统集成电路设计需要诸如104和150等金属构件之间的金属到金属距离在大约0.24μm的范围内(图2中示为“X”)。使用深通孔触点250,显著地降低了距离X(直到以1/3降低),结果,极大地降低了多单元MTJ结构的总宽度。传统上,可以使通孔触点比金属触点更窄。如图2和2A所示,传统通孔触点124、154和250窄于传统金属构件,例如构件150(大约窄0.16μm)。如图2A所示,使用深通孔触点允许从图2中的大约0.24μm的X尺寸降低到图2A中的大约0.16μm的相应Y尺寸。Referring now to FIG. 2A, another embodiment of the present invention is shown. In this embodiment,
将深通孔触点250应用于源极108和构件162之间的电触点,并且能够使用公知的传统技术来形成。Deep via contact 250 is applied to the electrical contact between
尽管在附图中示出且在前面的详细描述中已经描述了本发明的设备和方法的优选实施例,但是应该理解,本发明并不局限于所公开的实施例,而是在不脱离所附权利要求所阐明和定义的本发明的精神的前提下,能够进行大量的重构、修改和替代。While preferred embodiments of the present invention apparatus and method have been shown in the drawings and have been described in the foregoing detailed description, it is to be understood that the invention is not limited to the disclosed embodiments, and is intended to be modified without departing from the disclosed embodiments. Numerous reconfigurations, modifications and substitutions are possible within the spirit of the invention as illustrated and defined by the appended claims.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42222502P | 2002-10-30 | 2002-10-30 | |
US60/422,225 | 2002-10-30 | ||
US10/422,100 | 2003-04-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1708811A CN1708811A (en) | 2005-12-14 |
CN100421172C true CN100421172C (en) | 2008-09-24 |
Family
ID=35581880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003801024111A Expired - Fee Related CN100421172C (en) | 2002-10-30 | 2003-10-28 | Magnetic Tunnel Junction Memory Cell Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100421172C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655481A (en) * | 2015-12-24 | 2016-06-08 | 上海磁宇信息科技有限公司 | Super-dense cross matrix array type magnetic random access memory manufacturing technology |
CN112349322A (en) * | 2019-08-06 | 2021-02-09 | 上海磁宇信息科技有限公司 | Magnetic random access memory architecture and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020044482A1 (en) * | 2000-10-11 | 2002-04-18 | Hans-Heinrich Viehmann | MRAM configuration |
US20020057593A1 (en) * | 2000-11-14 | 2002-05-16 | Mitsubishi Denki Kabushiki Kaisha | Thin film magnetic memory device having a highly integrated memory array |
-
2003
- 2003-10-28 CN CNB2003801024111A patent/CN100421172C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020044482A1 (en) * | 2000-10-11 | 2002-04-18 | Hans-Heinrich Viehmann | MRAM configuration |
CN1347120A (en) * | 2000-10-11 | 2002-05-01 | 因芬尼昂技术股份公司 | Magnetoresistive random storage device |
US20020057593A1 (en) * | 2000-11-14 | 2002-05-16 | Mitsubishi Denki Kabushiki Kaisha | Thin film magnetic memory device having a highly integrated memory array |
CN1353421A (en) * | 2000-11-14 | 2002-06-12 | 三菱电机株式会社 | Film magnetic body storage possessing highly integrated storage array |
Also Published As
Publication number | Publication date |
---|---|
CN1708811A (en) | 2005-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI705438B (en) | Integrated circuits including magnetic random access memory structures having reduced switching energy barriers for differential bit operation and methods for fabricating the same | |
US6657270B2 (en) | Magnetic random access memory using bipolar junction transistor, and method for fabricating the same | |
US8422275B2 (en) | Magnetic memory device and method | |
US6944049B2 (en) | Magnetic tunnel junction memory cell architecture | |
US6909129B2 (en) | Magnetic random access memory | |
JP3875568B2 (en) | Semiconductor device and manufacturing method thereof | |
EP1345230A2 (en) | Diode for data storage device | |
EP1329895A2 (en) | High-density magnetic random access memory device and method of operating the same | |
JP4555780B2 (en) | High density and high programming efficiency MRAM design | |
US6542398B2 (en) | Magnetic random access memory | |
US20100109085A1 (en) | Memory device design | |
US6798689B2 (en) | Integrated memory with a configuration of non-volatile memory cells and method for fabricating and for operating the integrated memory | |
JP4539007B2 (en) | Semiconductor memory device | |
KR100520175B1 (en) | A method for forming a semiconductor device | |
US20060027846A1 (en) | Magnetic random access memory devices including contact plugs between magnetic tunnel junction structures and substrates and related methods | |
US11948616B2 (en) | Semiconductor structure and manufacturing method thereof | |
US7002831B2 (en) | Magnetic semiconductor memory device | |
US20030218197A1 (en) | Magnetic random access memory | |
US7177179B2 (en) | Magnetic memory, and its operating method | |
CN100421172C (en) | Magnetic Tunnel Junction Memory Cell Structure | |
KR100390977B1 (en) | A method for forming a semiconductor device | |
KR100979350B1 (en) | Magnetic ram and method of manufacturing the same | |
US8675399B2 (en) | Magnetic unit and magnetic storage device | |
KR101407643B1 (en) | Multi-bit memory device and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080924 Termination date: 20161028 |