CN100416822C - Electrostatic discharge protection circuit - Google Patents
Electrostatic discharge protection circuit Download PDFInfo
- Publication number
- CN100416822C CN100416822C CNB021471983A CN02147198A CN100416822C CN 100416822 C CN100416822 C CN 100416822C CN B021471983 A CNB021471983 A CN B021471983A CN 02147198 A CN02147198 A CN 02147198A CN 100416822 C CN100416822 C CN 100416822C
- Authority
- CN
- China
- Prior art keywords
- well
- electrostatic discharge
- circuit
- npn
- protection circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 40
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 31
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 31
- 230000000295 complement effect Effects 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种静电放电保护电路,其包含一NPN达林顿电路,以及一N型金属氧化物半导体晶体管。该N型金属氧化物半导体晶体管的漏极连接于该NPN达林顿电路的输入端,该N型金属氧化物半导体晶体管的源极连接于该NPN达林顿电路的控制端,该N型金属氧化物半导体晶体管的栅极连接于该NPN达林顿电路的输出端。
The present invention discloses an electrostatic discharge protection circuit, which comprises an NPN Darlington circuit and an N-type metal oxide semiconductor transistor. The drain of the N-type metal oxide semiconductor transistor is connected to the input end of the NPN Darlington circuit, the source of the N-type metal oxide semiconductor transistor is connected to the control end of the NPN Darlington circuit, and the gate of the N-type metal oxide semiconductor transistor is connected to the output end of the NPN Darlington circuit.
Description
技术领域 technical field
本发明涉及一种静电放电保护电路,尤其涉及一种NPN达林顿(Darlington)静电放电保护电路。The invention relates to an electrostatic discharge protection circuit, in particular to an NPN Darlington (Darlington) electrostatic discharge protection circuit.
背景技术 Background technique
静电(Static Electricity)可以说是无所不在的,任何两个不同材质的物体摩擦,都有可能产生静电。而当带有静电的物体接触到IC(集成电路)的金属接脚时所产生的瞬间高压放电,会经由金属接脚影响内部电路(internalcircuit),所以说经由静电放电(electrostatic discharge,ESD)所引起的损害,很可能造成电子系统的失效。静电放电保护电路的主要功能是当有静电放电发生时,在静电放电的脉冲(pulse)未到达内部电路之前先行启动,以迅速地消除过高的电压,进而减少静电放电现象所导致的破坏,同时该保护电路也必须能承受静电放电脉冲的能量而不会对保护电路本身造成损害。另外就是该静电放电保护电路必须只有在静电放电发生时才会动作,其它的时间则是不动作的,以免影响电子系统的正常运作。Static electricity can be said to be ubiquitous, and any two objects of different materials rubbing against each other may generate static electricity. When an object with static electricity touches the metal pins of the IC (integrated circuit), the instantaneous high-voltage discharge will affect the internal circuit (internal circuit) through the metal pins, so it is said that it is caused by electrostatic discharge (ESD). The resulting damage is likely to cause the failure of the electronic system. The main function of the electrostatic discharge protection circuit is to start before the electrostatic discharge pulse (pulse) reaches the internal circuit when electrostatic discharge occurs, so as to quickly eliminate the excessive voltage and reduce the damage caused by electrostatic discharge. At the same time, the protection circuit must also be able to withstand the energy of the electrostatic discharge pulse without causing damage to the protection circuit itself. In addition, the electrostatic discharge protection circuit must only operate when electrostatic discharge occurs, and not operate at other times, so as not to affect the normal operation of the electronic system.
请参考图1,图1为现有双极结晶体管的静电放电保护电路的电路图。如图1所示,在双极型互补金属氧化物半导体晶体管(BiCMOS)工艺中,以一个NPN双极结晶体管(NPN BJT)作为静电放电保护电路,该NPN双极结晶体管的基极(base)浮置,发射极(emitter)接地,集电极(collector)则接至一内部电路的输入衰减器(input pad)或者是电压源衰减器(VDD pad),当该内部电路的输入衰减器或电压源衰减器受一静电放电脉冲干扰时,该NPN双极结晶体管即击穿导通,将静电放电电流接地。使用基极开路NPN双极结晶体管作为静电放电保护电路的优点为NPN双极结晶体管的输入电容较小,所以NPN双极结晶体管能快速导通,但是NPN双极结晶体管所能汲取的电流有限,所以静电放电保护的效果不佳,是使用基极浮置NPN双极结晶体管作为静电放电保护电路的缺点。Please refer to FIG. 1 . FIG. 1 is a circuit diagram of a conventional ESD protection circuit for bipolar junction transistors. As shown in Figure 1, in the bipolar complementary metal-oxide-semiconductor transistor (BiCMOS) process, an NPN bipolar junction transistor (NPN BJT) is used as an electrostatic discharge protection circuit, and the base of the NPN bipolar junction transistor (base ) floating, the emitter (emitter) is grounded, and the collector (collector) is connected to an internal circuit input attenuator (input pad) or a voltage source attenuator (VDD pad), when the internal circuit input attenuator or When the voltage source attenuator is disturbed by an electrostatic discharge pulse, the NPN bipolar junction transistor is broken down and turned on, and the electrostatic discharge current is grounded. The advantage of using an open-base NPN bipolar junction transistor as an ESD protection circuit is that the input capacitance of the NPN bipolar junction transistor is small, so the NPN bipolar junction transistor can be turned on quickly, but the current that the NPN bipolar junction transistor can draw Limited, so the effect of electrostatic discharge protection is not good, which is the disadvantage of using a floating base NPN bipolar junction transistor as an electrostatic discharge protection circuit.
请参考图2,图2为现有金属氧化物半导体晶体管的静电放电保护电路的电路图。如图2所示,以一个金属氧化物半导体晶体管(MOS)作为静电放电保护电路,该金属氧化物半导体晶体管的栅极(gate)连接于其源极(source)后接地,其漏极(drain)连接至一内部电路的输入衰减器或者是电压源衰减器,当该内部电路的输入衰减器或电压源衰减器受一静电放电脉冲干扰时,该金属氧化物半导体晶体管将导通使静电电流接地。使用栅极接地金属氧化物半导体晶体管的优点为金属氧化物半导体晶体管能汲取较大的电流,对于静电放电保护的效果较佳,但是由于金属氧化物半导体晶体管的输入电容较大,所以金属氧化物半导体晶体管的操作速度较慢,可能无法提供内部电子系统完全的保护,是使用栅极接地金属氧化物半导体晶体管作为静电放电保护电路的缺点。Please refer to FIG. 2 , which is a circuit diagram of a conventional ESD protection circuit for metal oxide semiconductor transistors. As shown in Figure 2, a metal oxide semiconductor transistor (MOS) is used as an electrostatic discharge protection circuit. The gate of the metal oxide semiconductor transistor is connected to its source and then grounded, and its drain is grounded. ) is connected to an input attenuator of an internal circuit or a voltage source attenuator, and when the input attenuator or voltage source attenuator of the internal circuit is disturbed by an electrostatic discharge pulse, the metal oxide semiconductor transistor will conduct the electrostatic current grounded. The advantage of using a grounded metal oxide semiconductor transistor is that the metal oxide semiconductor transistor can draw a larger current, which is better for electrostatic discharge protection. However, due to the large input capacitance of the metal oxide semiconductor transistor, the metal oxide semiconductor transistor Semiconductor transistors operate at slower speeds and may not provide complete protection for internal electronic systems, a disadvantage of using grounded-gate MOS transistors as ESD protection circuits.
由上述可知,使用基极浮置NPN双极结晶体管作为静电放电保护电路,操作速度虽快但是静电放电保护的效果却不佳;而使用栅极接地金属氧化物半导体晶体管作为静电放电保护电路可以改善基极浮置NPN双极结晶体管的缺点,得到较好的静电放电保护的效果,却因为有较大的输入电容使得操作速度受到限制。It can be seen from the above that using a floating base NPN bipolar junction transistor as an ESD protection circuit has a fast operation speed but the effect of ESD protection is not good; and using a grounded metal oxide semiconductor transistor as an ESD protection circuit can Improve the disadvantages of floating base NPN bipolar junction transistors to obtain better electrostatic discharge protection effect, but the operating speed is limited due to the large input capacitance.
其他相关的技术可以参考美国专利5,530,612、美国专利5,986,863、美国专利6,028,758、美国专利6,320,735、美国专利6,400,540、美国专利申请案20020027755A1,以及欧洲专利651,490、欧洲专利477,429。Other related technologies can refer to US Patent 5,530,612, US Patent 5,986,863, US Patent 6,028,758, US Patent 6,320,735, US Patent 6,400,540, US Patent Application 20020027755A1, European Patent 651,490, and European Patent 477,429.
发明内容 Contents of the invention
因此本发明的主要目的是提供一NPN达林顿静电放电保护电路,以解决上述问题。Therefore, the main purpose of the present invention is to provide an NPN Darlington electrostatic discharge protection circuit to solve the above problems.
本发明提供一种静电放电保护电路,其包含一NPN达林顿电路,以及一N型金属氧化物半导体晶体管。该NPN达林顿电路具有一输入端、一控制端及一输出端,其输出端接地。该N型金属氧化物半导体晶体管的漏极连接于该NPN达林顿电路的输入端,该N型金属氧化物半导体晶体管的源极连接于该NPN达林顿电路的控制端,该N型金属氧化物半导体晶体管的栅极连接于该NPN达林顿电路的输出端。The invention provides an electrostatic discharge protection circuit, which includes an NPN Darlington circuit and an N-type metal oxide semiconductor transistor. The NPN Darlington circuit has an input terminal, a control terminal and an output terminal, and the output terminal is grounded. The drain of the NMOS transistor is connected to the input terminal of the NPN Darlington circuit, the source of the NMOS transistor is connected to the control terminal of the NPN Darlington circuit, and the NMOS transistor is connected to the control terminal of the NPN Darlington circuit. The gate of the oxide semiconductor transistor is connected to the output terminal of the NPN Darlington circuit.
附图说明 Description of drawings
图1为现有双极结晶体管的静电放电保护电路的电路图;Fig. 1 is the circuit diagram of the electrostatic discharge protection circuit of existing bipolar junction transistor;
图2为现有金属氧化物半导体晶体管的静电放电保护电路的电路图;2 is a circuit diagram of an electrostatic discharge protection circuit of an existing metal oxide semiconductor transistor;
图3为本发明静电放电保护电路的电路图;Fig. 3 is the circuit diagram of electrostatic discharge protection circuit of the present invention;
图4A及图4B为本发明静电放电保护电路在双极型互补晶体管工艺中元件结构的示意图;4A and 4B are schematic diagrams of the element structure of the electrostatic discharge protection circuit of the present invention in a bipolar complementary transistor process;
图5A及图5B为本发明静电放电保护电路在互补晶体管工艺中元件结构的示意图;5A and 5B are schematic diagrams of the element structure of the electrostatic discharge protection circuit of the present invention in a complementary transistor process;
图6为本发明静电放电保护电路连接电压源衰减器的电路图;以及Fig. 6 is the circuit diagram that the electrostatic discharge protection circuit of the present invention is connected to the voltage source attenuator; And
图7为本发明互补式静电放电保护电路的电路图。FIG. 7 is a circuit diagram of a complementary electrostatic discharge protection circuit of the present invention.
附图中的附图标记说明如下:The reference signs in the accompanying drawings are explained as follows:
10本发明静电放电保护电路10 Electrostatic discharge protection circuit of the present invention
12N型金属氧化物半导体晶体管12N type metal oxide semiconductor transistor
14第一NPN双极结晶体管14 first NPN bipolar junction transistor
16第二NPN双极结晶体管16 second NPN bipolar junction transistor
18第一电阻 20第二电阻18
22输入衰减器 24电压源衰减器22 Input Attenuator 24 Voltage Source Attenuator
26本发明静电放电保护电路的互补电路26 The complementary circuit of the electrostatic discharge protection circuit of the present invention
30P型衬底 32P型外延层或N型外延层30P type substrate 32P type epitaxial layer or N type epitaxial layer
34N+掩埋层 36N阱34N+buried layer 36N well
38P阱 40N+极38P well 40N+pole
42绝缘层 50P型衬底42 insulation layer 50P type substrate
52N深阱 54P阱52N deep well 54P well
56N+极 58绝缘层
具体实施方式 Detailed ways
请参考图3,图3为本发明静电放电保护电路的电路图。本发明的静电放电保护电路10包含一N型金属氧化物半导体晶体管(NMOS)12,一第一NPN双极结晶体管(NPN BJT)14,一第二NPN双极结晶体管16,一第一电阻18以及一第二电阻20。其中两个NPN双极结晶体管14、16的集电极(collector)相连在一起,第一NPN双极结晶体管14的发射极(emitter)连接于第二NPN双极结晶体管16的基极(base),形成一NPN达林顿电路(NPNDarlington circuit),第一NPN双极结晶体管14的基极为该NPN达林顿电路的控制端,其集电极为该NPN达林顿电路的输入端,第NPN双极结晶体管16的发射极为该NPN达林顿电路的输出端。N型金属氧化物半导体晶体管12的漏极(drain)连接于该NPN达林顿电路的输入端,N型金属氧化物半导体晶体管12的栅极(gate)连接于该NPN达林顿电路的输出端,源极(source)连接于该NPN达林顿电路的控制端。该NPN达林顿电路的输入端连接于一内部电路的输入衰减器(I/P)22,其输出端连接于接地点,而第一电阻18连接于第一NPN双极结晶体管14的基极与接地点之间,第二电阻20连接于第二NPN双极结晶体管16的基极与接地点之间。当该内部电路的输入衰减器22受一静电放电脉冲干扰时,N型金属氧化物半导体晶体管12立即触发导通,使得一部分的静电电流流过第一电阻18在其两端形成一压降,此压降驱动第一NPN双极结晶体管14导通,再使得一部分的静电电流过第二电阻20并在其两端形成另一压降,此压降驱动第二NPN双极结晶体管16导通,使得大部分的静电电流经由此通路接地,达到静电放电保护的功效。在本实施例中,第二NPN双极结晶体管16的发射极宽度为第一NPN双极结晶体管14的两倍,主要是为了达到更好的静电放电效果,而第一电阻18及第二电阻20只是用来形成一压降以驱动NPN双极结晶体管导通,在此选用的电阻值为500欧姆。第一NPN双极结晶体管14及第二NPN双极结晶体管16的发射极宽度与第一电阻18及第二电阻20的电阻值亦可依据实际需要选用合适的值,皆应属于本发明所涵盖的范围。Please refer to FIG. 3 , which is a circuit diagram of the electrostatic discharge protection circuit of the present invention. The electrostatic
请参考图4A及图4B,图4A及图4B为本发明静电放电保护电路在双极型互补金属氧化物半导体晶体管(BiCMOS)工艺中元件结构的示意图。如图4A所示,在双极型互补金属氧化物半导体晶体管工艺中,先在一P型衬底(P-substrate)30上生成一P型外延层(P-epi layer)或一N型外延层(N-epilayer)32,接着再注入一N+掩埋层(N+buried layer)34于外延层32上,于N+掩埋层34上形成一P阱(P well)38,而P阱38的四周则注入一N阱(NW+sink)36以环绕P阱38的方式形成于N+掩埋层34的上侧将P阱38与P型衬底30隔离,最后于P阱38内注入N+极(N+node)40。在上述的结构中,一个NPN双极结晶体管是以N+极40作为发射极,P阱38作为基极,及N+掩埋层34作为集电极,如图4A所示。而一个N型金属氧化物半导体晶体管则是以两个N+极40为漏极及源极,并在两个N+极40的通道上方形成一绝缘层42作为栅极,如图4B所示。在P阱38中的N型金属氧化物半导体晶体管被N阱(NW+sink)36及N+掩埋层34所隔绝,如图3中所示的以圆圈包围N型金属氧化物半导体晶体管12表示之。因为本实施例采用上述特殊的隔离结构,故能以N型金属氧化物半导体晶体管作为一触发器(trigger)来驱动NPN达林顿电路,达到较好的静电放电保护的功效。Please refer to FIG. 4A and FIG. 4B . FIG. 4A and FIG. 4B are schematic diagrams of the device structure of the ESD protection circuit of the present invention in a Bipolar Complementary Metal Oxide Semiconductor Transistor (BiCMOS) process. As shown in FIG. 4A, in the bipolar complementary metal-oxide-semiconductor transistor process, a P-type epitaxial layer (P-epi layer) or an N-type epitaxial layer is first formed on a P-type substrate (P-substrate) 30 layer (N-epilayer) 32, and then inject an N+ buried layer (N+buried layer) 34 on the
请参考图5A及图5B,图5A及图5B为本发明静电放电保护电路应用在互补型金属氧化物半导体晶体管(CMOS)工艺中元件结构的示意图。同样地,在互补型金属氧化物半导体晶体管工艺中,也可以利用一N深阱(deep Nwell)52来隔离一P阱54与一P型衬底50。如图5A所示,先在P型衬底50上注入N深阱52,接着在N深阱52上再注入P阱54,最后于P阱54内注入N+极56。一个NPN双极结晶体管是以N+极56作为发射极,P阱54作为基极,及N深阱52作为集电极,如图5A所示。而一个N型金属氧化物半导体晶体管则是以两个N+极56为漏极及源极,并在两个N+极的通道上方形成一绝缘层58作为栅极,如图5B所示。在P阱54中的N型金属氧化物半导体晶体管被N深阱52所隔绝,如图3中所示的以圆圈包围N型金属氧化物半导体晶体管12表示之。Please refer to FIG. 5A and FIG. 5B . FIG. 5A and FIG. 5B are schematic diagrams of the device structure of the electrostatic discharge protection circuit of the present invention applied in a complementary metal-oxide-semiconductor transistor (CMOS) process. Likewise, in CMOS transistor technology, a
请参考图6,图6为本发明静电放电保护电路连接电压源衰减器24的电路图。为使说明更简洁,图6之中与图3之中相同的元件有着相同的功能且使用相同的标号。在图3之中,该NPN达林顿电路的输入端连接于内部电路的输入衰减器22,当该内部电路的输入衰减器22受一静电放电脉冲干扰时,本发明静电放电保护电路10立即启动使静电电流接地。同样地,本发明静电放电保护电路10中的NPN达林顿电路的输入端也可以连接于一电压源衰减器24,当电压源衰减器24受一静电放电脉冲干扰时,本发明静电放电保护电路10会立即启动将静电电流导入接地点。一般常用人体放电模型(Human-Body Model,HBM)及机器放电模型(Machine Model,MM)这两种型来模拟静电放电产生的情况,由测量HBM值或MM值可以得知一静电放电保护电路对于静电放电保护的效果,HBM值或MM值愈大表示其静电放电保护的效果愈好。当一静电放电保护电路连接于一内部电路的输入衰减器时,现有静电放电保护电路的HBM值约为2.5KV,MM值约为200V,而本发明静电放电保护电路10的HBM值可达5.5KV,MM值可达500V。当一静电放电保护电路连接于一电压源衰减器时,现有静电放电保护电路的HBM值约为5KV,MM值约为200V,而本发明静电放电保护电路10的HBM值可达8KV,MM值可达400V。由以上的数据可知,本发明静电放电保护电路10可以有效地达到静电放电保护。Please refer to FIG. 6 . FIG. 6 is a circuit diagram of the ESD protection circuit connected to the voltage source attenuator 24 of the present invention. To simplify the description, the same components in FIG. 6 and FIG. 3 have the same functions and use the same reference numerals. In Fig. 3, the input end of this NPN Darlington circuit is connected to the
请参考图7,图7为本发明互补式静电放电保护电路的电路图。在图3之中,若静电放电脉冲由电压源进入,静电放电电流通过接地点经过静电放电保护电路到达内部电路的输入衰减器22,则静电放电保护的效果可能不足以满足更高的需求。如图7所示,若在电压源及内部电路的输入衰减器22间以互补的概念加入一由PNP双极结晶体管及P型金属氧化物半导体晶体管所组成的电路26,其与图3之中的静电放电保护电路10完全互补,则当一静电放电脉冲由电压源进入时,即经由电路26直接到达该内部电路的输入衰减器22,提高静电放电保护的效果。Please refer to FIG. 7 , which is a circuit diagram of a complementary electrostatic discharge protection circuit of the present invention. In FIG. 3, if the ESD pulse enters from the voltage source, and the ESD current reaches the
与现有技术相比,本发明静电放电保护电路10在双极型互补金属氧化物半导体晶体管工艺中以N阱36及N+掩埋层34隔离P阱38中的N型金属氧化物半导体晶体管,在互补型金属氧化物半导体晶体管工艺中以N深阱52隔离P阱54中的N型金属氧化物半导体晶体管,利用这种隔离的技术制作N型金属氧化物半导体晶体管12作为触发器来驱动由两个NPN双极结晶体管14、16所组成的NPN达林顿电路,使静电电流能快速通过而达到静电放电保护的效果。由实验值可知,不论本发明静电放电保护电路10连接于内部电路的输入衰减器22或是电压源衰减器24,都能比现有技术更有效地达到静电放电的保护。Compared with the prior art, the electrostatic
以上所述仅为本发明的优选实施例,凡依本发明的精神所做的均等变化与修饰,皆应属本发明专利的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the spirit of the present invention shall fall within the scope of the patent of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021471983A CN100416822C (en) | 2002-10-25 | 2002-10-25 | Electrostatic discharge protection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021471983A CN100416822C (en) | 2002-10-25 | 2002-10-25 | Electrostatic discharge protection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1492505A CN1492505A (en) | 2004-04-28 |
CN100416822C true CN100416822C (en) | 2008-09-03 |
Family
ID=34232939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021471983A Expired - Lifetime CN100416822C (en) | 2002-10-25 | 2002-10-25 | Electrostatic discharge protection circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100416822C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220223580A1 (en) * | 2021-01-13 | 2022-07-14 | Texas Instruments Incorporated | Compact area electrostatic discharge protection circuit |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4926468B2 (en) * | 2005-12-07 | 2012-05-09 | ローム株式会社 | Electrostatic breakdown protection circuit and semiconductor integrated circuit device having the same |
CN101373894B (en) * | 2007-08-20 | 2012-05-30 | 天津南大强芯半导体芯片设计有限公司 | Electrostatic discharge protecting circuit |
CN107731813A (en) * | 2017-11-07 | 2018-02-23 | 福建晋润半导体技术有限公司 | A kind of esd protection circuit and its manufacture method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US526289A (en) * | 1894-09-18 | Peter j | ||
US5463520A (en) * | 1994-05-09 | 1995-10-31 | At&T Ipm Corp. | Electrostatic discharge protection with hysteresis trigger circuit |
CN1132936A (en) * | 1995-04-06 | 1996-10-09 | 财团法人工业技术研究院 | Electrostatic discharge protection circuit |
US5640299A (en) * | 1991-03-28 | 1997-06-17 | Texas Instruments Incorporated | Electrostatic discharge protection in integrated circuits, systems and methods |
US5748425A (en) * | 1995-10-20 | 1998-05-05 | Temic Telefunken Microelectronic Gmbh | Electrostatic discharge circuit layout |
CN1213177A (en) * | 1997-09-26 | 1999-04-07 | Lg半导体株式会社 | Electrostatic discharge protection circuit |
US6430016B1 (en) * | 2000-02-11 | 2002-08-06 | Micron Technology, Inc. | Setpoint silicon controlled rectifier (SCR) electrostatic discharge (ESD) core clamp |
US6442008B1 (en) * | 1999-11-29 | 2002-08-27 | Compaq Information Technologies Group, L.P. | Low leakage clamp for E.S.D. protection |
-
2002
- 2002-10-25 CN CNB021471983A patent/CN100416822C/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US526289A (en) * | 1894-09-18 | Peter j | ||
US5640299A (en) * | 1991-03-28 | 1997-06-17 | Texas Instruments Incorporated | Electrostatic discharge protection in integrated circuits, systems and methods |
US5463520A (en) * | 1994-05-09 | 1995-10-31 | At&T Ipm Corp. | Electrostatic discharge protection with hysteresis trigger circuit |
CN1132936A (en) * | 1995-04-06 | 1996-10-09 | 财团法人工业技术研究院 | Electrostatic discharge protection circuit |
US5748425A (en) * | 1995-10-20 | 1998-05-05 | Temic Telefunken Microelectronic Gmbh | Electrostatic discharge circuit layout |
CN1213177A (en) * | 1997-09-26 | 1999-04-07 | Lg半导体株式会社 | Electrostatic discharge protection circuit |
US6442008B1 (en) * | 1999-11-29 | 2002-08-27 | Compaq Information Technologies Group, L.P. | Low leakage clamp for E.S.D. protection |
US6430016B1 (en) * | 2000-02-11 | 2002-08-06 | Micron Technology, Inc. | Setpoint silicon controlled rectifier (SCR) electrostatic discharge (ESD) core clamp |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220223580A1 (en) * | 2021-01-13 | 2022-07-14 | Texas Instruments Incorporated | Compact area electrostatic discharge protection circuit |
US12040322B2 (en) * | 2021-01-13 | 2024-07-16 | Texas Instruments Incorporated | Compact area electrostatic discharge protection circuit |
Also Published As
Publication number | Publication date |
---|---|
CN1492505A (en) | 2004-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7203050B2 (en) | NPN Darlington ESD protection circuit | |
US6858901B2 (en) | ESD protection circuit with high substrate-triggering efficiency | |
JP5242675B2 (en) | ESD protection circuit with reduced trigger voltage | |
US6538266B2 (en) | Protection device with a silicon-controlled rectifier | |
US8748936B2 (en) | Methods and structures for electrostatic discharge protection | |
US20070290266A1 (en) | Turn-on-efficient bipolar structures for on-chip esd protection | |
US20050254189A1 (en) | ESD protection circuit with low parasitic capacitance | |
CN105655325A (en) | Electrostatic discharge protection circuit, structure and manufacturing method thereof | |
US7518843B2 (en) | ESD protection circuit with low parasitic capacitance | |
KR100642651B1 (en) | Silicon-Controlled Rectifiers for Electrostatic Discharge | |
US7576961B2 (en) | Electrostatic discharge protection circuit using triple welled silicon controlled rectifier | |
JP2001186003A (en) | I / O protection device for semiconductor integrated circuit and its protection method | |
CN111009524B (en) | NMOS ESD protection device with gate boost | |
KR100971431B1 (en) | Static electricity protection device | |
CN114783994A (en) | Integrated circuit element and protection method in electrostatic discharge event | |
KR100231502B1 (en) | Input protection circuit and power protection circuit of semiconductor integrated circuit | |
JP2006313880A (en) | Electrostatic discharge circuit and integrated circuit having the same | |
JP4437682B2 (en) | Low capacitance ESD protection circuit | |
CN100416822C (en) | Electrostatic discharge protection circuit | |
US6707653B2 (en) | Semiconductor controlled rectifier for use in electrostatic discharge protection circuit | |
CN111739887B (en) | Electrostatic Protection Unit Based on Thyristor and Its Parallel Structure | |
CN111725206B (en) | PMOS triggered SCR device, manufacturing method of SCR device and SCR electrostatic protection circuit | |
JPH05267586A (en) | Output protection network | |
Ker et al. | ESD protection design for mixed-voltage-tolerant I/O buffers with substrate-triggered technique | |
CN110649015A (en) | An electrostatic discharge protection device for a silicon controlled rectifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20080903 |
|
CX01 | Expiry of patent term |