[go: up one dir, main page]

CN100416822C - Electrostatic discharge protection circuit - Google Patents

Electrostatic discharge protection circuit Download PDF

Info

Publication number
CN100416822C
CN100416822C CNB021471983A CN02147198A CN100416822C CN 100416822 C CN100416822 C CN 100416822C CN B021471983 A CNB021471983 A CN B021471983A CN 02147198 A CN02147198 A CN 02147198A CN 100416822 C CN100416822 C CN 100416822C
Authority
CN
China
Prior art keywords
well
electrostatic discharge
circuit
npn
protection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021471983A
Other languages
Chinese (zh)
Other versions
CN1492505A (en
Inventor
郑道
余定政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Priority to CNB021471983A priority Critical patent/CN100416822C/en
Publication of CN1492505A publication Critical patent/CN1492505A/en
Application granted granted Critical
Publication of CN100416822C publication Critical patent/CN100416822C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种静电放电保护电路,其包含一NPN达林顿电路,以及一N型金属氧化物半导体晶体管。该N型金属氧化物半导体晶体管的漏极连接于该NPN达林顿电路的输入端,该N型金属氧化物半导体晶体管的源极连接于该NPN达林顿电路的控制端,该N型金属氧化物半导体晶体管的栅极连接于该NPN达林顿电路的输出端。

Figure 02147198

The present invention discloses an electrostatic discharge protection circuit, which comprises an NPN Darlington circuit and an N-type metal oxide semiconductor transistor. The drain of the N-type metal oxide semiconductor transistor is connected to the input end of the NPN Darlington circuit, the source of the N-type metal oxide semiconductor transistor is connected to the control end of the NPN Darlington circuit, and the gate of the N-type metal oxide semiconductor transistor is connected to the output end of the NPN Darlington circuit.

Figure 02147198

Description

静电放电保护电路 Electrostatic discharge protection circuit

技术领域 technical field

本发明涉及一种静电放电保护电路,尤其涉及一种NPN达林顿(Darlington)静电放电保护电路。The invention relates to an electrostatic discharge protection circuit, in particular to an NPN Darlington (Darlington) electrostatic discharge protection circuit.

背景技术 Background technique

静电(Static Electricity)可以说是无所不在的,任何两个不同材质的物体摩擦,都有可能产生静电。而当带有静电的物体接触到IC(集成电路)的金属接脚时所产生的瞬间高压放电,会经由金属接脚影响内部电路(internalcircuit),所以说经由静电放电(electrostatic discharge,ESD)所引起的损害,很可能造成电子系统的失效。静电放电保护电路的主要功能是当有静电放电发生时,在静电放电的脉冲(pulse)未到达内部电路之前先行启动,以迅速地消除过高的电压,进而减少静电放电现象所导致的破坏,同时该保护电路也必须能承受静电放电脉冲的能量而不会对保护电路本身造成损害。另外就是该静电放电保护电路必须只有在静电放电发生时才会动作,其它的时间则是不动作的,以免影响电子系统的正常运作。Static electricity can be said to be ubiquitous, and any two objects of different materials rubbing against each other may generate static electricity. When an object with static electricity touches the metal pins of the IC (integrated circuit), the instantaneous high-voltage discharge will affect the internal circuit (internal circuit) through the metal pins, so it is said that it is caused by electrostatic discharge (ESD). The resulting damage is likely to cause the failure of the electronic system. The main function of the electrostatic discharge protection circuit is to start before the electrostatic discharge pulse (pulse) reaches the internal circuit when electrostatic discharge occurs, so as to quickly eliminate the excessive voltage and reduce the damage caused by electrostatic discharge. At the same time, the protection circuit must also be able to withstand the energy of the electrostatic discharge pulse without causing damage to the protection circuit itself. In addition, the electrostatic discharge protection circuit must only operate when electrostatic discharge occurs, and not operate at other times, so as not to affect the normal operation of the electronic system.

请参考图1,图1为现有双极结晶体管的静电放电保护电路的电路图。如图1所示,在双极型互补金属氧化物半导体晶体管(BiCMOS)工艺中,以一个NPN双极结晶体管(NPN BJT)作为静电放电保护电路,该NPN双极结晶体管的基极(base)浮置,发射极(emitter)接地,集电极(collector)则接至一内部电路的输入衰减器(input pad)或者是电压源衰减器(VDD pad),当该内部电路的输入衰减器或电压源衰减器受一静电放电脉冲干扰时,该NPN双极结晶体管即击穿导通,将静电放电电流接地。使用基极开路NPN双极结晶体管作为静电放电保护电路的优点为NPN双极结晶体管的输入电容较小,所以NPN双极结晶体管能快速导通,但是NPN双极结晶体管所能汲取的电流有限,所以静电放电保护的效果不佳,是使用基极浮置NPN双极结晶体管作为静电放电保护电路的缺点。Please refer to FIG. 1 . FIG. 1 is a circuit diagram of a conventional ESD protection circuit for bipolar junction transistors. As shown in Figure 1, in the bipolar complementary metal-oxide-semiconductor transistor (BiCMOS) process, an NPN bipolar junction transistor (NPN BJT) is used as an electrostatic discharge protection circuit, and the base of the NPN bipolar junction transistor (base ) floating, the emitter (emitter) is grounded, and the collector (collector) is connected to an internal circuit input attenuator (input pad) or a voltage source attenuator (VDD pad), when the internal circuit input attenuator or When the voltage source attenuator is disturbed by an electrostatic discharge pulse, the NPN bipolar junction transistor is broken down and turned on, and the electrostatic discharge current is grounded. The advantage of using an open-base NPN bipolar junction transistor as an ESD protection circuit is that the input capacitance of the NPN bipolar junction transistor is small, so the NPN bipolar junction transistor can be turned on quickly, but the current that the NPN bipolar junction transistor can draw Limited, so the effect of electrostatic discharge protection is not good, which is the disadvantage of using a floating base NPN bipolar junction transistor as an electrostatic discharge protection circuit.

请参考图2,图2为现有金属氧化物半导体晶体管的静电放电保护电路的电路图。如图2所示,以一个金属氧化物半导体晶体管(MOS)作为静电放电保护电路,该金属氧化物半导体晶体管的栅极(gate)连接于其源极(source)后接地,其漏极(drain)连接至一内部电路的输入衰减器或者是电压源衰减器,当该内部电路的输入衰减器或电压源衰减器受一静电放电脉冲干扰时,该金属氧化物半导体晶体管将导通使静电电流接地。使用栅极接地金属氧化物半导体晶体管的优点为金属氧化物半导体晶体管能汲取较大的电流,对于静电放电保护的效果较佳,但是由于金属氧化物半导体晶体管的输入电容较大,所以金属氧化物半导体晶体管的操作速度较慢,可能无法提供内部电子系统完全的保护,是使用栅极接地金属氧化物半导体晶体管作为静电放电保护电路的缺点。Please refer to FIG. 2 , which is a circuit diagram of a conventional ESD protection circuit for metal oxide semiconductor transistors. As shown in Figure 2, a metal oxide semiconductor transistor (MOS) is used as an electrostatic discharge protection circuit. The gate of the metal oxide semiconductor transistor is connected to its source and then grounded, and its drain is grounded. ) is connected to an input attenuator of an internal circuit or a voltage source attenuator, and when the input attenuator or voltage source attenuator of the internal circuit is disturbed by an electrostatic discharge pulse, the metal oxide semiconductor transistor will conduct the electrostatic current grounded. The advantage of using a grounded metal oxide semiconductor transistor is that the metal oxide semiconductor transistor can draw a larger current, which is better for electrostatic discharge protection. However, due to the large input capacitance of the metal oxide semiconductor transistor, the metal oxide semiconductor transistor Semiconductor transistors operate at slower speeds and may not provide complete protection for internal electronic systems, a disadvantage of using grounded-gate MOS transistors as ESD protection circuits.

由上述可知,使用基极浮置NPN双极结晶体管作为静电放电保护电路,操作速度虽快但是静电放电保护的效果却不佳;而使用栅极接地金属氧化物半导体晶体管作为静电放电保护电路可以改善基极浮置NPN双极结晶体管的缺点,得到较好的静电放电保护的效果,却因为有较大的输入电容使得操作速度受到限制。It can be seen from the above that using a floating base NPN bipolar junction transistor as an ESD protection circuit has a fast operation speed but the effect of ESD protection is not good; and using a grounded metal oxide semiconductor transistor as an ESD protection circuit can Improve the disadvantages of floating base NPN bipolar junction transistors to obtain better electrostatic discharge protection effect, but the operating speed is limited due to the large input capacitance.

其他相关的技术可以参考美国专利5,530,612、美国专利5,986,863、美国专利6,028,758、美国专利6,320,735、美国专利6,400,540、美国专利申请案20020027755A1,以及欧洲专利651,490、欧洲专利477,429。Other related technologies can refer to US Patent 5,530,612, US Patent 5,986,863, US Patent 6,028,758, US Patent 6,320,735, US Patent 6,400,540, US Patent Application 20020027755A1, European Patent 651,490, and European Patent 477,429.

发明内容 Contents of the invention

因此本发明的主要目的是提供一NPN达林顿静电放电保护电路,以解决上述问题。Therefore, the main purpose of the present invention is to provide an NPN Darlington electrostatic discharge protection circuit to solve the above problems.

本发明提供一种静电放电保护电路,其包含一NPN达林顿电路,以及一N型金属氧化物半导体晶体管。该NPN达林顿电路具有一输入端、一控制端及一输出端,其输出端接地。该N型金属氧化物半导体晶体管的漏极连接于该NPN达林顿电路的输入端,该N型金属氧化物半导体晶体管的源极连接于该NPN达林顿电路的控制端,该N型金属氧化物半导体晶体管的栅极连接于该NPN达林顿电路的输出端。The invention provides an electrostatic discharge protection circuit, which includes an NPN Darlington circuit and an N-type metal oxide semiconductor transistor. The NPN Darlington circuit has an input terminal, a control terminal and an output terminal, and the output terminal is grounded. The drain of the NMOS transistor is connected to the input terminal of the NPN Darlington circuit, the source of the NMOS transistor is connected to the control terminal of the NPN Darlington circuit, and the NMOS transistor is connected to the control terminal of the NPN Darlington circuit. The gate of the oxide semiconductor transistor is connected to the output terminal of the NPN Darlington circuit.

附图说明 Description of drawings

图1为现有双极结晶体管的静电放电保护电路的电路图;Fig. 1 is the circuit diagram of the electrostatic discharge protection circuit of existing bipolar junction transistor;

图2为现有金属氧化物半导体晶体管的静电放电保护电路的电路图;2 is a circuit diagram of an electrostatic discharge protection circuit of an existing metal oxide semiconductor transistor;

图3为本发明静电放电保护电路的电路图;Fig. 3 is the circuit diagram of electrostatic discharge protection circuit of the present invention;

图4A及图4B为本发明静电放电保护电路在双极型互补晶体管工艺中元件结构的示意图;4A and 4B are schematic diagrams of the element structure of the electrostatic discharge protection circuit of the present invention in a bipolar complementary transistor process;

图5A及图5B为本发明静电放电保护电路在互补晶体管工艺中元件结构的示意图;5A and 5B are schematic diagrams of the element structure of the electrostatic discharge protection circuit of the present invention in a complementary transistor process;

图6为本发明静电放电保护电路连接电压源衰减器的电路图;以及Fig. 6 is the circuit diagram that the electrostatic discharge protection circuit of the present invention is connected to the voltage source attenuator; And

图7为本发明互补式静电放电保护电路的电路图。FIG. 7 is a circuit diagram of a complementary electrostatic discharge protection circuit of the present invention.

附图中的附图标记说明如下:The reference signs in the accompanying drawings are explained as follows:

10本发明静电放电保护电路10 Electrostatic discharge protection circuit of the present invention

12N型金属氧化物半导体晶体管12N type metal oxide semiconductor transistor

14第一NPN双极结晶体管14 first NPN bipolar junction transistor

16第二NPN双极结晶体管16 second NPN bipolar junction transistor

18第一电阻              20第二电阻18 first resistor 20 second resistor

22输入衰减器            24电压源衰减器22 Input Attenuator 24 Voltage Source Attenuator

26本发明静电放电保护电路的互补电路26 The complementary circuit of the electrostatic discharge protection circuit of the present invention

30P型衬底               32P型外延层或N型外延层30P type substrate 32P type epitaxial layer or N type epitaxial layer

34N+掩埋层              36N阱34N+buried layer 36N well

38P阱                   40N+极38P well 40N+pole

42绝缘层                50P型衬底42 insulation layer 50P type substrate

52N深阱                 54P阱52N deep well 54P well

56N+极                  58绝缘层56N+ pole 58 insulation layer

具体实施方式 Detailed ways

请参考图3,图3为本发明静电放电保护电路的电路图。本发明的静电放电保护电路10包含一N型金属氧化物半导体晶体管(NMOS)12,一第一NPN双极结晶体管(NPN BJT)14,一第二NPN双极结晶体管16,一第一电阻18以及一第二电阻20。其中两个NPN双极结晶体管14、16的集电极(collector)相连在一起,第一NPN双极结晶体管14的发射极(emitter)连接于第二NPN双极结晶体管16的基极(base),形成一NPN达林顿电路(NPNDarlington circuit),第一NPN双极结晶体管14的基极为该NPN达林顿电路的控制端,其集电极为该NPN达林顿电路的输入端,第NPN双极结晶体管16的发射极为该NPN达林顿电路的输出端。N型金属氧化物半导体晶体管12的漏极(drain)连接于该NPN达林顿电路的输入端,N型金属氧化物半导体晶体管12的栅极(gate)连接于该NPN达林顿电路的输出端,源极(source)连接于该NPN达林顿电路的控制端。该NPN达林顿电路的输入端连接于一内部电路的输入衰减器(I/P)22,其输出端连接于接地点,而第一电阻18连接于第一NPN双极结晶体管14的基极与接地点之间,第二电阻20连接于第二NPN双极结晶体管16的基极与接地点之间。当该内部电路的输入衰减器22受一静电放电脉冲干扰时,N型金属氧化物半导体晶体管12立即触发导通,使得一部分的静电电流流过第一电阻18在其两端形成一压降,此压降驱动第一NPN双极结晶体管14导通,再使得一部分的静电电流过第二电阻20并在其两端形成另一压降,此压降驱动第二NPN双极结晶体管16导通,使得大部分的静电电流经由此通路接地,达到静电放电保护的功效。在本实施例中,第二NPN双极结晶体管16的发射极宽度为第一NPN双极结晶体管14的两倍,主要是为了达到更好的静电放电效果,而第一电阻18及第二电阻20只是用来形成一压降以驱动NPN双极结晶体管导通,在此选用的电阻值为500欧姆。第一NPN双极结晶体管14及第二NPN双极结晶体管16的发射极宽度与第一电阻18及第二电阻20的电阻值亦可依据实际需要选用合适的值,皆应属于本发明所涵盖的范围。Please refer to FIG. 3 , which is a circuit diagram of the electrostatic discharge protection circuit of the present invention. The electrostatic discharge protection circuit 10 of the present invention comprises an N-type metal oxide semiconductor transistor (NMOS) 12, a first NPN bipolar junction transistor (NPN BJT) 14, a second NPN bipolar junction transistor 16, a first resistor 18 and a second resistor 20. The collectors of the two NPN bipolar junction transistors 14 and 16 are connected together, and the emitter of the first NPN bipolar junction transistor 14 is connected to the base of the second NPN bipolar junction transistor 16. ), forming an NPN Darlington circuit (NPNDarlington circuit), the base of the first NPN bipolar junction transistor 14 is the control terminal of the NPN Darlington circuit, and its collector is the input terminal of the NPN Darlington circuit. The emitter of the NPN bipolar junction transistor 16 is the output terminal of the NPN Darlington circuit. The drain (drain) of the NMOS transistor 12 is connected to the input end of the NPN Darlington circuit, and the gate (gate) of the NMOS transistor 12 is connected to the output of the NPN Darlington circuit terminal, and the source (source) is connected to the control terminal of the NPN Darlington circuit. The input end of this NPN Darlington circuit is connected to the input attenuator (I/P) 22 of an internal circuit, and its output end is connected to the ground point, and the first resistor 18 is connected to the base of the first NPN bipolar junction transistor 14 The second resistor 20 is connected between the base of the second NPN BJT 16 and the ground. When the input attenuator 22 of the internal circuit is disturbed by an electrostatic discharge pulse, the NMOS transistor 12 is immediately turned on, so that a part of the electrostatic current flows through the first resistor 18 to form a voltage drop at its two ends, This voltage drop drives the first NPN bipolar junction transistor 14 to conduct, and then makes a part of the electrostatic current pass through the second resistor 20 and forms another voltage drop at its two ends, and this voltage drop drives the second NPN bipolar junction transistor 16 to conduct Through this path, most of the electrostatic current is grounded through this path to achieve the effect of electrostatic discharge protection. In this embodiment, the emitter width of the second NPN bipolar junction transistor 16 is twice that of the first NPN bipolar junction transistor 14, mainly in order to achieve a better electrostatic discharge effect, while the first resistor 18 and the second The resistor 20 is only used to form a voltage drop to drive the NPN BJT to turn on, and the selected resistor value here is 500 ohms. The emitter widths of the first NPN bipolar junction transistor 14 and the second NPN bipolar junction transistor 16 and the resistance values of the first resistor 18 and the second resistor 20 can also select appropriate values according to actual needs, and all should belong to the scope of the present invention. range covered.

请参考图4A及图4B,图4A及图4B为本发明静电放电保护电路在双极型互补金属氧化物半导体晶体管(BiCMOS)工艺中元件结构的示意图。如图4A所示,在双极型互补金属氧化物半导体晶体管工艺中,先在一P型衬底(P-substrate)30上生成一P型外延层(P-epi layer)或一N型外延层(N-epilayer)32,接着再注入一N+掩埋层(N+buried layer)34于外延层32上,于N+掩埋层34上形成一P阱(P well)38,而P阱38的四周则注入一N阱(NW+sink)36以环绕P阱38的方式形成于N+掩埋层34的上侧将P阱38与P型衬底30隔离,最后于P阱38内注入N+极(N+node)40。在上述的结构中,一个NPN双极结晶体管是以N+极40作为发射极,P阱38作为基极,及N+掩埋层34作为集电极,如图4A所示。而一个N型金属氧化物半导体晶体管则是以两个N+极40为漏极及源极,并在两个N+极40的通道上方形成一绝缘层42作为栅极,如图4B所示。在P阱38中的N型金属氧化物半导体晶体管被N阱(NW+sink)36及N+掩埋层34所隔绝,如图3中所示的以圆圈包围N型金属氧化物半导体晶体管12表示之。因为本实施例采用上述特殊的隔离结构,故能以N型金属氧化物半导体晶体管作为一触发器(trigger)来驱动NPN达林顿电路,达到较好的静电放电保护的功效。Please refer to FIG. 4A and FIG. 4B . FIG. 4A and FIG. 4B are schematic diagrams of the device structure of the ESD protection circuit of the present invention in a Bipolar Complementary Metal Oxide Semiconductor Transistor (BiCMOS) process. As shown in FIG. 4A, in the bipolar complementary metal-oxide-semiconductor transistor process, a P-type epitaxial layer (P-epi layer) or an N-type epitaxial layer is first formed on a P-type substrate (P-substrate) 30 layer (N-epilayer) 32, and then inject an N+ buried layer (N+buried layer) 34 on the epitaxial layer 32, form a P well (P well) 38 on the N+ buried layer 34, and the surroundings of the P well 38 Then implant an N well (NW+sink) 36 to form on the upper side of the N+ buried layer 34 in a manner surrounding the P well 38 to isolate the P well 38 from the P-type substrate 30, and finally implant the N+ pole (NW+) in the P well 38 +node)40. In the above structure, an NPN bipolar junction transistor uses the N+ electrode 40 as the emitter, the P well 38 as the base, and the N+ buried layer 34 as the collector, as shown in FIG. 4A . An NMOS transistor uses two N+ poles 40 as the drain and source, and an insulating layer 42 is formed on the channels of the two N+ poles 40 as the gate, as shown in FIG. 4B . The NMOS transistor in the P well 38 is isolated by the N well (NW+sink) 36 and the N+ buried layer 34, as shown in FIG. 3 by encircling the NMOS transistor 12 with a circle. . Because this embodiment adopts the above-mentioned special isolation structure, the NMOS transistor can be used as a trigger to drive the NPN Darlington circuit to achieve a better ESD protection effect.

请参考图5A及图5B,图5A及图5B为本发明静电放电保护电路应用在互补型金属氧化物半导体晶体管(CMOS)工艺中元件结构的示意图。同样地,在互补型金属氧化物半导体晶体管工艺中,也可以利用一N深阱(deep Nwell)52来隔离一P阱54与一P型衬底50。如图5A所示,先在P型衬底50上注入N深阱52,接着在N深阱52上再注入P阱54,最后于P阱54内注入N+极56。一个NPN双极结晶体管是以N+极56作为发射极,P阱54作为基极,及N深阱52作为集电极,如图5A所示。而一个N型金属氧化物半导体晶体管则是以两个N+极56为漏极及源极,并在两个N+极的通道上方形成一绝缘层58作为栅极,如图5B所示。在P阱54中的N型金属氧化物半导体晶体管被N深阱52所隔绝,如图3中所示的以圆圈包围N型金属氧化物半导体晶体管12表示之。Please refer to FIG. 5A and FIG. 5B . FIG. 5A and FIG. 5B are schematic diagrams of the device structure of the electrostatic discharge protection circuit of the present invention applied in a complementary metal-oxide-semiconductor transistor (CMOS) process. Likewise, in CMOS transistor technology, a deep Nwell 52 can also be used to isolate a P well 54 from a P-type substrate 50 . As shown in FIG. 5A , an N-deep well 52 is implanted on the P-type substrate 50 first, then a P-well 54 is implanted on the N-deep well 52 , and finally an N+ pole 56 is implanted in the P-well 54 . An NPN bipolar junction transistor uses the N+ pole 56 as the emitter, the P well 54 as the base, and the N deep well 52 as the collector, as shown in FIG. 5A . An NMOS transistor uses two N+ poles 56 as the drain and source, and forms an insulating layer 58 above the channels of the two N+ poles as the gate, as shown in FIG. 5B . The NMOS transistors in the P-well 54 are isolated by the N-deep well 52 , which is represented by a circle surrounding the NMOS transistor 12 as shown in FIG. 3 .

请参考图6,图6为本发明静电放电保护电路连接电压源衰减器24的电路图。为使说明更简洁,图6之中与图3之中相同的元件有着相同的功能且使用相同的标号。在图3之中,该NPN达林顿电路的输入端连接于内部电路的输入衰减器22,当该内部电路的输入衰减器22受一静电放电脉冲干扰时,本发明静电放电保护电路10立即启动使静电电流接地。同样地,本发明静电放电保护电路10中的NPN达林顿电路的输入端也可以连接于一电压源衰减器24,当电压源衰减器24受一静电放电脉冲干扰时,本发明静电放电保护电路10会立即启动将静电电流导入接地点。一般常用人体放电模型(Human-Body Model,HBM)及机器放电模型(Machine Model,MM)这两种型来模拟静电放电产生的情况,由测量HBM值或MM值可以得知一静电放电保护电路对于静电放电保护的效果,HBM值或MM值愈大表示其静电放电保护的效果愈好。当一静电放电保护电路连接于一内部电路的输入衰减器时,现有静电放电保护电路的HBM值约为2.5KV,MM值约为200V,而本发明静电放电保护电路10的HBM值可达5.5KV,MM值可达500V。当一静电放电保护电路连接于一电压源衰减器时,现有静电放电保护电路的HBM值约为5KV,MM值约为200V,而本发明静电放电保护电路10的HBM值可达8KV,MM值可达400V。由以上的数据可知,本发明静电放电保护电路10可以有效地达到静电放电保护。Please refer to FIG. 6 . FIG. 6 is a circuit diagram of the ESD protection circuit connected to the voltage source attenuator 24 of the present invention. To simplify the description, the same components in FIG. 6 and FIG. 3 have the same functions and use the same reference numerals. In Fig. 3, the input end of this NPN Darlington circuit is connected to the input attenuator 22 of internal circuit, when the input attenuator 22 of this internal circuit is disturbed by an electrostatic discharge pulse, the electrostatic discharge protection circuit 10 of the present invention immediately Actuation grounds electrostatic currents. Similarly, the input terminal of the NPN Darlington circuit in the electrostatic discharge protection circuit 10 of the present invention can also be connected to a voltage source attenuator 24, when the voltage source attenuator 24 is disturbed by an electrostatic discharge pulse, the electrostatic discharge protection of the present invention The circuit 10 will immediately start to direct the electrostatic current to ground. Generally, the human-body model (Human-Body Model, HBM) and the machine model (Machine Model, MM) are commonly used to simulate the situation of electrostatic discharge. An electrostatic discharge protection circuit can be known by measuring the HBM value or MM value. For the effect of electrostatic discharge protection, the larger the value of HBM or MM, the better the effect of electrostatic discharge protection. When an electrostatic discharge protection circuit is connected to an input attenuator of an internal circuit, the HBM value of the existing electrostatic discharge protection circuit is about 2.5KV, and the MM value is about 200V, while the HBM value of the electrostatic discharge protection circuit 10 of the present invention can reach 5.5KV, MM value can reach 500V. When an electrostatic discharge protection circuit is connected to a voltage source attenuator, the HBM value of the existing electrostatic discharge protection circuit is about 5KV, and the MM value is about 200V, while the HBM value of the electrostatic discharge protection circuit 10 of the present invention can reach 8KV, MM values up to 400V. It can be known from the above data that the ESD protection circuit 10 of the present invention can effectively achieve ESD protection.

请参考图7,图7为本发明互补式静电放电保护电路的电路图。在图3之中,若静电放电脉冲由电压源进入,静电放电电流通过接地点经过静电放电保护电路到达内部电路的输入衰减器22,则静电放电保护的效果可能不足以满足更高的需求。如图7所示,若在电压源及内部电路的输入衰减器22间以互补的概念加入一由PNP双极结晶体管及P型金属氧化物半导体晶体管所组成的电路26,其与图3之中的静电放电保护电路10完全互补,则当一静电放电脉冲由电压源进入时,即经由电路26直接到达该内部电路的输入衰减器22,提高静电放电保护的效果。Please refer to FIG. 7 , which is a circuit diagram of a complementary electrostatic discharge protection circuit of the present invention. In FIG. 3, if the ESD pulse enters from the voltage source, and the ESD current reaches the input attenuator 22 of the internal circuit through the ESD protection circuit through the ground point, the ESD protection effect may not be sufficient to meet higher requirements. As shown in Figure 7, if a circuit 26 composed of a PNP bipolar junction transistor and a P-type metal oxide semiconductor transistor is added with a complementary concept between the voltage source and the input attenuator 22 of the internal circuit, it is the same as that of Figure 3 The electrostatic discharge protection circuit 10 in the circuit is completely complementary, and when an electrostatic discharge pulse enters from the voltage source, it will directly reach the input attenuator 22 of the internal circuit through the circuit 26, thereby improving the effect of electrostatic discharge protection.

与现有技术相比,本发明静电放电保护电路10在双极型互补金属氧化物半导体晶体管工艺中以N阱36及N+掩埋层34隔离P阱38中的N型金属氧化物半导体晶体管,在互补型金属氧化物半导体晶体管工艺中以N深阱52隔离P阱54中的N型金属氧化物半导体晶体管,利用这种隔离的技术制作N型金属氧化物半导体晶体管12作为触发器来驱动由两个NPN双极结晶体管14、16所组成的NPN达林顿电路,使静电电流能快速通过而达到静电放电保护的效果。由实验值可知,不论本发明静电放电保护电路10连接于内部电路的输入衰减器22或是电压源衰减器24,都能比现有技术更有效地达到静电放电的保护。Compared with the prior art, the electrostatic discharge protection circuit 10 of the present invention uses the N well 36 and the N+ buried layer 34 to isolate the N-type metal oxide semiconductor transistor in the P well 38 in the bipolar complementary metal oxide semiconductor transistor process. In the complementary metal-oxide-semiconductor transistor process, the N-type metal-oxide-semiconductor transistor in the P-well 54 is isolated by the N-deep well 52, and the N-type metal-oxide-semiconductor transistor 12 is made by using this isolation technology as a trigger to drive the two transistors. The NPN Darlington circuit composed of two NPN bipolar junction transistors 14 and 16 enables the electrostatic current to pass quickly to achieve the effect of electrostatic discharge protection. It can be seen from the experimental results that no matter whether the ESD protection circuit 10 of the present invention is connected to the input attenuator 22 or the voltage source attenuator 24 of the internal circuit, it can achieve ESD protection more effectively than the prior art.

以上所述仅为本发明的优选实施例,凡依本发明的精神所做的均等变化与修饰,皆应属本发明专利的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the spirit of the present invention shall fall within the scope of the patent of the present invention.

Claims (12)

1. 一种静电放电保护电路,其包括:1. An electrostatic discharge protection circuit, comprising: 一NPN达林顿电路,其具有一输入端、一控制端及一输出端,该NPN达林顿电路的输出端接地;以及An NPN Darlington circuit having an input terminal, a control terminal and an output terminal, the output terminal of the NPN Darlington circuit being grounded; and 一N型金属氧化物半导体晶体管,其漏极连接于该NPN达林顿电路的输入端,该N型金属氧化物半导体晶体管的源极连接于该NPN达林顿电路的控制端,该N型金属氧化物半导体晶体管的栅极连接于该NPN达林顿电路的输出端。An N-type metal oxide semiconductor transistor, the drain of which is connected to the input terminal of the NPN Darlington circuit, the source of the N-type metal oxide semiconductor transistor is connected to the control terminal of the NPN Darlington circuit, the N-type The gate of the metal oxide semiconductor transistor is connected to the output end of the NPN Darlington circuit. 2. 如权利要求1所述的静电放电保护电路,其中该NPN达林顿电路包括二个NPN双极结晶体管,每一个NPN双极结晶体管包含一N+掩埋层,一P阱,形成于该N+掩埋层的上侧,一N阱,以环绕该P阱的方式形成于该N+掩埋层的上侧,以及一N+极,形成于该P阱的上侧;而该N型金属氧化物半导体晶体管包含一N+掩埋层,一P阱,形成于该N+掩埋层的上侧,一N阱,以环绕该P阱的方式形成于该N+掩埋层的上侧,以及二个N+极,形成于该P阱的上侧。2. The electrostatic discharge protection circuit as claimed in claim 1, wherein the NPN Darlington circuit comprises two NPN bipolar junction transistors, each NPN bipolar junction transistor comprises an N+ buried layer, and a P well is formed in the On the upper side of the N+ buried layer, an N well is formed on the upper side of the N+ buried layer in a manner surrounding the P well, and an N+ pole is formed on the upper side of the P well; and the N-type metal oxide semiconductor The transistor includes an N+ buried layer, a P well formed on the upper side of the N+ buried layer, an N well formed on the upper side of the N+ buried layer in a manner surrounding the P well, and two N+ poles formed on the the upper side of the P-well. 3. 如权利要求2所述的静电放电保护电路,其中该二个双极结晶体管及该N型金属氧化物半导体晶体管形成于一P型衬底上,而该二个NPN双极结晶体管及该N型金属氧化物半导体晶体管的N阱用来将其P阱与该P型衬底隔离。3. The electrostatic discharge protection circuit as claimed in claim 2, wherein the two bipolar junction transistors and the NMOS transistor are formed on a P-type substrate, and the two NPN bipolar junction transistors and The N-well of the NMOS transistor is used to isolate its P-well from the P-type substrate. 4. 如权利要求3所述的静电放电保护电路,其中该P型衬底上形成有一P型外延层,而该二个双极结晶体管及该N型金属氧化物半导体晶体管形成于该P型外延层上。4. The electrostatic discharge protection circuit as claimed in claim 3, wherein a P-type epitaxial layer is formed on the P-type substrate, and the two bipolar junction transistors and the N-type metal oxide semiconductor transistor are formed on the P-type on the epitaxial layer. 5. 如权利要求3所述的静电放电保护电路,其中该P型衬底上形成有一N型外延层,而该二个双极结晶体管及该N型金属氧化物半导体晶体管形成于该N型外延层上。5. The electrostatic discharge protection circuit as claimed in claim 3, wherein an N-type epitaxial layer is formed on the P-type substrate, and the two bipolar junction transistors and the N-type metal oxide semiconductor transistor are formed on the N-type on the epitaxial layer. 6. 如权利要求3所述的静电放电保护电路,其经由一个双极型互补金属氧化物半导体晶体管工艺来形成。6. The electrostatic discharge protection circuit as claimed in claim 3 , which is formed by a bipolar complementary metal-oxide-semiconductor transistor process. 7. 如权利要求1所述的静电放电保护电路,其中该NPN达林顿电路包含二个NPN双极结晶体管,每一NPN双极结晶体管包含一N深阱,一P阱,形成于该N深阱的上侧,以及一N+极,形成于该P阱的上侧;而该N型金属氧化物半导体晶体管包含一N深阱,一P阱,形成于该N深阱的上侧,以及二个N+极,形成于该P阱的上侧。7. The electrostatic discharge protection circuit as claimed in claim 1, wherein the NPN Darlington circuit comprises two NPN bipolar junction transistors, and each NPN bipolar junction transistor comprises an N deep well and a P well formed in the The upper side of the N deep well and an N+ pole are formed on the upper side of the P well; and the N-type metal oxide semiconductor transistor includes an N deep well and a P well formed on the upper side of the N deep well, and two N+ poles are formed on the upper side of the P well. 8. 如权利要求7所述的静电放电保护电路,其中该二个双极结晶体管及该N型金属氧化物半导体晶体管形成于一P型衬底上,而该二个NPN双极结晶体管及该N型金属氧化物半导体晶体管的N深阱会将其P阱与该P型衬底隔离。8. The electrostatic discharge protection circuit as claimed in claim 7, wherein the two BJTs and the NMOS transistor are formed on a P-type substrate, and the two NPN BJTs and The N-deep well of the NMOS transistor isolates its P-well from the P-type substrate. 9. 如权利要求8所述的静电放电保护电路,其经由一互补型金属氧化物半导体晶体管工艺来形成。9. The electrostatic discharge protection circuit as claimed in claim 8 , which is formed by a CMOS transistor process. 10. 如权利要求1所述的静电放电保护电路,其中该NPN达林顿电路的输入端连接于一电路的输入端。10. The electrostatic discharge protection circuit as claimed in claim 1, wherein the input end of the NPN Darlington circuit is connected to an input end of a circuit. 11. 如权利要求1所述的静电放电保护电路,其中该NPN达林顿电路的输入端连接于一电压源。11. The electrostatic discharge protection circuit as claimed in claim 1, wherein the input end of the NPN Darlington circuit is connected to a voltage source. 12. 如权利要求1所述的静电放电保护电路,其还包括:12. ESD protection circuit as claimed in claim 1, it also comprises: 一个PNP达林顿电路,其输入端连接于该NPN达林顿电路的输入端,该PNP达林顿电路的输出端连接于一电压源;以及a PNP Darlington circuit whose input is connected to the input of the NPN Darlington and whose output is connected to a voltage source; and 一P型金属氧化物半导体晶体管,其漏极连接于该PNP达林顿电路的输入端,该P型金属氧化物半导体晶体管的源极连接于该PNP达林顿电路的控制端,该P型金属氧化物半导体晶体管的栅极连接于该PNP达林顿电路的输出端。A P-type metal oxide semiconductor transistor, the drain of which is connected to the input terminal of the PNP Darlington circuit, the source of the P-type metal oxide semiconductor transistor is connected to the control terminal of the PNP Darlington circuit, the P-type The gate of the metal oxide semiconductor transistor is connected to the output end of the PNP Darlington circuit.
CNB021471983A 2002-10-25 2002-10-25 Electrostatic discharge protection circuit Expired - Lifetime CN100416822C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021471983A CN100416822C (en) 2002-10-25 2002-10-25 Electrostatic discharge protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021471983A CN100416822C (en) 2002-10-25 2002-10-25 Electrostatic discharge protection circuit

Publications (2)

Publication Number Publication Date
CN1492505A CN1492505A (en) 2004-04-28
CN100416822C true CN100416822C (en) 2008-09-03

Family

ID=34232939

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021471983A Expired - Lifetime CN100416822C (en) 2002-10-25 2002-10-25 Electrostatic discharge protection circuit

Country Status (1)

Country Link
CN (1) CN100416822C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223580A1 (en) * 2021-01-13 2022-07-14 Texas Instruments Incorporated Compact area electrostatic discharge protection circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926468B2 (en) * 2005-12-07 2012-05-09 ローム株式会社 Electrostatic breakdown protection circuit and semiconductor integrated circuit device having the same
CN101373894B (en) * 2007-08-20 2012-05-30 天津南大强芯半导体芯片设计有限公司 Electrostatic discharge protecting circuit
CN107731813A (en) * 2017-11-07 2018-02-23 福建晋润半导体技术有限公司 A kind of esd protection circuit and its manufacture method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526289A (en) * 1894-09-18 Peter j
US5463520A (en) * 1994-05-09 1995-10-31 At&T Ipm Corp. Electrostatic discharge protection with hysteresis trigger circuit
CN1132936A (en) * 1995-04-06 1996-10-09 财团法人工业技术研究院 Electrostatic discharge protection circuit
US5640299A (en) * 1991-03-28 1997-06-17 Texas Instruments Incorporated Electrostatic discharge protection in integrated circuits, systems and methods
US5748425A (en) * 1995-10-20 1998-05-05 Temic Telefunken Microelectronic Gmbh Electrostatic discharge circuit layout
CN1213177A (en) * 1997-09-26 1999-04-07 Lg半导体株式会社 Electrostatic discharge protection circuit
US6430016B1 (en) * 2000-02-11 2002-08-06 Micron Technology, Inc. Setpoint silicon controlled rectifier (SCR) electrostatic discharge (ESD) core clamp
US6442008B1 (en) * 1999-11-29 2002-08-27 Compaq Information Technologies Group, L.P. Low leakage clamp for E.S.D. protection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526289A (en) * 1894-09-18 Peter j
US5640299A (en) * 1991-03-28 1997-06-17 Texas Instruments Incorporated Electrostatic discharge protection in integrated circuits, systems and methods
US5463520A (en) * 1994-05-09 1995-10-31 At&T Ipm Corp. Electrostatic discharge protection with hysteresis trigger circuit
CN1132936A (en) * 1995-04-06 1996-10-09 财团法人工业技术研究院 Electrostatic discharge protection circuit
US5748425A (en) * 1995-10-20 1998-05-05 Temic Telefunken Microelectronic Gmbh Electrostatic discharge circuit layout
CN1213177A (en) * 1997-09-26 1999-04-07 Lg半导体株式会社 Electrostatic discharge protection circuit
US6442008B1 (en) * 1999-11-29 2002-08-27 Compaq Information Technologies Group, L.P. Low leakage clamp for E.S.D. protection
US6430016B1 (en) * 2000-02-11 2002-08-06 Micron Technology, Inc. Setpoint silicon controlled rectifier (SCR) electrostatic discharge (ESD) core clamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223580A1 (en) * 2021-01-13 2022-07-14 Texas Instruments Incorporated Compact area electrostatic discharge protection circuit
US12040322B2 (en) * 2021-01-13 2024-07-16 Texas Instruments Incorporated Compact area electrostatic discharge protection circuit

Also Published As

Publication number Publication date
CN1492505A (en) 2004-04-28

Similar Documents

Publication Publication Date Title
US7203050B2 (en) NPN Darlington ESD protection circuit
US6858901B2 (en) ESD protection circuit with high substrate-triggering efficiency
JP5242675B2 (en) ESD protection circuit with reduced trigger voltage
US6538266B2 (en) Protection device with a silicon-controlled rectifier
US8748936B2 (en) Methods and structures for electrostatic discharge protection
US20070290266A1 (en) Turn-on-efficient bipolar structures for on-chip esd protection
US20050254189A1 (en) ESD protection circuit with low parasitic capacitance
CN105655325A (en) Electrostatic discharge protection circuit, structure and manufacturing method thereof
US7518843B2 (en) ESD protection circuit with low parasitic capacitance
KR100642651B1 (en) Silicon-Controlled Rectifiers for Electrostatic Discharge
US7576961B2 (en) Electrostatic discharge protection circuit using triple welled silicon controlled rectifier
JP2001186003A (en) I / O protection device for semiconductor integrated circuit and its protection method
CN111009524B (en) NMOS ESD protection device with gate boost
KR100971431B1 (en) Static electricity protection device
CN114783994A (en) Integrated circuit element and protection method in electrostatic discharge event
KR100231502B1 (en) Input protection circuit and power protection circuit of semiconductor integrated circuit
JP2006313880A (en) Electrostatic discharge circuit and integrated circuit having the same
JP4437682B2 (en) Low capacitance ESD protection circuit
CN100416822C (en) Electrostatic discharge protection circuit
US6707653B2 (en) Semiconductor controlled rectifier for use in electrostatic discharge protection circuit
CN111739887B (en) Electrostatic Protection Unit Based on Thyristor and Its Parallel Structure
CN111725206B (en) PMOS triggered SCR device, manufacturing method of SCR device and SCR electrostatic protection circuit
JPH05267586A (en) Output protection network
Ker et al. ESD protection design for mixed-voltage-tolerant I/O buffers with substrate-triggered technique
CN110649015A (en) An electrostatic discharge protection device for a silicon controlled rectifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080903

CX01 Expiry of patent term