CN100410170C - A kind of method of preparing iron carbide with iron concentrate powder - Google Patents
A kind of method of preparing iron carbide with iron concentrate powder Download PDFInfo
- Publication number
- CN100410170C CN100410170C CNB2005101205955A CN200510120595A CN100410170C CN 100410170 C CN100410170 C CN 100410170C CN B2005101205955 A CNB2005101205955 A CN B2005101205955A CN 200510120595 A CN200510120595 A CN 200510120595A CN 100410170 C CN100410170 C CN 100410170C
- Authority
- CN
- China
- Prior art keywords
- iron
- mixed gas
- concentrate powder
- reaction
- iron carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 229910001567 cementite Inorganic materials 0.000 title claims abstract description 44
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 44
- 239000000843 powder Substances 0.000 title claims abstract description 28
- 239000012141 concentrate Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000007789 gas Substances 0.000 claims abstract description 33
- 239000000654 additive Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000008188 pellet Substances 0.000 claims abstract description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 12
- 239000011593 sulfur Substances 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 abstract description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 abstract description 4
- 230000036632 reaction speed Effects 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于碳化铁(Fe3C)的制备方法,尤其涉及一种用铁精矿粉制备碳化铁的方法。本发明所采用的技术方案是:将含钒氧化物作为添加剂加入铁精矿粉中,加入量为铁精矿粉重量的1%~5%,混匀后配适量水制成球团,再将球团烘干;然后将烘干的球团放入温度为800~900℃的炉内烧结10~20分钟,取出冷却至室温。最后在温度为700~800℃条件下与混合气体反应,混合气体为CH4-H2时反应30~50分钟,混合气体为CO-H2或H2-CO-CO2时反应90~180分钟,反应后用惰性气体快速冷却至室温。本发明具有反应速度快、转化率高、稳定性好、不增加含硫杂质特点。
The invention belongs to a method for preparing iron carbide (Fe 3 C), in particular to a method for preparing iron carbide with iron concentrate powder. The technical solution adopted in the present invention is: add vanadium-containing oxides as additives to the iron concentrate powder in an amount of 1% to 5% of the weight of the iron concentrate powder, mix them with appropriate amount of water to make pellets, and drying the pellets; then putting the dried pellets into a furnace at a temperature of 800-900° C. for sintering for 10-20 minutes, taking them out and cooling to room temperature. Finally, react with the mixed gas at a temperature of 700-800°C. When the mixed gas is CH 4 -H 2 , the reaction is 30-50 minutes; when the mixed gas is CO-H 2 or H 2 -CO-CO 2 , the reaction is 90-180 minutes. After the reaction, the reaction was rapidly cooled to room temperature with an inert gas. The invention has the characteristics of fast reaction speed, high conversion rate, good stability and no increase of sulfur-containing impurities.
Description
一、技术领域 1. Technical field
本发明属于碳化铁(Fe3C)的制备方法,尤其涉及一种用铁精矿粉制备碳化铁的方法。The invention belongs to a method for preparing iron carbide (Fe 3 C), in particular to a method for preparing iron carbide with iron concentrate powder.
二、技术背景2. Technical background
碳化铁作为70年代出现的一种直接还原铁产品,以其特有的物理性质、化学性质以及生产条件,受到广泛关注:1、以其突出的优点受到冶金学者的关注,可以用作废钢的替代物;2、作为炼钢原料,与铁的高炉生产工艺相比,碳化铁的生产温度比较低,而且其生产过程的副产品主要是水,主要产品碳化铁为固态、稳定,易于运输和储存,因此,碳化铁的生产流程作为传统高炉炼铁的工艺流程的替代流程,在能耗、环保和经济上有很大的优势;3、碳化铁独特的电磁性能,可以用做信息材料和电磁屏蔽材料;4、碳化铁可以用做储氢材料。As a direct reduced iron product that appeared in the 1970s, iron carbide has attracted widespread attention due to its unique physical properties, chemical properties and production conditions: 1. It has attracted the attention of metallurgists due to its outstanding advantages and can be used as a substitute for steel scrap 2. As a steelmaking raw material, compared with the iron blast furnace production process, the production temperature of iron carbide is relatively low, and the by-product of its production process is mainly water. The main product iron carbide is solid and stable, easy to transport and store, Therefore, the production process of iron carbide, as an alternative process of the traditional blast furnace ironmaking process, has great advantages in energy consumption, environmental protection and economy; 3. The unique electromagnetic properties of iron carbide can be used as information materials and electromagnetic shielding Materials; 4. Iron carbide can be used as hydrogen storage material.
由于上述原因,人们一直致力于碳化铁制备的研究。碳化铁的主要制备原理为在一定的条件下,用含有渗碳气体的还原气(如H2-CH4)与铁矿石反应,制得碳化铁。For the above reasons, people have been devoting themselves to the research on the preparation of iron carbide. The main preparation principle of iron carbide is to react with iron ore with reducing gas (such as H 2 -CH 4 ) containing carburizing gas under certain conditions to prepare iron carbide.
1、利用CH4-H2系混合气体生产碳化铁。研究表明在650~950℃的温度范围内,最佳操作条件为:CH4∶H2的比值为40∶60,温度750℃,在此条件下绝大部分铁矿石在45分钟内都转变成碳化铁(Fe3C)[中川大,村山武昭,小野阳一,ほか.セメンタィトの合成に及ぼす鉄鉱石の性状の影響.材料とプロセス,1994,7:85]、[中川大,村山武昭,小野阳一,ほか.セメンタィトの合成に及ぼすガス组成と温度の影響.材料とプロセス,1995,8:109]、[中川大,村山武昭,小野阳一.CH4-H2混合ガスにょるァィァンカ一バィドの製造.鉄と鋼,1996,82(4):261];另一研究则表明[倪红卫,苍大强,姜钧普.反应温度、气氛对碳化铁制备过程的影响.钢铁研究.1999,No.6:22-25]:铁矿粉与H2-CH4混合气体反应,当温度为700℃,气体百分含量为50~80%H2+20~50%CH4时,碳化铁较早生成,在前期能保持较快的转化速度,但是在反应的后期,碳化铁转化较慢,且易发生碳化铁的分解反应;当温度为500℃、600℃,混合气体百分含量为30~50%H2+50~70%CH4时,能得到较高的碳化铁转化率,但是碳化铁开始转化较晚,且转化缓慢。1. Using CH 4 -H 2 mixed gas to produce iron carbide. Studies have shown that in the temperature range of 650~950°C, the best operating conditions are: the ratio of CH 4 : H 2 is 40:60, and the temperature is 750°C. Under these conditions, most of the iron ore will be transformed within 45 minutes. Formation of iron carbide (Fe 3 C) [Nakagawa Dai, Takeaki Murayama, Yoichi Ono, ほか.セメンタィトの结合に和ぼす铁鉱の实验の影响. Materials and Proseス, 1994, 7: 85], [Nakagawa Dai, Murayama Takeaki , Yoichi Ono, ほか. セメンタィトの结合に and ぼすガス composition and temperature の influence. Materials and proseス, 1995, 8: 109], [Nakagawa Dai, Takeaki Murayama, Yoichi Ono. CH 4 -H 2 mixed ガスにょるァイァンカ一バィドのManufacturing. Iron and Steel, 1996, 82(4): 261]; another study showed [Ni Hongwei, Cang Daqiang, Jiang Junpu. The influence of reaction temperature and atmosphere on the preparation process of iron carbide. Iron and Steel Research. 1999 , No.6:22-25]: Iron ore powder reacts with H2-CH4 mixed gas. When the temperature is 700°C and the gas percentage is 50-80% H 2 +20-50% CH 4 , iron carbide is more It is formed early and can maintain a fast conversion rate in the early stage, but in the later stage of the reaction, the conversion of iron carbide is slow, and the decomposition reaction of iron carbide is prone to occur; when the temperature is 500 ° C, 600 ° C, the percentage of mixed gas is 30 When ~50% H 2 +50 ~ 70% CH 4 , a higher conversion rate of iron carbide can be obtained, but the conversion of iron carbide starts later and is slow.
2、利用CO-H2混合气体还原铁矿石。研究表明[王光辉,姜茂发,马强.关于碳化铁的研究.炼钢.1997,Vol(12):22-23]:CO-H2系气体难以直接从铁矿石还原得到碳化铁,加入适量的含硫气体(如H2S)后,在550~950℃范围内虽可以制得碳化铁,但碳化铁的转化率低,且产物中带入杂质硫。2. Use CO-H 2 mixed gas to reduce iron ore. Studies have shown [Wang Guanghui, Jiang Maofa, Ma Qiang. Research on Iron Carbide. Steelmaking. 1997, Vol(12): 22-23]: CO-H 2 series gas is difficult to obtain iron carbide directly from iron ore reduction, adding an appropriate amount Although iron carbide can be produced in the range of 550-950 ° C after the sulfur-containing gas (such as H 2 S), the conversion rate of iron carbide is low, and the impurity sulfur is brought into the product.
3、利用H2-CO-CO2混合气体制备碳化铁。在550~700℃时,H2-CO-CO2混合气可从铁矿石中制得碳化铁[王光辉,姜茂发.利用COREX尾气还原铁矿石生产碳化铁的实验研究.钢铁.1998,Vol.33,No.1:18-21],在700℃、还原气成分20%H2+60%CO+20%CO2条件下反应4小时,碳化铁转化率最高可达94.02%。按此方法,虽然得到了较理想的碳化铁转化率,但是转化过于缓慢。3. Using H2-CO-CO2 mixed gas to prepare iron carbide. At 550-700°C, H 2 -CO-CO 2 mixed gas can produce iron carbide from iron ore [Wang Guanghui, Jiang Maofa. Experimental research on the production of iron carbide by reducing iron ore with COREX tail gas. Iron and Steel. 1998, Vol .33, No.1:18-21], reacted for 4 hours under the conditions of 700 ℃ and reducing gas composition of 20% H 2 +60% CO + 20% CO 2 , the conversion rate of iron carbide can reach up to 94.02%. According to this method, although a relatively ideal iron carbide conversion rate has been obtained, the conversion is too slow.
尽管在实验室规模可以得到较高的碳化铁的转化率,但碳化铁的转化速度慢和产率不高还是需要解决的迫切问题。由德国鲁奇公司开发的CIRCOFER)工艺(亦碳化铁工艺),铁精矿粉经预热后先在循环流化床参加反应,所得产品金属化率可达80%,再经第二阶段反应,金属化率可达93%以上。该工艺年产50万吨的直接还原设备1994年已在特立尼达和多巴哥美国纽柯(NUCOR)公司所属工厂投产,但因生产过程中出现问题甚多,生产无法达到稳定,于1999年停止工业性生产[世界金属导报,2001年11月23日:世界直接还原铁生产新技术综述]。1995年Grabke Hans Jurgen等发现硫对碳化铁的稳定性有影响[Grabke,Hans Jurgen et al.:Effect of sulfur on the stability of cementite,SteelResearch,66(1995):254]。其后,名古屋工业大学的林昭二等发现H2-CH4混合气体中添加微量H2S可以抑制游离碳的析出,提高碳化铁的产率[Hayashi etal.:Iron Carbide Synthesis by Reaction of Iron Ore with H2-CH4 Gas MixturesContaining Traces of Sulfur,ISIJ Int.,37(1997)16,345],但是硫在重整天然气作还原气体工艺过程中会使催化剂中毒,也会给产物带入杂质硫,其应用受到限制。Although a high conversion rate of iron carbide can be obtained on a laboratory scale, the slow conversion rate and low yield of iron carbide are still urgent problems to be solved. CIRCOFER) process (also iron carbide process) developed by Lurgi Company in Germany. After preheating, the iron concentrate powder first participates in the reaction in the circulating fluidized bed. The metallization rate of the obtained product can reach 80%, and then undergoes the second stage reaction , The metallization rate can reach more than 93%. The direct reduction equipment with an annual output of 500,000 tons of this process was put into operation in Trinidad and Tobago in 1994 in the factory of Nucor Corporation of the United States. However, due to many problems in the production process, the production could not be stabilized. Industrial production was stopped in 1999 [World Metal Bulletin, November 23, 2001: Summary of new technologies for direct reduced iron production in the world]. In 1995, Grabke Hans Jurgen et al. found that sulfur has an effect on the stability of iron carbide [Grabke, Hans Jurgen et al.: Effect of sulfur on the stability of cementite, SteelResearch, 66(1995): 254]. Later, Lin Zhaoer from Nagoya Institute of Technology found that adding a small amount of H 2 S to the H 2 -CH 4 mixed gas can inhibit the precipitation of free carbon and increase the yield of iron carbide [Hayashi et al.: Iron Carbide Synthesis by Reaction of Iron Ore with H 2 -CH 4 Gas Mixtures Containing Traces of Sulfur, ISIJ Int., 37(1997) 16, 345], but sulfur will poison the catalyst in the process of reforming natural gas as reducing gas, and will also bring impurity sulfur into the product , its application is limited.
三、发明内容 3. Contents of the invention
本发明的目的是提供一种反应速度快、转化率高、稳定性好、不增加含硫杂质的用铁精矿粉制备碳化铁的方法The purpose of the present invention is to provide a method for preparing iron carbide from iron concentrate powder with fast reaction speed, high conversion rate, good stability and no increase of sulfur-containing impurities.
为实现上述目的,本发明所采用的技术方案是,将含钒氧化物作为添加剂加入铁精矿粉中,含钒氧化物或为V2O5、或为V2O3,或为V2O5、V2O3的混合物,其加入量为铁精矿粉重量的1%~5%;混匀后配适量水制成球团,再将球团烘干,然后将烘干的球团放入温度为800~900℃的炉内烧结10~20分钟,取出冷却至室温;最后在温度为700~800℃条件下与混合气体反应,混合气体为CH4-H2时反应30~50分钟,混合气体为CO-H2或H2-CO-CO2时反应90~180分钟,反应后用惰性气体快速冷却至室温。In order to achieve the above purpose, the technical solution adopted in the present invention is to add vanadium-containing oxides as additives to iron concentrate powder, and the vanadium-containing oxides are either V 2 O 5 , V 2 O 3 , or V 2 The mixture of O 5 and V 2 O 3 is added in an amount of 1% to 5% of the weight of the iron concentrate powder; after mixing, add an appropriate amount of water to make pellets, then dry the pellets, and then dry the dried pellets Put the dough into a furnace at a temperature of 800-900°C for sintering for 10-20 minutes, take it out and cool it to room temperature; finally react with a mixed gas at a temperature of 700-800°C, and react for 30-30 minutes when the mixed gas is CH 4 -H 2 50 minutes, when the mixed gas is CO-H 2 or H 2 -CO-CO 2 , the reaction is 90-180 minutes, and after the reaction, use an inert gas to quickly cool to room temperature.
所述的V2O5、V2O3的混合物为两者的任意比混合。The mixture of V 2 O 5 and V 2 O 3 is a mixture of the two in any ratio.
所述的铁精矿粉的重量百分含量为:全铁含量不低于64%,硫含量小于0.04%,TiO2少于0.5%;铁精矿粉的粒度在80目以下。The weight percentage of the iron concentrate powder is as follows: the total iron content is not less than 64%, the sulfur content is less than 0.04%, and the TiO2 is less than 0.5%; the particle size of the iron concentrate powder is below 80 mesh.
所述的混合气体或为CH4-H2、或为CO-H2、或为H2-CO-CO2;混合气体CH4-H2的体积百分含量为60~80%H2+20~40%CH4,混合气体CO-H2的体积百分含量为60~85%CO+15~40%H2,混合气体H2-CO-CO2的体积百分含量为10~30%H2+50~70%CO+10~20%CO2。The mixed gas is either CH 4 -H 2 , CO-H 2 , or H 2 -CO-CO 2 ; the volume percentage of the mixed gas CH 4 -H 2 is 60-80% H 2 + 20-40% CH 4 , the volume percentage content of the mixed gas CO-H 2 is 60-85% CO+15-40% H 2 , the volume percentage content of the mixed gas H 2 -CO-CO 2 is 10-30 %H 2 +50-70% CO+10-20% CO 2 .
由于采用上述技术,本发明具有反应速度快、转化率高、稳定性好、不增加含硫杂质特点。Due to the adoption of the above technology, the present invention has the characteristics of fast reaction speed, high conversion rate, good stability and no increase of sulfur-containing impurities.
四、附图说明 4. Description of drawings
图1是本发明与无添加剂的对比示意图;Fig. 1 is the comparative schematic diagram of the present invention and no additive;
图1是以TiO2为添加剂与无添加剂的对比示意图。Figure 1 is a schematic diagram of the comparison between TiO2 as additive and no additive.
五、具体实施方式 5. Specific implementation
实施例1一种用铁精矿粉制备碳化铁的方法,其精矿粉化学成分如表所示。粒度为80目以下的铁精矿粉,按铁精矿粉重量的2%~4%配入工业用V2O5为添加剂,将两者混合均匀;添加适量的水用造球机制成直径8mm~10mm的球团后烘干。再把球团放入800~900℃的高温炉中烧结10~15分钟后取出冷却至室温,至此球团制备完成。Embodiment 1 A method for preparing iron carbide with iron concentrate powder, the chemical composition of the concentrate powder is as shown in the table. For iron ore concentrate powder with particle size below 80 mesh, add industrial V 2 O 5 as an additive according to 2% to 4% of the weight of iron ore concentrate powder, mix the two evenly; add an appropriate amount of water and use a pelletizing machine to make 8mm ~ 10mm pellets are then dried. Put the pellets into a high-temperature furnace at 800-900° C. for sintering for 10-15 minutes, then take them out and cool to room temperature, and the preparation of the pellets is completed.
铁精矿化学成分Chemical Composition of Iron Concentrate
碳化铁制备方法:反应容器的温度升到700~800℃后,向反应容器内通氮气驱赶容器内的空气,将球团置入反应容器内,待温度稳定后,通入反应气体(70%H2+30%CH4),反应30~35分钟后,改通氮气快速冷却至室温。Iron carbide preparation method: after the temperature of the reaction vessel rises to 700-800°C, feed nitrogen into the reaction vessel to drive away the air in the vessel, put the pellets into the reaction vessel, and after the temperature stabilizes, feed the reaction gas (70% H 2 +30% CH 4 ), after reacting for 30-35 minutes, change to nitrogen gas and quickly cool to room temperature.
对所得产品做穆斯堡耳谱分析,产品中Fe3C的转换率为96.0%。The obtained product was analyzed by Mössburg otogram, and the conversion rate of Fe 3 C in the product was 96.0%.
实施例2Example 2
铁矿粉原料与制备过程与实施例1相同,添加剂为重量百分含量为60%V2O5+40%V2O3的混合物,添加量为铁矿粉重量的2.0%~4.5%。反应气体为H2-CO-CO2,其体积百分含量为10~30%H2+50~70%CO+10~20%CO2。与球团反应时间为120~150分钟后,通入氮气快速冷却至室温。The iron ore powder raw material and preparation process are the same as in Example 1, the additive is a mixture of 60% V 2 O 5 +40% V 2 O 3 by weight, and the additive amount is 2.0% to 4.5% of the weight of the iron ore powder. The reaction gas is H 2 -CO-CO 2 , and its volume percentage is 10-30% H 2 +50-70% CO+10-20% CO 2 . After reacting with the pellets for 120 to 150 minutes, nitrogen gas was passed through and cooled to room temperature rapidly.
对所得产品做穆斯堡耳谱分析,产品中的Fe3C转换率为95.0%。The obtained product was analyzed by Moossburg otography, and the conversion rate of Fe 3 C in the product was 95.0%.
实施例3Example 3
本实施例为对照例。This embodiment is a comparative example.
铁矿粉原料与制备过程与实施例1相同,分别添加V2O5、TiO2,另一个不添加任何添加剂。V2O5、TiO2的分别加入量均为铁矿粉重量的1~2%。结果如图1、图2所示。图中失重率上升阶段为铁矿石的还原,从图1、图2可见使用添加剂V2O5或TiO2与不加添加剂对此阶段反应速率均无明显影响。图1、图2中失重达到最大值后产品开始增重,此阶段为铁的碳化阶段。从图1得知与不加任何添加剂相比,添加1%的V2O5后碳化速率可大大提高,与之对照的图2添加2%的TiO2反而使铁的碳化速率下降。相同的反应时间内(30分钟),添加1%的V2O5、无添加剂、添加2%的TiO2产品中的碳化铁转化率分别是96%、84.8%、73.2%。仅添加1%的V2O5即可使碳化铁的转化率提高10%以上,反应速率也得到提高。The iron ore powder raw material and the preparation process are the same as in Example 1, adding V 2 O 5 and TiO 2 respectively, and the other without adding any additives. The addition amounts of V 2 O 5 and TiO 2 are both 1-2% of the weight of the iron ore powder. The results are shown in Figure 1 and Figure 2. The stage of increasing weight loss rate in the figure is the reduction of iron ore. From Figure 1 and Figure 2, it can be seen that the use of additives V 2 O 5 or TiO 2 and no additives have no obvious effect on the reaction rate of this stage. In Figure 1 and Figure 2, after the weight loss reaches the maximum value, the product begins to increase in weight, and this stage is the carbonization stage of iron. It can be seen from Figure 1 that compared with no additives, the carbonization rate can be greatly increased after adding 1% V 2 O 5 , and in contrast to Figure 2, the addition of 2% TiO 2 reduces the carbonization rate of iron. Within the same reaction time (30 minutes), the conversion rates of iron carbide in the products with 1% V 2 O 5 , no additives, and 2% TiO 2 were 96%, 84.8%, and 73.2%, respectively. Adding only 1% V2O5 can increase the conversion rate of iron carbide by more than 10%, and the reaction rate is also improved.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101205955A CN100410170C (en) | 2005-12-31 | 2005-12-31 | A kind of method of preparing iron carbide with iron concentrate powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101205955A CN100410170C (en) | 2005-12-31 | 2005-12-31 | A kind of method of preparing iron carbide with iron concentrate powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1807237A CN1807237A (en) | 2006-07-26 |
CN100410170C true CN100410170C (en) | 2008-08-13 |
Family
ID=36839363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101205955A Expired - Fee Related CN100410170C (en) | 2005-12-31 | 2005-12-31 | A kind of method of preparing iron carbide with iron concentrate powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100410170C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261101A (en) * | 2009-04-07 | 2010-11-18 | Mitsutaka Hino | Method for producing metallic iron |
CN107058720B (en) * | 2017-04-28 | 2018-12-14 | 苏州大学 | A method of cementite is prepared using low-grade complex iron ore |
CN107082429A (en) * | 2017-04-28 | 2017-08-22 | 苏州大学 | A kind of method that utilization Dust of Iron And Steel Works prepares cementite |
CN107082428B (en) * | 2017-04-28 | 2019-03-26 | 苏州大学 | A method of cementite is prepared using more metal sulfate slags |
CN108677022A (en) * | 2018-06-19 | 2018-10-19 | 苏州大学 | A kind of method that sintering dust separation ash prepares removing harmful element during cementite |
CN109652604A (en) * | 2019-01-30 | 2019-04-19 | 上海大学 | A method of cementite is prepared using ferriferous oxide two-step method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1640110A1 (en) * | 1987-03-25 | 1991-04-07 | Украинский научно-исследовательский институт специальных сталей, сплавов и ферросплавов | Method of separation of titanium carbides from complex alloyed carbide steels |
US5234674A (en) * | 1991-06-27 | 1993-08-10 | Teledyne Industries, Inc. | Process for the preparation of metal carbides |
CN1083024A (en) * | 1992-07-20 | 1994-03-02 | 中国科学院合肥智能机械研究所 | A kind of carbon steel preparation of nanomaterials |
CN1249004A (en) * | 1997-02-28 | 2000-03-29 | 川崎重工业株式会社 | Production method of iron carbide |
JP2002274829A (en) * | 2001-03-21 | 2002-09-25 | Daido Steel Co Ltd | Cementite or cementite compound and method for producing the same |
-
2005
- 2005-12-31 CN CNB2005101205955A patent/CN100410170C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1640110A1 (en) * | 1987-03-25 | 1991-04-07 | Украинский научно-исследовательский институт специальных сталей, сплавов и ферросплавов | Method of separation of titanium carbides from complex alloyed carbide steels |
US5234674A (en) * | 1991-06-27 | 1993-08-10 | Teledyne Industries, Inc. | Process for the preparation of metal carbides |
CN1083024A (en) * | 1992-07-20 | 1994-03-02 | 中国科学院合肥智能机械研究所 | A kind of carbon steel preparation of nanomaterials |
CN1249004A (en) * | 1997-02-28 | 2000-03-29 | 川崎重工业株式会社 | Production method of iron carbide |
JP2002274829A (en) * | 2001-03-21 | 2002-09-25 | Daido Steel Co Ltd | Cementite or cementite compound and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
CN1807237A (en) | 2006-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101717117B (en) | Method for producing vanadium trioxide | |
CN101586172B (en) | Method for preparing metallized pellet and reduced iron powder | |
CN106834775B (en) | A kind of method of carbon thermal reduction and Nitration synthesis ferrovanadium nitride | |
CN103305739B (en) | A kind of high nitrogen VN alloy VN18 and production method thereof | |
CN102220486A (en) | Acidic full-vanadium-titanium pellets and preparation method thereof | |
CN108359792B (en) | Acid oxidation pellets of mixed concentrates of ilmenite and vanadium iron ore and preparation method thereof | |
CN108080649A (en) | A kind of method that hydrocarbon duplex reduction of low temperature prepares superfine iron powder | |
CN101671752B (en) | Method for producing directly reduced pellets by adding pore-forming agent and organic binder | |
CN110016607A (en) | A kind of preparation technology of vanadium nitride iron alloy | |
CN100410170C (en) | A kind of method of preparing iron carbide with iron concentrate powder | |
CN114160139A (en) | Preparation method of dimethyl carbonate | |
CN110484721A (en) | A kind of preparation method of low reduction degradation V-ti Bearing Magnetite Pellets | |
CN113957269B (en) | Can stabilize beta-C in magnesium slag 2 S magnesium smelting pellet and magnesium smelting method | |
CN118621074A (en) | A method for reducing medium-low titanium vanadium-titanium magnetite in a hydrogen-based shaft furnace | |
WO2017024551A1 (en) | Method and system for preparing carbonyl nickel powder with laterite-nickel ore | |
CN112974825B (en) | Reduction method of iron ore powder | |
CN114606395B (en) | Method for realizing efficient selective smelting of products from laterite-nickel ore | |
CN107400775B (en) | A kind of method of microwave heating biomass to reduce pyrolusite | |
CN114873569A (en) | Method for preparing high-quality vanadium nitride by vanadium oxide reduction nitridation under reducing atmosphere | |
CN115927947A (en) | A kind of preparation method of vanadium nitrogen alloy | |
CN103643089B (en) | A kind of High-carbon aluminum-iron alloy and preparation technology thereof | |
CN108570525A (en) | It is a kind of to be used to produce combustible gas and the biomass iron content agglomerate of DRI and preparation method thereof | |
CN113684335B (en) | Metal iron and preparation method thereof | |
CN113234940B (en) | Method for preparing molybdenum metal product from molybdenum concentrate in short process | |
CN112301222B (en) | A method for preparing high-purity metal molybdenum by carbothermal reduction-assisted vacuum smelting of molybdenum concentrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |