CN100405104C - Tunable Bandpass Filter Based on Spatial Birefringent Elements - Google Patents
Tunable Bandpass Filter Based on Spatial Birefringent Elements Download PDFInfo
- Publication number
- CN100405104C CN100405104C CNB2003101094205A CN200310109420A CN100405104C CN 100405104 C CN100405104 C CN 100405104C CN B2003101094205 A CNB2003101094205 A CN B2003101094205A CN 200310109420 A CN200310109420 A CN 200310109420A CN 100405104 C CN100405104 C CN 100405104C
- Authority
- CN
- China
- Prior art keywords
- wedge
- crystal
- medium
- shaped medium
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims description 37
- 230000003287 optical effect Effects 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 16
- 230000010287 polarization Effects 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 12
- 238000005538 encapsulation Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract description 9
- 230000003595 spectral effect Effects 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Landscapes
- Polarising Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
一种基于空间双折射元件的可调谐带通滤波器,其特征在于沿输入光束的前进方向依次设有输入光纤、准直透镜、起偏器、K(1<K≤3)个级联的楔形介质对、检偏器、聚焦透镜和输出光纤,其中级联楔形介质对封装为一个整体并与一步进马达相连。本发明具有大平坦宽度的通带和阻带及高隔离度的同时,还具有中心波长和带宽的可调谐特性。
A tunable bandpass filter based on a spatial birefringence element is characterized in that an input optical fiber, a collimating lens, a polarizer, K (1 < K ≤ 3) cascaded wedge-shaped medium pairs, an analyzer, a focusing lens and an output optical fiber are sequentially arranged along the forward direction of the input light beam, wherein the cascaded wedge-shaped medium pairs are packaged as a whole and connected to a stepping motor. The invention has a large flat width passband and stopband and high isolation, and also has the tunable characteristics of the central wavelength and bandwidth.
Description
技术领域:Technical field:
本发明涉及光学系统中应用的可调谐带通滤波器,特别是一种基于空间双折射元件的可调谐带通滤波器.其主要用于光波分复用(WDM)系统中,此外,还可用于一切需要平坦化通带和阻带的调谐滤波器.The present invention relates to a tunable bandpass filter applied in an optical system, especially a tunable bandpass filter based on a spatial birefringence element. It is mainly used in an optical wavelength division multiplexing (WDM) system. In addition, it can also be used For all tuned filters that require flattened passband and stopband.
背景技术:Background technique:
光学带通滤波器是光波分复用(WDM)系统,光通信相关测量以及其它光学系统应用中的关键器件.在WDM系统中,末端的每个接收机都必须选择所需要的信道.可调谐滤波器是一种波长(或频率)选择器件,其功能是从多个不同频率的输入光信号中,选择出一个特定频率的光信号,在WDM系统中有很重要的应用.为使性能最佳化,光学带通滤波器应同时具有大的平坦通频带和阻带宽度、高的隔离度、中心波长(或频率)和带宽的可调谐特性.Optical bandpass filters are key devices in optical wavelength division multiplexing (WDM) systems, optical communication-related measurements, and other optical system applications. In WDM systems, each receiver at the end must select the required channel. Tunable A filter is a wavelength (or frequency) selective device whose function is to select an optical signal of a specific frequency from multiple input optical signals of different frequencies, which is very important in WDM systems. In order to maximize performance Optimizing, optical bandpass filters should have large flat passband and stopband widths, high isolation, tunable characteristics of central wavelength (or frequency) and bandwidth.
在先技术[1](参见M.Oguma,K.Jinguji,T.Kitoh,T.Shibataand A.Himeno,Electron.Lett.36(15),2000,1299-1300)中描述的是一种基于平面波导格子结构的光交错复用滤波器.其采用了两级格子结构,利用平面波导线路技术实现了平坦化通带和阻带的滤波特性,但其不具备波长或带宽的可调谐特性.Described in the prior art [1] (see M.Oguma, K.Jinguji, T.Kitoh, T.Shibataand A.Himeno, Electron.Lett.36(15), 2000, 1299-1300) is a plane-based Optical interleaving filter with waveguide lattice structure. It adopts a two-stage lattice structure and uses planar waveguide circuit technology to realize the filtering characteristics of flattened passband and stopband, but it does not have tunable characteristics of wavelength or bandwidth.
在先技术[2](参见W.Warzanskyj,F.Heismann and R.C.Alferness,Appl.Phys.Lett,1988,53(1),13-15)描述的是一种利用单模波导制作的偏振无关电光调谐窄带滤波器。该滤波器的带宽很窄,且只具有中心波长的可调谐特性.The prior art [2] (see W.Warzanskyj, F.Heismann and R.C.Alferness, Appl.Phys.Lett, 1988, 53(1), 13-15) describes a polarization-independent electro-optic using a single-mode waveguide Tune narrowband filters. The bandwidth of this filter is very narrow, and it only has the tunable characteristic of the center wavelength.
在先技术[3](参见W.J.Carlsen and C.F.Buhrer,Eltctron.Lett.23(3),1987,106-107)描述的是一种产生平坦化光谱透射率函数的级联双折射偏振干涉技术。其采用三块厚度比为1∶2∶2的双折射晶体波片,通过控制晶体波片的方位角实现了具有平坦化通带和阻带的光谱透射率,但透射率的隔离度和平坦通频带宽度都不是很好,且其也不具有中心波长或带宽的可调谐特性.The prior art [3] (see W. J. Carlsen and C. F. Buhrer, Eltctron. Lett. 23(3), 1987, 106-107) describes a cascaded birefringent polarization interferometry technique that produces a flattened spectral transmittance function. It uses three birefringent crystal wave plates with a thickness ratio of 1:2:2. By controlling the azimuth angle of the crystal wave plate, the spectral transmittance with flattened passband and stop band is realized, but the isolation and flatness of the transmittance The passband width is not very good, and it does not have the tunable characteristics of center wavelength or bandwidth.
发明内容:Invention content:
本发明要解决的技术问题在于克服上述在先技术的困难,提供一种基于空间双折射元件的可调谐带通滤波器,该滤波器在具有大平坦宽度的通带和阻带及高隔离度的同时,还具有中心波长和带宽的可调谐特性。The technical problem to be solved by the present invention is to overcome the difficulties of the above-mentioned prior art and provide a tunable bandpass filter based on spatial birefringence elements, which has a large flat width in the passband and stopband and high isolation At the same time, it also has tunable characteristics of central wavelength and bandwidth.
本发明的构思是采用级联的楔形介质对结构,通过控制各楔形介质对中介质的方位角、光在其中传播的光程差和检偏器与起偏器偏振方向的夹角以实现具有大平坦通频带和阻带宽度以及高隔离度的滤波特性。其中通过改变光在各楔形介质对中的光程差以实现中心波长和带宽的可调谐特性.The idea of the present invention is to adopt the structure of cascaded wedge-shaped medium pairs, and to achieve a Large flat passband and stopband width and high isolation filtering characteristics. Among them, the tunable characteristics of central wavelength and bandwidth are realized by changing the optical path difference of light in each wedge-shaped medium pair.
本发明的具体技术解决方案如下:Concrete technical solution of the present invention is as follows:
一种基于空间双折射元件的可调谐带通滤波器,其特征在于沿输入光束的前进方向依次设有输入光纤、准直透镜、起偏器、K(1<K≤3)个级联的楔形介质对、检偏器、聚焦透镜和输出光纤,其中级联楔形介质对封装为一个整体并与一步进马达相连.A tunable bandpass filter based on a spatial birefringence element, characterized in that an input optical fiber, a collimating lens, a polarizer, and K (1<K≤3) cascaded Wedge-shaped dielectric pair, analyzer, focusing lens and output fiber, in which the cascaded wedge-shaped dielectric pair is packaged as a whole and connected with a stepping motor.
所述的K个级联楔形介质对依次级联构成,所述的楔形介质对均由两个楔形介质片组成,其中第一介质片的材料为晶体,且光轴平行于晶体表面,与光束入射方向垂直,第二介质片的材料可为玻璃,也可为晶体,第二介质片的材料若为晶体,其光轴与光束入射方向相同;当楔形介质对中的第二介质片的材料为玻璃材料时,所选玻璃的折射率与晶体的两个本征折射率接近;当楔形介质对中的两个介质片均为晶体材料时,所选第二介质片的寻常光折射率与第一介质片的两个本征折射率接近。The K cascaded wedge-shaped dielectric pairs are sequentially cascaded, and the wedge-shaped dielectric pairs are composed of two wedge-shaped dielectric sheets, wherein the material of the first dielectric sheet is a crystal, and the optical axis is parallel to the crystal surface, and the light beam The incident direction is vertical, and the material of the second dielectric sheet can be glass or crystal. If the material of the second dielectric sheet is crystal, its optical axis is the same as the incident direction of the light beam; when the material of the second dielectric sheet in the wedge medium pair When it is a glass material, the refractive index of the selected glass is close to the two intrinsic refractive indices of the crystal; when the two dielectric sheets in the wedge-shaped medium pair are both crystal materials, the ordinary light refractive index of the selected second dielectric sheet is the same as The two intrinsic refractive indices of the first dielectric sheet are close to each other.
所述的楔形介质对中的介质片的形状为一个底角等于90°的楔形,其两头都具有一定宽度的楔形,也可以为只有一头具有一定宽度的楔形。The shape of the medium sheet in the wedge-shaped medium pair is a wedge with a base angle equal to 90°, both ends of which have a certain width, or only one end has a certain width.
当所选级联楔形介质对的个数K=2时,两个介质对在形状上满足光在介质对中传播的光程差为1∶2,两个介质对中的第一介质片的方位角θ1、θ2和检偏器与起偏器偏振方向的夹角θP应满足下列的角度组合:When the number K=2 of the selected cascaded wedge-shaped medium pairs, the shape of the two medium pairs satisfies the optical path difference of light propagating in the medium pair is 1:2, and the first dielectric sheet in the two medium pairs The azimuth angles θ 1 , θ 2 and the angle θ P between the analyzer and polarizer polarization direction should meet the following angle combinations:
组合 θ1(°) θ2(°) θP(°)Combination θ 1 (°) θ 2 (°) θ P (°)
1 45 -79 -41 45 -79 -4
2 45 -78 -42 45 -78 -4
3 45 -77 -43 45 -77 -4
4 45 -76 -44 45 -76 -4
5 45 -14 45 45 -14 4
6 45 -13 46 45 -13 4
7 45 -12 47 45 -12 4
8 45 -11 48 45 -11 4
当所选级联楔形介质对的个数K=3时,三个介质对在形状上满足光在介质对中传播的光程差为1∶2∶2,三个介质对中的第一介质片的方位角θ1、θ2、θ3满足文中的下列的角度组合:When the number K=3 of the selected cascaded wedge-shaped medium pairs, the shape of the three medium pairs satisfies the optical path difference of light propagating in the medium pairs is 1:2:2, and the first medium of the three medium pairs The azimuth angles θ 1 , θ 2 , θ 3 of the slice satisfy the following angle combinations in the text:
组合 θ1(°) θ2(°) θ3(°)Combination θ 1 (°) θ 2 (°) θ 3 (°)
1 45 -72 841 45 -72 84
2 45 -18 62 45 -18 6
3 45 -71 833 45 -71 83
4 45 -19 74 45 -19 7
5 45 -70 825 45 -70 82
6 45 -20 86 45 -20 8
7 45 -70 837 45 -70 83
8 45 -20 78 45 -20 7
9 45 -69 819 45 -69 81
10 45 -21 910 45 -21 9
11 45 -69 8211 45 -69 82
12 45 -21 812 45 -21 8
本发明的技术效果:Technical effect of the present invention:
本发明基于空间双折射元件的可调谐带通滤波器同时实现了大平坦而高对比度的通带和阻带的光谱特性以及中心波长和带宽的可调谐特性.与各在先技术相比,克服了在先技术[1]的不能实现中心波长和带宽的可调谐特性;克服了在先技术[2]的不能实现平坦化通带和阻带以及带宽的可调谐特性;克服了在先技术[3]的隔离度和平坦化宽度的不足以及不能实现中心波长和带宽的可调谐特性。The tunable bandpass filter based on the spatial birefringence element of the present invention simultaneously realizes the spectral characteristics of the large flat and high-contrast passband and stopband and the tunable characteristics of the center wavelength and bandwidth. Compared with each prior art, it overcomes It overcomes the tunable characteristics of the prior art [1] that cannot realize the central wavelength and bandwidth; overcomes the tunable characteristics of the prior art [2] that cannot realize the flattened passband, stopband and bandwidth; overcomes the prior art [2]. 3] Insufficient isolation and flattening width, and the tunable characteristics of central wavelength and bandwidth cannot be realized.
附图说明:Description of drawings:
图1为本发明基于空间双折射元件的可调谐带通滤波器实施例的结构示意图.Fig. 1 is a schematic structural diagram of an embodiment of a tunable bandpass filter based on a spatial birefringent element in the present invention.
图2为具有一定宽度的光束在楔形介质对中的介质片11中传播时所通过的距离的变化.Figure 2 shows the variation of the distance that a light beam with a certain width passes when propagating in the
图3为本发明实施例的中心波长的可调谐特性图.Fig. 3 is a tunable characteristic diagram of the central wavelength of the embodiment of the present invention.
图4为本发明实施例的带宽的可调谐特性图。Fig. 4 is a characteristic diagram of bandwidth tunability according to an embodiment of the present invention.
具体实施方式:Detailed ways:
请先参阅图1,由图可见,本发明基于空间双折射元件的可调谐带通滤波器,包括输入光纤1、准直透镜2、起偏器3、K(1<K≤3)个级联的楔形介质对4、5、6、步进马达7、检偏器8、聚焦透镜9和输出光纤10。Please refer to Fig. 1 first, as can be seen from the figure, the tunable bandpass filter based on the spatial birefringence element of the present invention includes an input
K个级联楔形介质对依次由楔形介质对4,5,6级联构成。所说的上述楔形介质对均由两个楔形介质片11和12组成,其中第一介质片11的材料为晶体,光轴平行于晶体表面,且与光束入射方向垂直,第二介质片12的材料为玻璃或晶体(光轴与光束入射方向相同).当楔形介质对中的第二介质片12为玻璃材料时,所选玻璃的折射率与晶体的两个本征折射率接近;当楔形介质对中的第二介质片12均为晶体材料时,所选介质片12的寻常光折射率与第一介质片11的两个本征折射率接近.楔形介质对中的第一介质片11和第二介质片12的形状为一个底角等于90°的楔形,其可以为两头都具有一定宽度的楔形,也可以为只有一头具有一定宽度的楔形。当所选级联楔形介质对的个数为K=2时,两个介质对在形状上满足光在介质对中传播的光程差为1∶2,两个介质对中的第一介质片11的方位角,即晶体快轴或慢轴相对于输入光偏振方向的偏角θ1、θ2和检偏器与起偏器偏振方向的夹角θP满足文中的表一所示的角度组合.当所选级联楔形介质对的个数为K=3时,三个介质对在形状上满足光在介质对中传播的光程差为1∶2∶2,三个介质对中的第一介质片11的方位角满足文中的表二所示的角度组合,其中检偏器与起偏器偏振方向平行.The K cascaded wedge-shaped medium pairs are sequentially formed by cascading wedge-shaped
准直透镜2用于对输入光纤1发射的无规偏振波分复用信号光束x进行准直和扩束,准直透镜2输出平行细光束,其入射起偏器3后偏振方向与起偏器偏振方向相同,接着入射级联介质对4,5,6。从级联介质对4,5,6输出的光束接着入射检偏器8,最后经聚焦透镜9聚焦并耦合入输出光纤10中而最终输出光束y.The collimating lens 2 is used to collimate and expand the randomly polarized WDM signal beam x emitted by the input
起偏器3和检偏器8中的级联楔形介质对为整个系统的核心.各级联介质对中的第一介质片11(晶体)用于产生一定的位相延迟;第二介质片12(玻璃或晶体)的折射率接近第一介质片11(晶体)的本征折射率,用以补偿光在两个介质片界面处发生的折射,从而使光束沿原入射方向出射各介质对.入射级联介质对的光束首先入射第一个介质对,在其第一介质片11内被分解为偏振方向互相正交的两个偏振光,经过一定距离后产生一定的位相延迟,接着进入该介质对中的第二介质片12,由于介质片12的折射率接近介质片11的本征折射率,因而可忽略光在其界面发生的折射,这两个偏振光最后沿原方向出射该介质对.在第二个介质对中,由于该介质对中介质片11的方位角与前一个介质对中介质片11的方位角不同,因而在第二个介质对的介质片11内,这两个偏振光又各自被分解为偏振态互相正交的两个偏振光,经过该介质片后又产生一定的位相延迟,同样,由于该介质对内介质片12的折射率与介质片11的本征折射率接近,光束最后沿原方向出射第二个介质对.以此方式经过多个该同样结构的介质对后共产生多个位相互不相同的光束,最后这些光束在检偏器8的偏振方向上发生干涉,其中通过控制各介质对内介质片11的方位角、检偏器与起偏器偏振方向的夹角和光在其内的光程差,以产生具有平坦化通带和阻带的光谱透射率,最后光信号经聚焦透镜9聚焦并耦合入输出光纤10而输出.连接于整个级联楔形介质对的步进马达7用于使整个级联楔形介质对沿竖直方向运动,从而可调节光在每个楔形介质对内的光程差,用于实现中心波长和带宽的调谐。The cascaded wedge-shaped dielectric pair in the polarizer 3 and the polarizer 8 is the core of the whole system. The first dielectric sheet 11 (crystal) in each cascaded dielectric pair is used to generate a certain phase delay; the
对于上述发明的分析如下:The analysis for above-mentioned invention is as follows:
平坦化光谱透射率Flattened Spectral Transmittance
在可忽略光束宽度的前提下,该楔形级联介质对与普通的等厚晶体波片的级联行为相同.对应于一定楔形介质对厚度位置处,其光谱透射率可表达为:Under the premise that the beam width can be ignored, the cascade behavior of the wedge-shaped cascaded medium pair is the same as that of a common equal-thickness crystal wave plate. Corresponding to a certain wedge-shaped medium pair thickness position, its spectral transmittance can be expressed as:
T(f)=T0+T1cos(2πγ′1f)+T2cos(2πγ′2f)+....+Tncos(2πγ′nf)+.... (1)T(f)=T 0 +T 1 cos(2πγ′ 1 f)+T 2 cos(2πγ′ 2 f)+....+T n cos(2πγ′ n f)+.... (1)
其中,Tn是与各楔形介质对中的第一介质片11的方位角θ1,θ2,...θK有关的系数,γ′n为该位置处每个楔形介质对中的介质片1的时延γ1,γ2,...γK的单独或者其任意组合的差项,和项或者和差项.其中,该位置处每个楔形介质对中的介质片11的时延γk或频率间隔Δfk可表达为:Among them, T n is a coefficient related to the azimuth angle θ 1 , θ 2 , ... θ K of the
这里Δn为介质片11的双折射,dk为该位置处介质片11的厚度,C为光速.Here Δn is the birefringence of the
通过控制各楔形介质对中介质片11的方位角和厚度以及检偏器与起偏器偏振方向的夹角可得到具有平坦化通带和阻带的光谱透射率。下表一为当采用两块厚度比为1∶2的楔形介质对级联的结构,在通带和阻带的平坦宽度大于2/11周期,隔离度不小于-22dB时,各楔形介质对中介质片1的方位角θ1、θ2、和检偏器与起偏器偏振方向的夹角θp所应满足的角度值.下表二为当采用三块厚度比为1∶2∶2的楔形介质对级联的结构,在通带和阻带的平坦宽度大于2/11周期,隔离度不小于-30dB时,各楔形介质对中介质片11的方位角θ1、θ2和θ3所应满足的角度值(此时检偏器与起偏器偏振方向平行,即θp=0°).Spectral transmittance with flattened passband and stopband can be obtained by controlling the azimuth and thickness of each wedge-shaped dielectric centering
表一 表二Table 1 Table 2
调谐特性tuning characteristics
通过调节各楔形介质对中光的光程差,同时保持该光程差的比例为一定值,可在不影响该光谱透射率形状的同时实现中心波长和带宽的调谐特性.By adjusting the optical path difference of the light in each wedge-shaped medium pair, while keeping the ratio of the optical path difference at a certain value, the tuning characteristics of the central wavelength and bandwidth can be realized without affecting the shape of the spectral transmittance.
若整个级联的楔形介质对沿竖直方向运动,则可以调节各楔形介质对中光的光程差,而且可保持该光程差的比例不变,从而可以实现调谐特性.If the entire cascaded wedge-shaped medium pair moves along the vertical direction, the optical path difference of light in each wedge-shaped medium pair can be adjusted, and the ratio of the optical path difference can be kept unchanged, so that the tuning characteristic can be realized.
当刚开始运动时,光在介质片11中经过的距离变化很小,此时带宽的变化可忽略不记,只有中心波长发生平移;随着整个级联的楔形介质对的不断运动,光在介质片11中经过的距离变化越来越大,此时将不能忽略带宽的变化,中心波长和带宽的变化同时存在.When just starting to move, the distance that the light passes in the
光束宽度的限制Beam Width Limitations
上述特性都是在可忽略光束宽度的条件下得到的,如果光束宽度不能忽略,则光在楔形介质对中传播时对应的厚度不唯一,即有一定偏差,这就会对光谱特性产生一定模糊量的影响,从而影响整个器件的性能,因而必须对光束宽度进行限定.The above characteristics are all obtained under the condition that the beam width can be ignored. If the beam width cannot be ignored, the corresponding thickness of the light propagating in the wedge-shaped medium pair is not unique, that is, there is a certain deviation, which will cause certain blurring of the spectral characteristics. Therefore, the beam width must be limited.
图2中,设光束宽度为D,该宽度的光在介质片11中经过的最短距离为di,最长距离为di+δdi,楔角为α.由上面的分析可知,该光束在介质片11中经过的距离从di到di+δdi中变化,则所对应的中心波长分别发生平移,为了不影响该器件的交叉串扰(即隔离度),必须要求该最大平移量不超过通带的半宽度.In Fig. 2, let the beam width be D, the shortest distance that light of this width passes in the
该宽度的光束在介质片11中经过的最短和最长距离对应的频率间隔分别为:The frequency intervals corresponding to the shortest and longest distances that the light beam of this width passes through in the
则中心频率的平移量为Then the translation amount of the center frequency is
若通带频率宽度为L,则对光束宽度D的限制为If the frequency width of the passband is L, then the restriction on the beam width D is
当级联的整个楔形介质对沿竖直方向运动时,di在楔形介质片11的短边和长边之间变化,di应取介质片11的短边长度来计算.不同的楔形介质对介质片11的短边长度不同,且楔角大小也不同,最后光束宽度的限制根据要求按(6)式计算后取最小的那个值.When the entire wedge-shaped medium pair in cascade moves along the vertical direction, d i changes between the short side and the long side of the wedge-shaped
粗波分复用(CWDM)系统通常被人们认为是一种低成本的DWDM系统的替代品.图1为本发明K=3的用于粗波分复用系统中的实施例的光学系统结构示意图.其中所选各楔形介质对中的介质片11的材料为石英晶体,介质片12的材料为苏联牌号FK13的玻璃.光在三个楔形介质对的介质片11内的通光距离之比为1∶2∶2,方位角分别为45°、-70°和82°。在1.55μm波段处,石英的本征折射率分别为:no=1.528,ne=1.536,FK13玻璃的折射率为n=1.531,可以看出所选玻璃的折射率与石英的本征双折射非常接近,光在每个介质对中传播几乎不发生方向偏折。第一个介质对中晶体片的长边对应的频率间隔为2500GHz,即波长间隔20nm,短边长度为长边的三分之一.可计算第一个楔形晶体片长边和短边的长度约为14.1mm和4.7mm,其它两个楔形晶体片的长边和短边长度分别为第一个楔形晶体片的两倍.所选第一个楔形晶体的楔角为α1=60°,则第二、三个楔形晶体的楔角为α2≈41°,三个楔形晶体片的高度均为h=16.3mm。当三个晶体片的方位角分别为45°、-70°和82°时,可计算通带宽度与周期的比值为0.202,利用(6)式通过计算可得对入射光束的宽度限制为D≤0.9mm。图3为该滤波器的中心波长的可调谐特性,其中实线、点线和虚点线分别对应于所通过的第一块晶体的距离为14.03mm,14.05mm和14.07mm的情况。图4为该滤波器的带宽的可调谐特性,其中实线、点线和虚点线分别对应于所通过的第一块晶体的距离分别为4.7mm、5.4mm和14.1mm的情况。Coarse wavelength division multiplexing (CWDM) system is generally considered to be a low-cost substitute of DWDM system. Fig. 1 is the optical system structure of the embodiment used in the coarse wavelength division multiplexing system of the present invention K=3 Schematic diagram. Among them, the material of the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101094205A CN100405104C (en) | 2003-12-15 | 2003-12-15 | Tunable Bandpass Filter Based on Spatial Birefringent Elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101094205A CN100405104C (en) | 2003-12-15 | 2003-12-15 | Tunable Bandpass Filter Based on Spatial Birefringent Elements |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1547047A CN1547047A (en) | 2004-11-17 |
CN100405104C true CN100405104C (en) | 2008-07-23 |
Family
ID=34335182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003101094205A Expired - Fee Related CN100405104C (en) | 2003-12-15 | 2003-12-15 | Tunable Bandpass Filter Based on Spatial Birefringent Elements |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100405104C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100383572C (en) * | 2006-05-08 | 2008-04-23 | 中国科学院上海光学精密机械研究所 | Electrically Controlled Phase Shift Spatial Optical Bridge |
CN101806938B (en) * | 2010-03-17 | 2012-05-23 | 上海大学 | One-dimensional membrane cavity structure-based different-bandwidth optical interleaver |
CN102147535B (en) * | 2011-02-25 | 2013-01-09 | 上海大学 | Polarization independent tunable optical filter based on quasi-phase matching crystal |
CN109167131B (en) * | 2018-08-02 | 2020-03-27 | 电子科技大学 | A Rectangular Waveguide Normal Wave Interference Filter |
CN110244407A (en) * | 2019-05-05 | 2019-09-17 | 深圳华中科技大学研究院 | An all-fiber birefringent filter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579420A (en) * | 1995-08-23 | 1996-11-26 | Fujitsu Limited | Optical filter |
CN1224175A (en) * | 1998-01-23 | 1999-07-28 | 富士通株式会社 | Tunable optical filter |
US6081635A (en) * | 1997-06-18 | 2000-06-27 | Alcatel | Microoptical module with a WDM filter and an optical isolator for fiber-optic amplifier systems |
CN1348277A (en) * | 2000-05-05 | 2002-05-08 | Jds尤尼费斯公司 | Non-dispersion optical filter |
US6393176B1 (en) * | 1999-09-23 | 2002-05-21 | Avanex Corporation | Dense wavelength division multiplexer which includes a dense optical channel comb filter |
US6421177B1 (en) * | 2000-03-03 | 2002-07-16 | Arroyo Optics, Inc. | Interleaving optical filter |
CN1367593A (en) * | 2002-03-08 | 2002-09-04 | 中国科学院上海光学精密机械研究所 | Birefringent cascade polarization interference odd-even signal separator and preparation method thereof |
-
2003
- 2003-12-15 CN CNB2003101094205A patent/CN100405104C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579420A (en) * | 1995-08-23 | 1996-11-26 | Fujitsu Limited | Optical filter |
US6081635A (en) * | 1997-06-18 | 2000-06-27 | Alcatel | Microoptical module with a WDM filter and an optical isolator for fiber-optic amplifier systems |
CN1224175A (en) * | 1998-01-23 | 1999-07-28 | 富士通株式会社 | Tunable optical filter |
US6393176B1 (en) * | 1999-09-23 | 2002-05-21 | Avanex Corporation | Dense wavelength division multiplexer which includes a dense optical channel comb filter |
US6421177B1 (en) * | 2000-03-03 | 2002-07-16 | Arroyo Optics, Inc. | Interleaving optical filter |
CN1348277A (en) * | 2000-05-05 | 2002-05-08 | Jds尤尼费斯公司 | Non-dispersion optical filter |
CN1367593A (en) * | 2002-03-08 | 2002-09-04 | 中国科学院上海光学精密机械研究所 | Birefringent cascade polarization interference odd-even signal separator and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1547047A (en) | 2004-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4778234A (en) | Integrated optics polarizing device | |
US6243516B1 (en) | Merging optical waveguides having branch angle within a specific range | |
US20010012149A1 (en) | Optical elements comprising photonic crystals and applications thereof | |
US6999156B2 (en) | Tunable subwavelength resonant grating filter | |
US9380361B2 (en) | Wavelength selective switch and wavelength selection method | |
US7012747B2 (en) | Polarizing beam splitter and polarizer using the same | |
CN101943772A (en) | Tunable optical comb filter combining G-T resonant cavity and birefringence element | |
US6671094B2 (en) | Composite birefringent crystal and filter | |
CN100405104C (en) | Tunable Bandpass Filter Based on Spatial Birefringent Elements | |
US7057799B2 (en) | Tuning a narrow band filter for telecommunication applications with an acoustic optical tunable filter | |
CN101533129B (en) | A High-Speed Tunable Optical Comb Filter | |
US6684002B2 (en) | Method and apparatus for an optical filter | |
US20020122251A1 (en) | Wavelength selective switch and variable optical attenuator | |
US20020041574A1 (en) | Multiplexing and / or demultiplexing apparatus | |
CN110673265A (en) | Design method of polarization-wavelength hybrid multiplexer | |
US6718076B2 (en) | Acousto-optic tunable filter with segmented acousto-optic interaction region | |
US7268927B2 (en) | Tunable optical filter array and method of use | |
CN1367593A (en) | Birefringent cascade polarization interference odd-even signal separator and preparation method thereof | |
CN100447599C (en) | Odd-Even Signal Separator Based on Cascaded Ring Cavity Pair Structure | |
CN101581836B (en) | Optical comb filter with high-speed tunable isolation and center wavelength | |
CN2674469Y (en) | Tunable band-pass filter based on spatial birefringence element | |
US20050111772A1 (en) | Hybrid cell | |
CN1215345C (en) | Electro-optical tuning flat-top filter | |
CN1422030A (en) | Cascade odd-even signal separator | |
CN2612166Y (en) | Cascade odd-even signal separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080723 Termination date: 20101215 |