CN100404215C - Single-degree-of-freedom linear translation space six-bar linkage mechanism - Google Patents
Single-degree-of-freedom linear translation space six-bar linkage mechanism Download PDFInfo
- Publication number
- CN100404215C CN100404215C CNB2006101131123A CN200610113112A CN100404215C CN 100404215 C CN100404215 C CN 100404215C CN B2006101131123 A CNB2006101131123 A CN B2006101131123A CN 200610113112 A CN200610113112 A CN 200610113112A CN 100404215 C CN100404215 C CN 100404215C
- Authority
- CN
- China
- Prior art keywords
- plane
- degree
- parallel
- connecting rod
- freedom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Transmission Devices (AREA)
Abstract
单自由度直线平移式空间六连杆机构,该机构包括固定基座,前曲柄,前摇杆,末端构件,后摇杆和后曲柄;其末端构件由中间平板以及设置在两端的左右吊耳组成,左右两耳所在的两平面非共面且不平行,左右两耳所在的两平面与中间平板的两条交线平行;运动链ABC的三个转动副A、B和C的轴线互相平行且都垂直于连杆AB和BC决定的平面;运动链FED的三个转动副F、E和D的轴线互相平行且都垂直于连杆FE和ED决定的平面;连杆AB和BC决定的平面与连杆FE和ED决定的平面之间的夹角与左右吊耳所在平面的夹角相等。本发明仅用六个连杆和六个转动副即可实现某个构件的单自由度直线平移运动,具有结构简单,工程应用方便的特点,可作为导向机构应用于任何需要具有做定直线平移运动的机械结构中。
Single-degree-of-freedom linear translation space six-bar linkage mechanism, the mechanism includes a fixed base, a front crank, a front rocker, an end member, a rear rocker and a rear crank; Composition, the two planes where the left and right ears are located are not coplanar and not parallel, the two planes where the left and right ears are located are parallel to the two intersection lines of the middle plate; the axes of the three rotating pairs A, B and C of the kinematic chain ABC are parallel to each other And they are all perpendicular to the plane determined by the connecting rods AB and BC; the axes of the three revolving pairs F, E and D of the kinematic chain FED are parallel to each other and are all perpendicular to the plane determined by the connecting rods FE and ED; the axes determined by the connecting rods AB and BC The included angle between the plane and the plane determined by the connecting rods FE and ED is equal to the included angle of the plane where the left and right lifting lugs are located. The invention can realize the single-degree-of-freedom linear translation motion of a certain component with only six connecting rods and six rotating pairs. It has the characteristics of simple structure and convenient engineering application. In the mechanical structure of the movement.
Description
技术领域 technical field
本发明涉及一种空间多连杆机构,特别涉及一种仅由连杆和转动副构成的具有单自由度精确直线平移运动的空间连杆机构,属于机械结构及机构学技术领域。The invention relates to a space multi-link mechanism, in particular to a space link mechanism with single-degree-of-freedom precise linear translation movement consisting of a link and a rotating pair, and belongs to the technical field of mechanical structure and mechanism.
背景技术 Background technique
在机构学的发展史上,为了实现精确的直线运动,人们发明了曲柄-滑块机构。但是,这样的机构需要有一个刚性的导轨,导轨为直线时,滑块将做直线运动;导轨为曲线时,滑块就做曲线运动。因而,曲柄-滑块机构运动的直线性在一定意义上完全取决于导轨。In the history of mechanism development, in order to achieve precise linear motion, people invented the crank-slider mechanism. However, such a mechanism requires a rigid guide rail. When the guide rail is straight, the slider will move in a straight line; when the guide rail is curved, the slider will move in a curved line. Thus, the linearity of the motion of the crank-slider mechanism is in a sense completely dependent on the guide rails.
为了避免这类机构运动的直线性受限于导轨,机构学者们针对完全由连杆和转动副连接而成的机构进行了研究,试图综合出能够生成精确直线运动的连杆机构来。文献【美R.L.诺顿(Robert L.Norton)著陈立周韩建友李威邱丽芳译,机械设计——机器和机构综合与分析,机械工业出版社,2003年3月第一版.】第100页中指出,一个机构要想实现精确的直线运动,它至少需要六个构件、七个转动副,即需要Watt型或Stephenson型六杆机构。其中最有代表性的是Peaucellier发明的如图1所示的含有八个连杆和6个转动副的精确直线机构。构件AB、BP、PD和DA形成一个适宜尺寸的菱形,构件O2B和O2D可以是任意的长度,但需相等。当O1O2精确等于O1A时,点P将生成一段无穷大的圆弧,即一条精确的直线(如图1中过点P与O1O2垂直的虚线)。同时,该书第100页中还指出,若把转轴O1从图1所示的位置向左或向右移动改变构件O1O2的长度时,点P的运动轨迹将不再保持在一条直线上。因此,Peaucellier机构中P点运动的直线性对O1O2的长度摄动是比较敏感的。即使抛弃这一点不管,Peaucellier的八杆机构也只是保证了一个点做直线运动,这就给工程应用带来了极大的困难。文献【黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997年12月】第27页以及文献【徐万椿译,高等机构设计,台湾北京:徐氏基金会出版:世界图书出版公司,1990年.】第653页图6.6中给出如图2所示的赛路德(Sarrut)机构,它的动平台具有一个直线平移运动的自由度。但是,如图2所示的Sarrut机构要求其两个运动链A1B1C1和A2B2C2必须连接矩形动平台C1C2和静平台A1A2的两个邻边。这种矩形动平台C1C2和静平台A1A2的结构形式不仅难于保证而且占用空间大,不利于工程应用。In order to avoid the linearity of this type of mechanism movement being limited by the guide rail, mechanism scholars have conducted research on mechanisms that are completely connected by connecting rods and rotating pairs, trying to synthesize a linkage mechanism that can generate precise linear motion. Literature [US RL Norton (Robert L.Norton) translated by Chen Lizhou, Han Jianyou, Li Wei and Qiu Lifang, Mechanical Design—Synthesis and Analysis of Machines and Mechanisms, Mechanical Industry Press, March 2003 First Edition.] Point out in the 100th page that a If the mechanism wants to achieve precise linear motion, it needs at least six components and seven revolving pairs, that is, a Watt-type or Stephenson-type six-bar mechanism. The most representative one is the precise linear mechanism invented by Peaucellier as shown in Figure 1, which contains eight connecting rods and six rotating pairs. The components AB, BP, PD and DA form a rhombus of suitable size, and the components O 2 B and O 2 D can be of any length but must be equal. When O 1 O 2 is exactly equal to O 1 A, point P will generate an infinite arc, that is, a precise straight line (as shown in Figure 1, the dotted line passing through point P and perpendicular to O 1 O 2 ). At the same time, it is also pointed out on page 100 of the book that if the rotating shaft O1 is moved from the position shown in Figure 1 to the left or right to change the length of the member O1O2 , the trajectory of point P will no longer remain in a in a straight line. Therefore, the linearity of the motion of point P in the Peaucellier mechanism is relatively sensitive to the length perturbation of O 1 O 2 . Even if this point is discarded, Peaucellier's eight-bar mechanism only guarantees a point to do linear motion, which brings great difficulties to engineering applications. Document [Huang Zhen, Kong Lingfu, Fang Yuefa. Parallel Robot Mechanism Theory and Control. Beijing: Machinery Industry Press, December 1997] page 27 and document [Translated by Xu Wanchun, Higher Institution Design, Taiwan Beijing: Published by Xu Foundation : World Book Publishing Company, 1990.] The Sarrut mechanism shown in Figure 2 is provided in Figure 6.6 on page 653, and its moving platform has a degree of freedom of linear translational motion. However, the Sarrut mechanism shown in Figure 2 requires that its two kinematic chains A 1 B 1 C 1 and A 2 B 2 C 2 must connect the two adjacent sides of the rectangular moving platform C 1 C 2 and the static platform A 1 A 2 . The structural form of the rectangular moving platform C 1 C 2 and the static platform A 1 A 2 is not only difficult to guarantee but also occupies a large space, which is not conducive to engineering applications.
后来,尽管许多机构学者也研究出了能够使某些连杆上的特定点做精确直线运动的机构来,但大都离不开滑块和导轨。还有很多的近似直线运动的连杆机构,这里就不再一一赘述。Later, although many mechanism scholars have also developed mechanisms that can make certain points on some connecting rods perform precise linear motion, most of them cannot do without sliders and guide rails. There are also many link mechanisms that approximate linear motion, so they will not be described here one by one.
发明内容 Contents of the invention
本发明的目的是提供一种适合工程应用的单自由度直线平移式空间六连杆机构,实现在只用转动副和连杆构成的多连杆机构中,使其中的某个构件能够做严格的单自由度直线平移运动。The purpose of the present invention is to provide a single-degree-of-freedom linear translation space six-link mechanism suitable for engineering applications, which can be realized in a multi-link mechanism composed of only rotating pairs and connecting rods, so that one of the components can be strictly controlled. single-degree-of-freedom linear translational motion.
本发明所提供的单自由度直线平移式空间六连杆机构,包括杆件以及连接杆件的转动副,其特征在于:所述的杆件包括固定基座,前曲柄,前摇杆,末端构件,后摇杆和后曲柄;所述的末端构件由中间平板以及设置在中间平板两端的非共面且不平行的左、右吊耳组成,所述的左、右两吊耳所在的平面与中间平板相交而成的两条交线平行;在左、右吊耳上分别设有与转动副的转轴相匹配的通孔,左、右吊耳分别通过运动链ABC和FED与固定基座相连接,这两条运动链均为平面RRR运动链;所述的运动链ABC的三个转动副A、B和C的轴线互相平行且都垂直于连杆AB和BC决定的平面;所述的运动链FED的三个转动副F、E和D的轴线互相平行且都垂直于连杆FE和ED决定的平面;所述的连杆AB和BC决定的平面与连杆FE和ED决定的平面之间的夹角与所述的末端构件上的左、右吊耳平面的夹角相等。The single-degree-of-freedom linear translation space six-bar linkage mechanism provided by the present invention includes a rod and a rotating pair connecting the rod, and is characterized in that: the rod includes a fixed base, a front crank, a front rocker, and a terminal components, a rear rocker and a rear crank; the end component is composed of a middle plate and non-coplanar and non-parallel left and right lugs arranged at both ends of the middle plate, and the plane where the left and right lugs are located The two intersecting lines formed by the intersection with the middle plate are parallel; the left and right lifting lugs are respectively provided with through holes matching the rotating shaft of the revolving pair, and the left and right lifting lugs are connected to the fixed base through the kinematic chain ABC and FED respectively. Connected, these two kinematic chains are plane RRR kinematic chains; the axes of the three rotating pairs A, B and C of the kinematic chain ABC are parallel to each other and are all perpendicular to the plane determined by the connecting rods AB and BC; The axes of the three rotating pairs F, E and D of the kinematic chain FED are parallel to each other and are all perpendicular to the plane determined by the connecting rods FE and ED; the plane determined by the connecting rods AB and BC is the same as that determined by the connecting rods FE and ED The angle between the planes is equal to the angle between the planes of the left and right lugs on the end member.
本发明的优选技术方案为:所述的设置在末端构件两端的非共面的左、右吊耳所在的平面相互垂直。The preferred technical solution of the present invention is: the planes where the non-coplanar left and right lifting lugs are arranged at both ends of the end member are perpendicular to each other.
本发明的另一优选技术方案为;设置在末端构件两端的非共面的左、右吊耳位于中间平板的同侧,所述的左、右吊耳所在的平面与中间平板的夹角均为135°;所述的固定基座两端与前、后曲柄连接的转轴A和F的轴线互相垂直相交,其交点o与转动副A和F构成一等腰直角三角形。Another preferred technical solution of the present invention is: the non-coplanar left and right lifting lugs arranged at both ends of the end member are located on the same side of the middle plate, and the angle between the plane where the left and right lifting lugs are located and the middle plate is equal. is 135°; the two ends of the fixed base are connected to the front and rear cranks, and the axes of the rotating shafts A and F are perpendicular to each other, and the intersection point o forms an isosceles right triangle with the rotating pair A and F.
本发明不仅通过连杆和转动副实现了机构的单自由度直线平移运动,而且仅需要六个连杆和六个转动副就可以使机构中的某一构件实现精确的直线平移运动,结构简单,克服了现有技术中“要想实现精确的直线运动,至少需要六个构件、七个转动副”的技术偏见,这相对于Peaucellier八杆机构仅能使一个特定的点做直线运动来说,结构更为简单也更有利于工程应用;相对于Sarrut机构,本发明所提供的单自由度直线平移式空间六连杆机构无须要求两个运动链连接上、下矩形平台的对应邻边,因而具有更广泛的角度适应范围,而且直线移动的行程更大,机构本身所占空间相对较小。因此,也更有利于工程应用。本发明可作为导向机构应用于任何需要做定直线平移运动的机械结构中,比如可以用作汽车独立悬架以及飞机起落架的导向装置、自动装配机的供料机构、铆接机的冲压头、打印机以及步进送料机构等。The present invention not only realizes the single-degree-of-freedom linear translation motion of the mechanism through the connecting rod and the rotating pair, but also only needs six connecting rods and six rotating pairs to make a certain component in the mechanism realize the precise linear translation motion, and the structure is simple , to overcome the technical prejudice of "at least six components and seven revolving pairs are required to achieve precise linear motion" in the prior art, which is compared to the Peaucellier eight-bar mechanism that can only make a specific point do linear motion , the structure is simpler and more conducive to engineering applications; compared with the Sarrut mechanism, the single-degree-of-freedom linear translation space six-bar linkage mechanism provided by the present invention does not require two kinematic chains to connect the corresponding adjacent sides of the upper and lower rectangular platforms, Therefore, it has a wider range of angle adaptation, and the stroke of linear movement is larger, and the space occupied by the mechanism itself is relatively small. Therefore, it is also more conducive to engineering applications. The present invention can be used as a guide mechanism in any mechanical structure that requires linear translational movement, for example, it can be used as a guide device for automobile independent suspension and aircraft landing gear, a feeding mechanism for an automatic assembly machine, a stamping head for a riveting machine, Printers and stepping feeding mechanisms, etc.
附图说明 Description of drawings
图1是Peaucellier八连杆机构。Figure 1 is a Peaucellier eight-bar linkage.
图2是Sarrut机构及其构件的空间连接关系示意图。Fig. 2 is a schematic diagram of the spatial connection relationship of the Sarrut mechanism and its components.
图3是本发明提供的单自由度直线平移式空间六连杆机构简图。Fig. 3 is a schematic diagram of the single-degree-of-freedom linear translation space six-bar linkage mechanism provided by the present invention.
图4是空间六连杆机构中的固定基座及两端转轴形成的等腰直角三角形的示意图。Fig. 4 is a schematic diagram of an isosceles right triangle formed by the fixed base and the rotating shafts at both ends in the spatial six-bar linkage mechanism.
图5是空间六连杆机构的前、后曲柄和前、后摇杆的结构示意图。Fig. 5 is a structural schematic diagram of the front and rear cranks and the front and rear rockers of the spatial six-bar linkage mechanism.
图6是空间六连杆机构的末端构件的结构组成简图。Fig. 6 is a schematic diagram of the structural composition of the terminal member of the spatial six-bar linkage mechanism.
图7是空间六连杆机构的末端构件的剖视图。Fig. 7 is a cross-sectional view of an end member of a spatial six-bar linkage mechanism.
图8是空间六连杆机构装配的俯视图。Fig. 8 is a top view of the assembly of the space six-bar linkage mechanism.
图9是空间六连杆机构的末端构件沿z轴负方向移动到下限位置时的示意图。Fig. 9 is a schematic diagram when the end member of the spatial six-bar linkage mechanism moves to the lower limit position along the negative direction of the z-axis.
图中:1-前曲柄;2-固定基座;3-前摇杆;4-末端构件;5-后摇杆;6-后曲柄;7-左吊耳;8-左通孔;9-中间平板;10-右通孔;11-右吊耳。In the figure: 1-front crank; 2-fixed base; 3-front rocker; 4-end member; 5-rear rocker; 6-rear crank; 7-left lug; 8-left through hole; 9- Middle plate; 10-right through hole; 11-right lug.
具体实施方式 Detailed ways
下面结合附图对本发明的结构、原理及具体实施方式作进一步的说明。The structure, principle and specific implementation of the present invention will be further described below in conjunction with the accompanying drawings.
图3是本发明提供的单自由度直线平移式空间六连杆机构的结构简图。其中固定基座2的结构形式及其两端的转轴A(x轴)和F(y′轴)的轴线间的夹角设为ψ,当ψ=90°时的正交关系如图4所示。该空间六连杆机构包括前曲柄1,固定基座2,前摇杆3,末端构件4,后摇杆5和后曲柄6六个杆件以及六个转动副A、B、C、F、E和D;所述的末端构件4由中间平板9以及设置在两端的左吊耳7和右吊耳11组成,所述的左、右两吊耳所在的两平面非共面且不平行,左、右吊耳所在的两平面与中间平板9的两条交线平行;在左、右吊耳上分别设有与转动副的转轴相匹配的通孔,左、右吊耳分别通过运动链ABC和FED与固定基座2相连接,这两条运动链均为平面RRR运动链;所述的运动链ABC的三个转动副A、B和C的轴线互相平行且都垂直于连杆AB和BC决定的平面;所述的运动链FED的三个转动副F、E和D的轴线互相平行且都垂直于连杆FE和ED决定的平面;所述的连杆AB和BC决定的平面与连杆FE和ED决定的平面之间的夹角与所述的末端构件4上的左、右吊耳平面的夹角相等。Fig. 3 is a schematic structural diagram of the single-degree-of-freedom linear translation space six-bar linkage mechanism provided by the present invention. Wherein the structural form of the
前曲柄1、前摇杆3、后摇杆5、后曲柄6的结构示意图均如图5所示,它们的尺寸可以相同也可以不同,末端连杆4的结构如图6所示,它由中间平板9和两端有外伸的左吊耳面7及右吊耳面11组成,左、右吊耳所在的平面相互垂直;左吊耳面7上设有供转动副连接用左通孔8,右吊耳面11上设有一个供转动副连接用的右通孔10,左吊耳面7和右吊耳面11位于中间平板9的同侧;如图7所示,当左吊耳面7与中间平板9的夹角为135°并且右吊耳面11与中间平板9的夹角也为135°时,该机构在受力和构型稳定性上达到最优,这将在后面加以分析;所述的固定基座2两端与前曲柄1和后曲柄6连接的转轴A和F的轴线互相垂直,其交点o与转动副A和F构成一等腰直角三角形;各结构的具体尺寸可以根据工程需要设定;图8表示了本发明提供的单自由度直线平移式空间六连杆机构装配后的俯视图,根据图8可以发现,末端构件4的中间平板9始终与固定基座2的侧面保持平行,即在图8中,CD//AF而且CD到AF的距离也始终保持不变。该特征正是由本发明提供的单自由度直线平移式空间六连杆机构的结构特点决定的。因此,接下来就分析该机构保持这种特征的运动学原理。The structural diagrams of the
为方便描述本发明提供的单自由度直线平移式空间六连杆机构的运动学原理,这里以转动副A和F的两条轴线所在的平面为xoy平面,以这两条轴线的交点为坐标原点,以转动副A的轴线为x轴建立右手坐标系。当转动副A和F的两条轴线相互正交时,如图4和图8所示,y轴恰好与转动副F的轴线y′轴重合。这样,在图3所示的坐标系内,前曲柄1和前摇杆3所在的平面(连杆FE和ED决定的平面)与xoz平面平行,后曲柄6和后摇杆5所在的平面(连杆AB和BC决定的平面)与yoz平面平行。该对应关系可以从图8所示的机构装配的俯视图中更清晰地看出。In order to facilitate the description of the kinematics principle of the single-degree-of-freedom linear translation space six-bar linkage mechanism provided by the present invention, here the plane where the two axes of the revolving pairs A and F are located is the xoy plane, and the intersection of these two axes is used as the coordinate At the origin, a right-handed coordinate system is established with the axis of rotating joint A as the x-axis. When the two axes of the rotating pair A and F are perpendicular to each other, as shown in Fig. 4 and Fig. 8, the y-axis coincides with the axis y' of the rotating pair F exactly. In this way, in the coordinate system shown in Figure 3, the plane where the
下面来分析末端构件4的自由运动。不失一般性,设转动副F的轴线y′到x轴的夹角为ψ(0°<ψ<180°),转动副A到坐标原点的距离为a,转动副F到坐标原点的距离为b,则可以得到转动副A的坐标为(a 0 0),转动副F的坐标为(bcosψ bsinψ 0)。在此基础上,可以设转动副B、C、D和E的坐标依次为(a yB zB)、(a yC zC)、(xD yD zD)和(xE yE zE)。以下分析可知,当ψ=90°而且a=b时,ΔoAF构成一个等腰直角三角形;这时,该机构在受力及构型稳定性上达到最优。Next, the free movement of the
在oxyz坐标系下,转动副A、B和C轴线的方向向量均为s1=(1 0 0)T,转动副F、E和D轴线的方向向量均为s2=(cosψ sinψ 0)T。图8所示的机构装配的俯视图表示了当ψ=90°时的情况。In the oxyz coordinate system, the direction vectors of axes of revolving joints A, B and C are all s 1 =(1 0 0) T , and the direction vectors of axes of revolving joints F, E and D are all s 2 =(cosψ sinψ 0) T. The top view of the mechanism assembly shown in Fig. 8 shows the situation when ψ = 90°.
这样,根据文献【Jing-Shan Zhao,Kai Zhou and et al,A New Method to Study the Degree ofFreedom of Spatial Parallel Mechanisms,The International Journal of Advanced ManufacturingTechnology,Vol.23,No.3-4,February 2004,pp.288-294.】【Jing-Shan Zhao,Zhi-Jing Feng,KaiZhou and De-Wen Jin,Re-analysis on the Degree-of-Freedom Configuration of the Platforms inSpatial Parallel Mechanisms with Constraints Spaces,The International Journal of AdvancedManufacturing Technology,Vol.28,No.1-2,February 2006,pp.190-196.】【Jing-Shan Zhao,KaiZhou and Zhi-Jing Feng,A Theory of Degrees of Freedom For Mechanisms,Mechanism andMachine Theory,Vol.39,No.6,June 2004,pp.621-643.】【Jing-Shan Zhao,Zhi-Jing Feng andJing-Xin Dong,Computation of the Configuration Degree of Freedom of a Spatial ParallelMechanism by Using Reciprocal Screw Theory,Mechanism and Machine Theory,DOI:10.1016/j.mechmachtheory.2006.01.006.】提出的机构自由度的分析理论,可以写出末端构件4的运动链ABC的运动螺旋系为:In this way, according to the literature [Jing-Shan Zhao, Kai Zhou and et al, A New Method to Study the Degree of Freedom of Spatial Parallel Mechanisms, The International Journal of Advanced Manufacturing Technology, Vol.23, No.3-4, February 2004, pp .288-294.] [Jing-Shan Zhao, Zhi-Jing Feng, KaiZhou and De-Wen Jin, Re-analysis on the Degree-of-Freedom Configuration of the Platforms in Spatial Parallel Mechanisms with Constraints Spaces, The International Journal of Advanced Manufacturing Technology, Vol.28, No.1-2, February 2006, pp.190-196.] [Jing-Shan Zhao, KaiZhou and Zhi-Jing Feng, A Theory of Degrees of Freedom For Mechanisms, Mechanism and Machine Theory, Vol. 39, No.6, June 2004, pp.621-643.] [Jing-Shan Zhao, Zhi-Jing Feng and Jing-Xin Dong, Computation of the Configuration Degree of Freedom of a Spatial Parallel Mechanism by Using Reciprocal Screw Theory, Mechanism and Machine Theory, DOI: 10.1016/j.mechmachtheory.2006.01.006.] proposed the analysis theory of the degree of freedom of the mechanism, and the kinematic helical system of the kinematic chain ABC of the
$ABC=[$A $B $C] (1)$ ABC =[$ A $ B $ C ] (1)
其中$A=(1 0 0 0 0 0)T where $ A = (1 0 0 0 0 0) T
$B=(1 0 0 0 zB -yB)T $ B =(1 0 0 0 z B -y B ) T
$C=(1 0 0 0 zC -yC)T $ C =(1 0 0 0 z C -y C ) T
显然,$ABC降秩的条件是:Obviously, the conditions for $ ABC to rank down are:
连杆BC与连杆AB共线 (C1)Link BC is collinear with link AB (C 1 )
进一步分析可知,条件(C1)可表述为:Further analysis shows that the condition (C 1 ) can be expressed as:
当条件(C1)不成立时,运动链ABC的终端约束$ABC r可以由互易螺旋理论求出,即When the condition (C 1 ) does not hold, the terminal constraint $ ABC r of the kinematic chain ABC can be calculated by the reciprocal spiral theory, namely
$E$r=0 (3)$E$ r = 0 (3)
其中$为运动螺旋系,
由(3)式可以求出$ABC r为:From formula (3), $ ABC r can be calculated as:
当条件(C1)成立,即式(2)成立时,运动链ABC的终端约束为:When the condition (C 1 ) is established, that is, when the formula (2) is established, the terminal constraint of the kinematic chain ABC is:
同样,可以写出末端构件(4)的另一运动链FED的运动螺旋系为:Similarly, the kinematic helical system of another kinematic chain FED of the end member (4) can be written as:
$FED=[$F $E $D] (6)$ FED = [$ F $ E $ D ] (6)
其中$F=(cosψ sinψ 0 0 0 0)T where $ F = (cosψ sinψ 0 0 0 0) T
$E=(cosψ sinψ 0 -zEsinψ zEcosψ xEsinψ-yEcosψ)T $ E =(cosψ sinψ 0 -z E sinψ z E cosψ x E sinψ-y E cosψ) T
$D=(cosψ sinψ 0 -zDsinψ zDcosψ xDsinψ-yDcosψ)T $ D =(cosψ sinψ 0 -z D sinψ z D cosψ x D sinψ-y D cosψ) T
而$FED降秩的条件是:And the conditions for $ FED to rank down are:
ED与FE共线 (C2)ED is collinear with FE (C 2 )
条件(C2)可表述为:Condition (C 2 ) can be expressed as:
当条件(C2)不成立时,运动链FED的终端约束$EED r也可以根据(3)式求得:When the condition (C 2 ) is not established, the terminal constraint $ EED r of the kinematic chain FED can also be obtained according to formula (3):
当条件(C2)成立,即式(7)成立时,运动链FED的终端约束为:When the condition (C 2 ) is established, that is, the formula (7) is established, the terminal constraint of the kinematic chain FED is:
因此,当条件(C1)和条件(C2)均不成立时,末端构件4所受到的约束为:Therefore, when neither the condition (C 1 ) nor the condition (C 2 ) holds true, the constraints on the
将式(10)代入(3)式可以求出末端构件4所具有的自由运动为:Substituting Equation (10) into Equation (3), the free motion of the
因此,(11)式表明末端构件4具有一个沿z轴方向平移的自由运动。显然,当ψ=90°,即y′与y重合时,(11)式亦成立。因此,该空间六连杆机构的末端构件4在ψ∈(0°,180°)的任意ψ值下都可以做单自由度定直线的平移运动;而Sarrut机构只是ψ=90°时的一种特殊形式。Therefore, equation (11) indicates that the
下面再讨论一下当条件(C1)、(C2)成立时的情况。Next, discuss the situation when the conditions (C 1 ) and (C 2 ) are established.
1.当条件(C1)成立但条件(C2)不成立时,末端构件4所受到的约束为:1. When the condition (C 1 ) is true but the condition (C 2 ) is not true, the constraints on the
由于0°<ψ<180°,因此,根据(12)式可知,只要zB-zC≠0,$4 r的秩就等于6,即
2.当条件(C2)均成立但条件(C1)不成立时,末端构件4所受到的约束为:2. When the conditions (C 2 ) are all true but the condition (C 1 ) is not true, the constraints on the
由于0°<ψ<180°,因此,根据(13)式可知,只要zD-zE≠0,$4 r的秩就等于6,即
3.显然,当以上两种情况1和2均成立时,末端构件4的自由运动必为零。3. Obviously, when the above two
综上所述,只要上述3种情况中有一个成立,末端构件4的自由运动就必为零。因此,要使末端构件4具有(11)式所描述的自由运动,就必须保证该空间六连杆机构避开在转动副A、B和C共线或转动副F、E和D共线的位置运动。这实际上界定了末端构件4做单自由度定直线运动的范围或行程,下面就根据这一约束条件来分析术端构件4做单自由度定直线运动的范围。To sum up, as long as one of the above three conditions is established, the free movement of the
在图3所示的机构中,采用了对称的结构布置,即前曲柄1和后曲柄6的杆长相等并设为l1,前摇杆3和后摇杆5的杆长也相等并设为l2,投影线ABC与基座AF的夹角和投影线FED与基座AF的夹角均为45°。同时,设末端构件4的左、右通孔中心距CD为l3,固定基座2的边AF的长为l4。In the mechanism shown in Figure 3, a symmetrical structural arrangement is adopted, that is, the rod lengths of the front crank 1 and the rear crank 6 are equal and set to l 1 , and the rod lengths of the
下面分析上述这些结构参数与末端构件4可做的直线行程的关系。设在俯视图8中,末端构件4到固定基座2的距离为h。不难发现,当转动副A、B、C向下运动到三点共线的极限位置时(如图9所示),由于结构的对称性,转动副F、E、D也恰好向下运动到三点共线的极限位置。这时,末端构件4从与基座共面的水平位置向下平移的距离S可以根据直角三角形的勾股定理表示为:The relationship between the above structural parameters and the linear travel that the
同样的,末端构件(4)也可以由水平位置向上移动S的距离后到达上极限位置。因此,该机构末端构件4的移动行程z在图3所示的坐标系下应满足:Similarly, the end member (4) can also be moved upwards by a distance S from the horizontal position to reach the upper limit position. Therefore, the movement stroke z of the
根据上面的分析,可以发现,末端构件4在(15)式定义的范围内具有严格单自由度定直线的自由运动。由于Sarrut机构的移动行程仅限于静平台A1A2以上到动平台的距离内,因此,相对于Sarrut机构,本发明的单自由度直线平移式空间六连杆机构末端构件4的移动范围z要更大一些,其移动范围z也完全取决于连杆的结构参数l1、l2、l3、l4和h。因而,根据工程需要的范围z,运用(15)式就可以设计和优化出上述的5个主要参数的最佳值。According to the above analysis, it can be found that the
当前曲柄1和后曲柄6以及前摇杆3和后摇杆5的长度均不同时,也可以类似推出末端构件4的移动行程。When the lengths of the front crank 1 and the rear crank 6 and the
因此,本发明不仅通过连杆和转动副实现了机构的单自由度直线平移运动,而且仅需要六个连杆和六个转动副就可以使机构中的末端构件4实现精确的直线平移运动,其直线移动行程可以用(15)式表示。这就克服了现有技术中“要想实现精确的直线运动,至少需要六个构件、七个转动副”的技术偏见。而导致这种偏见的原因是在机构综合中运用了传统的存在缺陷的机构自由度计算公式,有关这方面的分析参见文献【Jing-Shan Zhao,Kai Zhou and etal,A New Method to Study the Degree of Freedomof Spatial Parallel Mechani sms,TheInternational Journal of Advanced Manufacturing Technology,Vol.23,No.3-4,February 2004,pp.288-294.】【Jing-Shan Zhao,Zhi-Jing Feng,Kai Zhou and De-Wen Jin,Re-analysis on theDegree-of-Freedom Configuration of the Platforms in Spatial Parallel Mechanisms with ConstraintsSpaces,The International Journal of Advanced Manufacturing Technology,Vol.28,No.1-2,February 2006,pp.190-196.】【Jing-Shan Zhao,Kai Zhou and Zhi-Jing Feng,A Theory of Degreesof Freedom For Mechanisms,Mechanism and Machine Theory,Vol.39,No.6,June 2004,pp.621-643.】【Jing-Shan Zhao,Zhi-Jing Feng and Jing-Xin Dong,Computation of theConfiguration Degree of Freedom of a Spatial Parallel Mechanism by Using Reciprocal ScrewTheory,Mechanism and Machine Theory,DOI:10.1016/j.mechmachtheory.2006.01.006.】。Therefore, the present invention not only realizes the single-degree-of-freedom linear translation movement of the mechanism through the connecting rod and the rotating pair, but also only needs six connecting rods and six rotating pairs to realize the precise linear translation movement of the
在这一部分的最后,我们再来分析一下(11)式所描述的末端构件4所具有的自由运动。根据(11)式可知,末端构件4具有沿z轴方向(竖直方向)的一个平动自由度。因此,要想保证该结论的成立,(10)式所描述的系数矩阵$6 r的秩必为5。根据(10)式,我们有:At the end of this part, let us analyze the free motion of the
矩阵$6 r的秩为5的充分必要条件是其子矩阵A的行列式不为零,其中A necessary and sufficient condition for the rank of matrix $ 6r to be 5 is that the determinant of its submatrix A is not zero, where
令|A|=0可得Set |A|=0 to get
ψ=0°或ψ=180° (18)ψ=0° or ψ=180° (18)
(18)式表明了我们限定0°<ψ<180°的原因,进一步,由于cond(A)2≥1,若令Equation (18) shows the reason why we limit 0°<ψ<180°. Further, since cond(A) 2 ≥1, if let
其中cond(A)2表示表示矩阵A的条件数,‖A‖2表示矩阵A的2-范数,λ(ATA)表示ATA的特征值。Where cond(A) 2 represents the condition number of matrix A, ‖A‖ 2 represents the 2-norm of matrix A, and λ(A T A) represents the eigenvalue of A T A.
则可以求出then you can find
ψ=90° (20)ψ=90° (20)
(20)式表明当ψ=90°时,矩阵A的条件数恰好取最小值1。这表明当ψ=90°时,该空间六连杆具有最好的构型稳定性。这就是在权利要求书的从属权中要求转动副A和转动副B的轴线正交的原因。在从属权中,我们还要求:设置在所述末端构件4两端的非共面且不平行的左吊耳7和右吊耳11位于所述中间平板9的同侧,所述的左、右吊耳所在的平面与中间平板的夹角均为135°;所述的固定基座2两端与前曲柄1和后曲柄6连接的转轴A和F的轴线互相垂直,其交点o与转动副A和F构成一等腰直角三角形。这是从构件受力最优的角度得出的更进一步的要求。这里略去了具体推导过程。Formula (20) shows that when ψ=90°, the condition number of matrix A just takes the minimum value of 1. This shows that when ψ=90°, the spatial six-link has the best configuration stability. This is why the axes of the swivel joint A and the swivel joint B are required to be orthogonal in the dependent claims. In the dependency, we also require: the non-coplanar and non-parallel left lug 7 and right lug 11 arranged at both ends of the
相对于Peaucellier八杆机构仅能使一个特定的点做直线运动来说,本发明所提供的单自由度直线平移式空间六连杆机构的末端构件4可以做整体的定直线平移,并且结构更为简单;相对于Sarrut机构,本发明所提供的单自由度直线平移式空间六连杆机构无须要求两运动链连接上、下矩形平台的对应邻边,因而具有更广泛的ψ角适应范围,而且直线移动的行程更大,机构本身所占空间相对较小。因此,也更有利于工程应用。另外,本发明的从属权中还指出当所述的连杆AB和BC决定的平面与连杆FE和ED决定的平面之间的夹角与左右吊耳所在平面的夹角都等于直角,并且所述的左、右吊耳所在的平面与中间平板的夹角均为135°;所述的固定基座2两端与前曲柄1、后曲柄6连接的转轴A和F的轴线互相垂直,其交点o与转动副A和F构成一等腰直角三角形时,该机构在构型稳定性和受力上都达到了最好。本发明可作为导向机构应用于任何需要做定直线平移运动的机械结构中。Compared with the Peaucellier eight-bar mechanism that can only make a specific point do linear motion, the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101131123A CN100404215C (en) | 2006-09-15 | 2006-09-15 | Single-degree-of-freedom linear translation space six-bar linkage mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101131123A CN100404215C (en) | 2006-09-15 | 2006-09-15 | Single-degree-of-freedom linear translation space six-bar linkage mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1919546A CN1919546A (en) | 2007-02-28 |
CN100404215C true CN100404215C (en) | 2008-07-23 |
Family
ID=37777451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101131123A Expired - Fee Related CN100404215C (en) | 2006-09-15 | 2006-09-15 | Single-degree-of-freedom linear translation space six-bar linkage mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100404215C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101745915B (en) * | 2008-12-19 | 2011-08-03 | 中国科学院沈阳自动化研究所 | Linear translation planar nine-bar mechanism and construction method of linear translation motion mechanism |
CN102855341B (en) * | 2011-07-01 | 2017-04-12 | 贾檀 | Comprehensive method for designing planar four-bar linkage |
CN108375538B (en) * | 2018-02-06 | 2020-04-28 | 湘潭大学 | Polishing device for material spark identification |
CN109094675B (en) * | 2018-07-18 | 2020-03-24 | 北京交通大学 | Dual-drive multi-mode moving six-rod mechanism and control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085512A (en) * | 1988-05-16 | 1992-02-04 | Michael Doman | Apparatus for the moving of liquid, pasty and/or pourable media |
JPH0960699A (en) * | 1995-08-25 | 1997-03-04 | Matsushita Electric Works Ltd | Driving mechanism |
CN1495335A (en) * | 2002-04-02 | 2004-05-12 | 索菲技术公司 | Mechanism helping to make traction on flat surface and non-flat surface |
CN2751993Y (en) * | 2004-09-30 | 2006-01-18 | 广东工业大学 | Two-dimensional translational one-dimensional rotary suspension type three freedom paralleling mechanism |
-
2006
- 2006-09-15 CN CNB2006101131123A patent/CN100404215C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085512A (en) * | 1988-05-16 | 1992-02-04 | Michael Doman | Apparatus for the moving of liquid, pasty and/or pourable media |
JPH0960699A (en) * | 1995-08-25 | 1997-03-04 | Matsushita Electric Works Ltd | Driving mechanism |
CN1495335A (en) * | 2002-04-02 | 2004-05-12 | 索菲技术公司 | Mechanism helping to make traction on flat surface and non-flat surface |
CN2751993Y (en) * | 2004-09-30 | 2006-01-18 | 广东工业大学 | Two-dimensional translational one-dimensional rotary suspension type three freedom paralleling mechanism |
Non-Patent Citations (6)
Title |
---|
一种特殊的直线轨迹连杆机构. 刘毅,王丽娜.现代制造工程. 2003 |
一种特殊的直线轨迹连杆机构. 刘毅,王丽娜.现代制造工程. 2003 * |
单自由度空间单封闭连杆机构的结构类型综合. 于影,周欣.机械工程师. 1996 |
单自由度空间单封闭连杆机构的结构类型综合. 于影,周欣.机械工程师. 1996 * |
用空间连杆机构实现无导向直线运动. 谢可兵,茅及愚.机械工程师. 2003 |
用空间连杆机构实现无导向直线运动. 谢可兵,茅及愚.机械工程师. 2003 * |
Also Published As
Publication number | Publication date |
---|---|
CN1919546A (en) | 2007-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100404215C (en) | Single-degree-of-freedom linear translation space six-bar linkage mechanism | |
CN1170658C (en) | A four-degree-of-freedom parallel robot mechanism | |
CN100544901C (en) | A robotic shoulder joint | |
WO2018076601A1 (en) | Large-rotation angle two-rotational, one-translational parallel mechanism | |
CN205394539U (en) | Arm and robot | |
CN104552247B (en) | A kind of Three-freedom-degree hybrid robot mechanism | |
Tian et al. | Kinematic analysis of continuum robot consisted of driven flexible rods | |
CN101157373A (en) | robot ankle joint | |
CN110039524A (en) | Two turn of one shift redundancy drives full symmetric parallel institution | |
CN106671062A (en) | Three-translation one-rotation four-degree-of-freedom parallel mechanism | |
CN110026967A (en) | A kind of 2PRU-2PUR three freedom redundancy driven Parallel Kinematic Manipulator | |
CN100526027C (en) | Single freedom three-dimension spatial motion mechanism | |
CN103286777A (en) | Novel spatial three-freedom-degree parallel connection mechanism | |
CN101653944A (en) | Parallel mechanism of three degrees of freedom for regulating posture | |
CN100411826C (en) | A four-degree-of-freedom parallel robot mechanism with two-dimensional translation and two-dimensional rotation | |
CN202428447U (en) | Two-freedom-degree robot neck joint | |
CN102350698A (en) | Six-DOF (degree of freedom) parallel mechanism containing 5R closed-loop branch chain | |
CN107471201B (en) | Structure redundancy parallel robot mechanism with three relative degrees of freedom | |
CN106514624A (en) | Reconfigurable four-degree-of-freedom parallel manipulator | |
CN112123369B (en) | Constant force conduction device and linear connecting rod assembly thereof | |
CN110539285A (en) | A Bionic Flexible Feet Tensioning Mechanism | |
CN101708609A (en) | Space three degree-of-freedom pure-translation parallel robot | |
CN107717999A (en) | The waist mechanism design of bionic-mouse based on link transmission | |
CN103895006B (en) | Planar three-freedom-degree parallel mechanism | |
CN217805012U (en) | Wheeled biped robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080723 Termination date: 20120915 |