CN100403653C - Maximum jitter tolerance deviation calibration method and device thereof - Google Patents
Maximum jitter tolerance deviation calibration method and device thereof Download PDFInfo
- Publication number
- CN100403653C CN100403653C CNB021323534A CN02132353A CN100403653C CN 100403653 C CN100403653 C CN 100403653C CN B021323534 A CNB021323534 A CN B021323534A CN 02132353 A CN02132353 A CN 02132353A CN 100403653 C CN100403653 C CN 100403653C
- Authority
- CN
- China
- Prior art keywords
- phase
- pulse
- locked loop
- net current
- charge pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
本发明提供一种锁相回路的最大抖动容许偏差校准方法及其装置,该锁相回路包括串连的一相位检测器及一电荷汲取器,该方法为提供一第一校正信号及一第二校正信号至该相位检测器中进行相位检测,以根据两者的相位差产生一上升脉冲及一下降脉冲控制该电荷汲取器产生一净电流,并利用一校正单元根据该净电流,选择性调整该上升或下降脉冲的脉冲宽度,直到该净电流达到一目标值,藉此校准该相位检测器及电荷汲取器的特性曲线所造成的抖动偏差。
The present invention provides a maximum jitter tolerance deviation calibration method and device for a phase-locked loop, the phase-locked loop includes a phase detector and a charge extractor connected in series, the method provides a first correction signal and a second correction signal to the phase detector for phase detection, so as to generate a rising pulse and a falling pulse according to the phase difference between the two to control the charge extractor to generate a net current, and utilizes a correction unit to selectively adjust the pulse width of the rising or falling pulse according to the net current until the net current reaches a target value, thereby calibrating the jitter deviation caused by the characteristic curves of the phase detector and the charge extractor.
Description
技术领域 technical field
本发明有关于一种锁相回路的最大抖动容许偏差校准方法及其装置,特别是指一种可有效校准锁相回路内部电路的特性偏差,而使锁相回路具有最大抖动容许偏差的校准方法及其装置。The invention relates to a method and device for calibrating the maximum jitter tolerance deviation of a phase-locked loop, in particular to a calibration method that can effectively calibrate the characteristic deviation of the internal circuit of the phase-locked loop so that the phase-locked loop has the maximum jitter tolerance deviation and its devices.
背景技术 Background technique
如图1所示,是一典型锁相回路系统1,其包括依序串连成一回路的一相位检测器11、一电荷汲取器12、一回路滤波器13、一压控振荡器(VCO)14及一分频器15。该锁相回路系统1的工作方式是相位检测器11检测一输入信号IN与一由压控振荡器14产生并经分频器15适当分频的时钟信号CLK的间的相位差,并根据两者的相位差产生一上升脉冲UP及一下降脉冲DN至电荷汲取器12中进行运算后,输出一电流Icp,电流Icp再经由回路滤波器13积分(取平均值)转换成一控制电压Vct控制压控振荡器14对应输出一压控信号,使该压控信号经分频器15分频后产生的时钟信号CLK的频率能趋近于输入信号IN的频率而锁定该输入信号IN。因此,当时钟信号CLK的相位超前输入信号IN时(即时钟信号CLK的频率大于输入信号IN),该相位检测器11即产生一宽度较窄的上升脉冲UP或宽度较宽的下降脉冲DN给电荷汲取器12,使产生的电流Icp的净电流(平均值)为正,并经回路滤波器12积分相对产生一下降的电压Vct,而控制压控振荡器14将时钟信号CLK的频率降低。而当时钟信号CLK的相位落后输入信号IN时(即时钟信号CLK的频率小于输入信号IN),则该相位检测器11会产生一宽度较宽的上升脉冲UP或宽度较窄的下降脉冲DN控制该电荷汲取器12,使产生的净电流为负值,而令回路滤波器13输出上升的电压Vct,以驱使压控振荡器14将时钟信号CLK的频率拉高,藉此,当净电流趋近于零时,时钟信号CLK的频率会逐渐接近输入信号IN,并于净电流等于零时,输出电压Vct成为一定值,并使时钟信号CLK的频率与相位和输入信号IN达到一致而锁定。As shown in Figure 1, it is a typical phase-locked
然而,由于一般锁相回路系统1中,相位检测器11及电荷汲取器12的转换曲线通常是不理想的,以致于相位锁定点在转换曲线上偏移,导致抖动容许偏差降低,并产生如图2所示的情况,其相位锁定点为图示的A点,亦即相位差为零的点,而A点的正相位抖动容忍误差虽大于1T,但其负相位抖动容忍误差最大仅为-0.625T,但是,在理想的情况下,相位锁定点应该是在图示中的B点,其正负相位抖动容忍误差将分别为1T及-1T。因此,相位检测器11及电荷汲取器12的转换曲线若是不理想,将造成最大抖动容许偏差的降低,导致锁相回路锁相能力变差。However, in the
发明内容 Contents of the invention
因此,本发明的目的,即在提供一种锁相回路的最大抖动容许偏差校准方法及其装置,其可有效校准锁相回路系统内部电路的特性偏差,使锁相回路系统具有最大抖动容许偏差范围。Therefore, the object of the present invention is to provide a method and device for calibrating the maximum jitter tolerance deviation of a phase-locked loop, which can effectively calibrate the characteristic deviation of the internal circuit of the phase-locked loop system, so that the phase-locked loop system has a maximum jitter tolerance deviation scope.
于是,本发明锁相回路的最大抖动容许偏差校准方法,其中该锁相回路包括依序串连成一回路的一相位检测器、一电荷汲取器、一回路滤波器及一压控振荡器。该方法包括(a)令该回路滤波器与电荷汲取器及压控振荡器呈暂时开路状态。(b)提供一第一校正信号及一第二校正信号至该相位检测器进行相位检测,使根据两者的相位差产生一上升脉冲及一下降脉冲至该电荷汲取器,使该电荷汲取器据,以产生一净电流。(c)根据该净电流调整该上升脉冲及下降脉冲的脉冲宽度,直到该电荷汲取器输出的净电流达到一目标值。藉此,有效校准该锁相回路的相位检测器及电荷汲取器的特性偏差,使具有最大的抖动容许偏差范围。Therefore, the method for calibrating the maximum jitter tolerance deviation of the phase-locked loop of the present invention, wherein the phase-locked loop includes a phase detector, a charge extractor, a loop filter and a voltage-controlled oscillator sequentially connected in series to form a loop. The method includes (a) temporarily opening the loop filter with the charge pump and the voltage controlled oscillator. (b) Provide a first correction signal and a second correction signal to the phase detector for phase detection, so that a rising pulse and a falling pulse are generated to the charge pump according to the phase difference between the two, so that the charge pump According to, to produce a net current. (c) Adjusting the pulse widths of the rising pulse and the falling pulse according to the net current until the net current output by the charge extractor reaches a target value. Thereby, the characteristic deviation of the phase detector and the charge extractor of the phase-locked loop is effectively calibrated, so as to have the largest jitter allowable deviation range.
因此,本发明实施上述方法的锁相回路的最大抖动容许偏差校准装置,其中该锁相回路包括依序串连成一回路的一相位检测器、一电荷汲取器、一回路滤波器及一压控振荡器,且于该装置进行校准程序时,该回路滤波器系与该电荷汲取器及压控振荡器呈暂时开路状态,且该装置包括一信号产生单元及一校正单元。该信号产生单元,用以提供一第一校正信号及一第二校正信号至该相位检测器,使对该二信号进行相位检测,并根据测得的相位差产生一上升脉冲及一下降脉冲至该电荷汲取器,令该电荷汲取器据以产生一净电流。该校正单元根据上述净电流调整该上升脉冲及下降脉冲的脉冲宽度,直到该电荷汲取器输出的净电流达到一目标值。Therefore, the present invention implements the maximum jitter tolerance calibration device of the phase-locked loop of the above method, wherein the phase-locked loop includes a phase detector, a charge extractor, a loop filter and a voltage control circuit connected in series in sequence. An oscillator, and when the device performs a calibration procedure, the loop filter is temporarily open with the charge extractor and the voltage-controlled oscillator, and the device includes a signal generating unit and a calibration unit. The signal generation unit is used to provide a first correction signal and a second correction signal to the phase detector, so that the phase detection of the two signals is performed, and a rising pulse and a falling pulse are generated according to the measured phase difference to The charge extractor is used to generate a net current according to the charge extractor. The calibration unit adjusts the pulse widths of the rising pulse and the falling pulse according to the net current until the net current output by the charge extractor reaches a target value.
附图说明 Description of drawings
本发明的其它特征及优点,在以下配合参考图式的优选实施例的详细说明中,将可清楚的明白,在图式中:Other features and advantages of the present invention will be clearly understood in the following detailed description of the preferred embodiment with reference to the drawings, in the drawings:
图1是一典型锁相回路系统的电路方块图;Fig. 1 is a circuit block diagram of a typical phase-locked loop system;
图2是典型锁相回路系统中的相位检测器的输出脉冲宽度与相位差的转换曲线;Fig. 2 is the conversion curve of the output pulse width and the phase difference of the phase detector in the typical phase-locked loop system;
图3是本发明锁相回路的最大抖动容许偏差校准方法及其装置的一优选实施例的电路方块图;Fig. 3 is the circuit block diagram of a preferred embodiment of the maximum jitter tolerance calibration method and device of the phase-locked loop of the present invention;
图4是本实施例中该最大抖动容许偏差校准装置的积分器的详细电路图;Fig. 4 is a detailed circuit diagram of the integrator of the maximum jitter tolerance calibration device in this embodiment;
图5是应用本实施例的方法后,相位检测器的输出脉冲宽度与相位差的转换曲线;及Fig. 5 is the conversion curve of the output pulse width and phase difference of the phase detector after applying the method of the present embodiment; and
图6是本实施例的电路方块图,其显示该锁相回路在一正常模式下操作。FIG. 6 is a circuit block diagram of the present embodiment, which shows that the PLL operates in a normal mode.
组件标号对照Component designation comparison
2 锁相回路2 phase locked loop
3 锁相回路的最大抖动容许偏差校准装置3 The maximum jitter allowable deviation calibration device of the phase-locked loop
21 相位检测器 22 电荷汲取器21
23 回路滤波器 24 压控振荡器23
25 分频器 31 信号产生单元25
32 校正单元 33 脉冲产生电路32
34 积分器 35 模拟/数字转换器34
36 决策电路 37 上升脉冲扩展器36
38 下降脉冲扩展器 210 第一多路转换器38 falling
240 第二多路转换器 341 运算放大器240
ICP 电流 VR 电压源I CP Current VR Voltage Source
Verr 校正电压 C1 电容器V err correction voltage C1 capacitor
Vct 控制电压 CAL1 第一校正信号V ct control voltage CAL1 first correction signal
CAL2 第二校正信号 IN 输入信号CAL2 second correction signal IN input signal
CLK 时钟信号CLK clock signal
具体实施方式 Detailed ways
参阅图3所示,是本发明锁相回路的最大抖动容许偏差校准方法及其装置的一优选实施例的电路方块图,其中锁相回路2包括依序串连成一回路的一相位检测器21、一电荷汲取器22、一回路滤波器23、一压控振荡器(VCO)24及一分频器25,且该锁相回路2的工作方式已于前述公知技术中说明,于此不再重述。Referring to Fig. 3, it is a circuit block diagram of a preferred embodiment of the method and device for calibrating the maximum jitter tolerance deviation of the phase-locked loop of the present invention, wherein the phase-locked
而本发明锁相回路的最大抖动容许偏差校准装置3包括一信号产生单元31及一校正单元32,且本发明锁相回路的最大抖动容许偏差校准方法包括下列步骤:The maximum jitter tolerance calibration device 3 of the PLL of the present invention includes a
首先,信号产生单元31提供频率不相同的一第一校正信号CAL1及一第二校正信号CAL2给该相位检测器21。信号产生单元31在本实施例中包括一用以产生该第一校正信号CAL1的脉冲产生器33,并提供一电压源VR给压控振荡器24使产生该第二校正信号CAL2,且由于一般相位检测器21是根据输入信号IN的中心频率去设计上升脉冲UP与下降脉冲DN的初始宽度,因此为能量测到最大且最佳的相位差变化,第一校正信号CAL1通常是取输入信号IN的平均频率,例如,输入信号IN的频率变动范围是从1MHz-10MHz时,则第一校正信号CAL1的频率则取5.5MHz,而第二校正信号CAL2则是根据系统对于取样时钟信号的需求而定,例如,系统将取样时钟信号的工作频率定为100MHz,则第二校正信号就取100MHz为其校正频率。此外,为了控制锁相回路2是在校正模式或正常工作模式下操作,在相位检测器21的输入信号端INX设有一第一多路转换器210,且令该第一多路转换器210的输入端分别连接至一输入信号IN及该脉冲产生器33的第一校正信号CAL1输出端,另外在压控振荡器24的输入端设有一第二多路转换器240,该第二多路转换器240的输入端分别连接回路滤波器23的控制电压Vct输出端及电压源VR。因此,当进行校正模式时,第一多路转换器210被控制并选择连接脉冲产生器33与相位检测器21,第二多路转换器240选择连接定电压源VR与压控振荡器24,而使回路滤波器23与电荷汲取器22及压控振荡器24呈暂时开路状态。此时,第一校正信号CAL1及第二校正信号CAL2被送进相位检测器21中进行相位检测,使相位检测器21根据两者的相位差输出一上升脉冲UP及一下降脉冲DN,该上升脉冲UP与下降脉冲DN被送入电荷汲取器22中经过相减后产生一电流Icp。该电流Icp代表第二校正信号CAL2与第一校正信号CAL1间的相位差,且由于第二校正信号CLK2与第一校正信号CAL1的间的相位差随着时间不断地在改变,使得电流Icp的大小及极性亦随的不断变化,且在锁相回路2为理想的情况下,这些变化的电流Icp的平均值(即净电流值)应该为零(或趋近于零),但是,由于锁相回路2的相位检测器21与电荷汲取器22的转换曲线的非理想特性,造成相位检测器21输出的上升脉冲UP及下降脉冲DN具有一偏差量,以及电荷汲取器22产生的电流Icp具有一偏差值,以致净电流(平均值)不为零,因而产生上述相位锁定点偏移的情况。所以,若能使净电流为零,即可校正相位锁定点,因此,净电流被送入校正电路32中,针对上述的非理相情况进行校正。Firstly, the
如图3所示,校正电路32包括一与该电荷汲取器22连接的积分器34、一与该积分器34连接的模拟/数字转换器35、一与该模拟/数字转换器35连接的决策电路36、以及一上升脉冲扩展器37及一下降脉冲扩展器38,其受该决策电路36控制并连接在该相位检测器21与电荷汲取器22的间,用以分别调整该上升脉冲UP与下降脉冲DN的脉冲宽度。当电荷汲取器22输出的电流ICP被送入积分器34时,如图4所示,该积分器34是由一运算放大器341及一连接在运算放大器341的负端及输出端的电容C1所组成,因此由运算放大器341负端流入的正或负的电流ICP会开始对电容C1进行充放电,而得到一净电流值(即电流ICP的平均值),并于该运算放大器341的输出端产生一相对的校正电压Verr(假设校正电压Verr的初始值为零)。然后校正电压Verr被送入该模拟/数字转换器35进行数字化后送至该决策电路36中,该决策电路36即根据该数字化的校正电压Verr的大小及正、负极性选择调整上升脉冲UP或下降脉冲DN的脉冲宽度。例如,当电荷汲取器22输出至积分器34的净电流为正值时,积分器34会相对产生一负的校正电压Verr,并令决策电路36控制下降脉冲扩展器38,使将该下降脉冲DN的宽度扩展,以驱使电荷汲取器22产生负的电流ICP,而当电荷汲取器22输出的电流ICP的平均值(净电流)为负值时,积分器34则相对产生一正的校正电压Verr,决策电路36即根据该正的校正电压Verr控制该上升脉冲扩展器37将该上升脉冲UP的宽度扩展一定幅度,而驱使电荷汲取器22产生一正的净电流,借着重复上述回授控制的过程,电荷汲取器22输出的净电流值会逐渐变小并使校正电压Verr趋于零,同时上升脉冲UP及下降脉冲DN的宽度亦经由上升脉冲扩展器37及下降脉冲扩展器38的适当扩展,而补偿了相位检测器21及电荷汲取器22的特性曲线所造成输出脉冲宽度及电流ICP的偏差,并于净电流达到一目标值(在此该目标值是指最小的净电流值)时,达到最佳的校准状态,此时,校正电压Verr几乎为零,并使上升脉冲扩展器37及下降脉冲扩展器38保持最终扩展幅度(即校正幅度),因此,藉由此一扩展幅度,如图5所示,将使得上升脉冲UP曲线的平均值位置与下降脉冲DN曲线的平均值位置相同,而由于在本实施例中,下降脉冲DN的宽度为固定,仅调整上升脉冲UP的宽度,所以上升脉冲UP曲线的平均值位置将等于下降脉冲DN曲线的位置,因此校正后的相位锁定点为图示的B点,其正负相位抖动容许误差分别为1T及-1T,因此,其最大抖动容许偏差因而提升。As shown in Figure 3, the
因此,于上述校准程序完成后,当锁相回路2切换至正常模式下工作时,如图6所示,第一多路转换器210使输入信号IN与相位检测器21连接,第二多路转换器240使回路滤波器23与压控振荡器24连接,压控振荡器24即根据电荷汲取器22经由回路滤波器23产生的控制电压Vct对应输出一时钟信号CLK与输入信号IN同时送入该相位检测器21中进行相位检测,相位检测器21根据两者的相位差对应输出的上升脉冲UP及下降脉冲DN会分别经由该上升脉冲扩展器37及下降脉冲扩展器38根据其最终扩展幅度适当扩展后,再送入该电荷汲取器22中,因而消除相位检测器21的特性曲线所造成的上升脉冲UP与下降脉冲DN的偏差,以及电荷汲取器22的非理想所造成净电流ICP的偏差,使当时钟信号CLK与输入信号IN的间突然产生很大的正相位差(1T,0-180度)或负相位差(-1T,0-180度)时,锁相回路2仍然能追踪到并对应产生一负的净电流或正的净电流给回路滤波器23产生相对的控制电压Vct控制压控振荡器24将时钟信号CLK与输入信号IN间的相位差逐渐缩小而锁定,因而提升锁相回路2的相位锁定的能力,并使锁相回路2能够追踪锁定的相位偏差范围达到最大。Therefore, after the above-mentioned calibration procedure is completed, when the
综上所述,本发明藉由使锁相回路2在一校正模式下,提供具有特定频率的第一校正信号CAL1及第二校正信号CAL2输入相位检测器21中,使根据两者的相位差产生上升脉冲UP及下降脉冲DN输入电荷汲取器22中,而对应产生电流ICP,并由电流ICP中获得因为相位检测器21与电荷汲取器22的非理想特性而产生的不为零的净电流值,并藉由将该净电流值输入校正电路32的积分器34及模拟/数字转换器35中,进行积分及数字化产生一校正电压Verr,而由决策电路36根据该校正电压Verr的极性选择控制上升脉冲扩展器37及下降脉冲扩展器38对该上升脉冲UP及下降脉冲DN的脉冲宽度进行适当幅度的扩展,趋使电荷汲取器22输出的净电流达到最小,进而校正及补偿相位检测器21及电荷汲取器22的非理想特性,并修正其相位锁定点,藉此,使锁相回路2在正常模式下工作时,具有最大的相位抖动容许偏差范围,进而提升锁相回路2的锁相能力。In summary, the present invention provides the first correction signal CAL1 and the second correction signal CAL2 with specific frequencies to be input into the phase detector 21 by making the phase-locked loop 2 in a correction mode, so that according to the phase difference between the two The rising pulse UP and the falling pulse DN are generated to be input into the charge pump 22, and the corresponding current I CP is generated, and the non-zero value generated by the non-ideal characteristics of the phase detector 21 and the charge pump 22 is obtained from the current I CP net current value, and by inputting the net current value into the integrator 34 and the analog/digital converter 35 of the correction circuit 32, integrating and digitizing to generate a correction voltage V err , and the decision circuit 36 according to the correction voltage V The polarity selection of err controls the rising pulse extender 37 and the falling pulse extender 38 to extend the pulse widths of the rising pulse UP and the falling pulse DN to an appropriate extent, tending to make the net current output by the charge extractor 22 reach the minimum, and then correct And compensate the non-ideal characteristics of the phase detector 21 and the charge extractor 22, and correct its phase lock point, thereby, when the phase locked loop 2 is working in the normal mode, it has the largest phase jitter tolerance range, and then improves the lock Phase lock capability of phase loop 2.
以上所述,仅为本发明的优选实施例,当不能以此限定本发明实施的范围,即依本发明权利要求范围及发明说明书内容所作的简单的等效变化与改进,皆应仍属本发明涵盖的范围。The above is only a preferred embodiment of the present invention, when the scope of the present invention cannot be limited with this, the simple equivalent changes and improvements made according to the scope of the claims of the present invention and the content of the description of the invention should still belong to this invention. scope of the invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021323534A CN100403653C (en) | 2002-09-24 | 2002-09-24 | Maximum jitter tolerance deviation calibration method and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021323534A CN100403653C (en) | 2002-09-24 | 2002-09-24 | Maximum jitter tolerance deviation calibration method and device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1485987A CN1485987A (en) | 2004-03-31 |
CN100403653C true CN100403653C (en) | 2008-07-16 |
Family
ID=34145160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021323534A Expired - Fee Related CN100403653C (en) | 2002-09-24 | 2002-09-24 | Maximum jitter tolerance deviation calibration method and device thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100403653C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7412617B2 (en) * | 2006-04-06 | 2008-08-12 | Mediatek Inc. | Phase frequency detector with limited output pulse width and method thereof |
CN100444073C (en) * | 2006-07-17 | 2008-12-17 | 北京中星微电子有限公司 | Automatic correcting current circuit and method |
CN105318940B (en) * | 2015-10-08 | 2018-07-13 | 华南理工大学 | A kind of multi-way stream gauge calibrating installation pulse counting signal reconstructing method |
CN113437966B (en) * | 2021-06-17 | 2022-05-10 | 清华大学深圳国际研究生院 | Ultra-wideband transmitter based on circuit timing |
CN116248542B (en) * | 2023-05-12 | 2023-08-08 | 芯耀辉科技有限公司 | A device, method and system for jitter tolerance testing in digital communication |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5699387A (en) * | 1993-06-23 | 1997-12-16 | Ati Technologies Inc. | Phase offset cancellation technique for reducing low frequency jitters |
JPH10224213A (en) * | 1997-02-03 | 1998-08-21 | Anritsu Corp | Jitter generator using pll circuit |
CN1231548A (en) * | 1998-01-14 | 1999-10-13 | 日本电气株式会社 | Digital phase-locked loop capable of suppressing jitter |
-
2002
- 2002-09-24 CN CNB021323534A patent/CN100403653C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5699387A (en) * | 1993-06-23 | 1997-12-16 | Ati Technologies Inc. | Phase offset cancellation technique for reducing low frequency jitters |
JPH10224213A (en) * | 1997-02-03 | 1998-08-21 | Anritsu Corp | Jitter generator using pll circuit |
CN1231548A (en) * | 1998-01-14 | 1999-10-13 | 日本电气株式会社 | Digital phase-locked loop capable of suppressing jitter |
Non-Patent Citations (2)
Title |
---|
JP10224213 A 1998.08.21 |
US5699387 A 1997.12.16 |
Also Published As
Publication number | Publication date |
---|---|
CN1485987A (en) | 2004-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4660076B2 (en) | Clock generation circuit | |
US8085101B2 (en) | Spread spectrum clock generation device | |
US7579886B2 (en) | Phase locked loop with adaptive phase error compensation | |
US6664861B2 (en) | Method and apparatus for stable phase-locked looping | |
CN101471658B (en) | Phase-locked loop device and its control method | |
CN101682296A (en) | Spread spectrum control pll circuit and its start-up method | |
US7046093B1 (en) | Dynamic phase-locked loop circuits and methods of operation thereof | |
US20100067636A1 (en) | Baseband Phase-Locked Loop | |
CN105610435B (en) | Phaselocked loop and its control method | |
CN114499504A (en) | Phase-locked loop circuit, method of operation and sub-range control circuit | |
EP3700091A1 (en) | Feedback control for accurate signal generation | |
JP2004530334A (en) | Fractional-N frequency synthesizer (FRACTIONAL-NFREQNCYSYNTHESIZER) using fractional compensation method (FRACTIONALCOMPENSATIONMETHOD) | |
US8089308B2 (en) | Phase controlling apparatus, phase-control printed board, and controlling method | |
WO2007091516A1 (en) | Phase synchronization loop type frequency synthesizer of fractional n-type, and phase shift circuit with frequency converting function | |
CN112187229B (en) | High-precision pulse width modulation system and method | |
CN107911114A (en) | A kind of broadband phase-looked loop of constant loop bandwidth | |
CN100403653C (en) | Maximum jitter tolerance deviation calibration method and device thereof | |
JP4357674B2 (en) | Frequency synthesizer | |
US9379723B2 (en) | Method and apparatus for generating a digital signal of tunable frequency and frequency synthesizer employing same | |
KR100972818B1 (en) | DL-based Fractional Multiplication Frequency Synthesis Apparatus and Method | |
US7279992B2 (en) | Circuit for detecting phase errors and generating control signals and PLL using the same | |
KR20050018150A (en) | Clock generator with one pole | |
CN101123433B (en) | PLL | |
TW535362B (en) | Maximum shaking tolerance deviation calibration method of phase lock loop and its apparatus | |
JP2007295027A (en) | Spread spectrum clock generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080716 Termination date: 20160924 |
|
CF01 | Termination of patent right due to non-payment of annual fee |