[go: up one dir, main page]

CN100403559C - Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof - Google Patents

Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof Download PDF

Info

Publication number
CN100403559C
CN100403559C CNB2004100597305A CN200410059730A CN100403559C CN 100403559 C CN100403559 C CN 100403559C CN B2004100597305 A CNB2004100597305 A CN B2004100597305A CN 200410059730 A CN200410059730 A CN 200410059730A CN 100403559 C CN100403559 C CN 100403559C
Authority
CN
China
Prior art keywords
nitride
buffer layer
light
ternary
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100597305A
Other languages
Chinese (zh)
Other versions
CN1713405A (en
Inventor
欧震
林文祥
赖世国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CNB2004100597305A priority Critical patent/CN100403559C/en
Publication of CN1713405A publication Critical patent/CN1713405A/en
Application granted granted Critical
Publication of CN100403559C publication Critical patent/CN100403559C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A nitride light emitting device having a ternary nitride buffer layer, comprising a substrate, a ternary nitride buffer layer formed on the substrate, a first conductivity type nitride semiconductor stacked layer formed on the buffer layer, a light emitting layer formed on the first conductivity type nitride semiconductor stacked layer, and a second conductivity type nitride semiconductor stacked layer formed on the light emitting layer, the ternary nitride buffer layer being manufactured by: and introducing a first gas reaction source containing a first group III element with the melting point temperature less than the first preset temperature at a first preset temperature, depositing the first group III element on the substrate, introducing a second gas reaction source containing a second group III element and a third gas reaction source containing a nitrogen element at a second preset temperature not less than the melting point temperature of the first group III element, and reacting with the first group III element to form the silicon nitride semiconductor substrate.

Description

一种氮化物发光组件的三元氮化物缓冲层及其制造方法 A ternary nitride buffer layer of a nitride light-emitting component and its manufacturing method

技术领域 technical field

本发明涉及一种发光组件的缓冲层及其制造方法,尤其是涉及一种氮化物发光组件的三元氮化物缓冲层及其制造方法。The invention relates to a buffer layer of a light-emitting component and a manufacturing method thereof, in particular to a ternary nitride buffer layer of a nitride light-emitting component and a manufacturing method thereof.

背景技术 Background technique

氮化物发光组件的发展应用相当广泛且极具重要性,其应用包括号志灯源、电子产品背光源、户外全彩看板、白光照明、紫外光、高密度激光应用等。此新兴应用领域能否快速成长,最主要急需改善的课题为亮度提升、电性以及外延工艺稳定性的改善。The development and application of nitride light-emitting components is quite extensive and extremely important. Its applications include sign light sources, electronic product backlight sources, outdoor full-color signage, white light lighting, ultraviolet light, and high-density laser applications. Whether this emerging application field can grow rapidly, the most urgent issues that need to be improved are brightness improvement, electrical properties, and improvement of epitaxial process stability.

传统的氮化物组件大抵皆在蓝宝石衬底(基板)上形成AlGaInN系列的氮化物缓冲层,再于该缓冲层上进行氮化物外延工艺;由于晶格常数匹配的问题,即使到目前,仍无法有效降低位错密度;一般认为,位错的密度和组件的品质有相当的关系,为了提高的氮化物成长品质,传统的氮化物外延工艺利用两阶段成长法(two step growth),也就是以低温(500~600℃)的GaN当作缓冲层,之后再经过特定的升温过程与高温(1000~1200℃)处理使其晶体化后(Crystallization),再继续各外延叠层(迭层)的外延成长。由于缓冲层的品质直接影响后续的外延品质,缓冲层的厚度与温度、升温的回复与再结晶过程、各种反应气体气流的比例与流量等上百个外延参数都必须小心的控制,因此造成工艺的复杂及困难度的提升,加上成长温度需要提高、低温切换,升降温过程与等待温度稳定的耗时,无形中降低了生产效率。Most of the traditional nitride components form an AlGaInN series nitride buffer layer on a sapphire substrate (substrate), and then perform a nitride epitaxy process on this buffer layer; due to the problem of lattice constant matching, even up to now, it is still impossible Effectively reduce the dislocation density; it is generally believed that the dislocation density has a considerable relationship with the quality of the component. In order to improve the quality of nitride growth, the traditional nitride epitaxial process uses a two-step growth method. Low-temperature (500-600°C) GaN is used as a buffer layer, and then undergoes a specific heating process and high-temperature (1000-1200°C) treatment to crystallize (Crystallization), and then continue with each epitaxial stack (stack) Epitaxy grows. Since the quality of the buffer layer directly affects the quality of subsequent epitaxy, hundreds of epitaxy parameters such as the thickness and temperature of the buffer layer, the recovery and recrystallization process of heating, the ratio and flow rate of various reaction gas flows must be carefully controlled, resulting in The complexity and difficulty of the process increase, coupled with the need to increase the growth temperature, switch to low temperature, and the time-consuming process of heating and cooling and waiting for the temperature to stabilize, which virtually reduces the production efficiency.

发明内容 Contents of the invention

本案发明人于思考如何解决前述诸项问题时,认为若提供一种氮化物发光组件,其包含衬底;形成于该衬底上的三元氮化物缓冲层;以及形成于该缓冲层上的氮化物发光叠层,其特征在于该三元氮化物缓冲层的制造方法,其包含:于反应腔中,于预定温度下通入含第一III族元素的第一气体反应源,其中该预定温度高于该第一III族元素的熔点,使得该第一III族元素分解并沉积于该衬底表面形成过渡层,由于该预定温度高于该第一III族元素熔点,故此过渡层中的第一III族元素的原子间,实质上不致形成紧密键结合;接着于不低于该第一III族元素熔点的温度下,再通入含第二III族元素的第二气体反应源及含氮元素的第三气体反应源,使第二III族元素原子和氮原子与前述过渡层中的第一III族元素原子发生相互扩散并重新排列与键结合,而形成该三元氮化物缓冲层,并继续后续的外延工艺形成氮化物发光叠层。When thinking about how to solve the aforementioned problems, the inventor of the present case thinks that if a nitride light-emitting component is provided, it includes a substrate; a ternary nitride buffer layer formed on the substrate; and a ternary nitride buffer layer formed on the buffer layer. The nitride light-emitting stack is characterized in that the manufacturing method of the ternary nitride buffer layer includes: in the reaction chamber, the first gas reaction source containing the first group III element is passed into the reaction chamber at a predetermined temperature, wherein the predetermined The temperature is higher than the melting point of the first group III element, so that the first group III element decomposes and deposits on the surface of the substrate to form a transition layer. Since the predetermined temperature is higher than the melting point of the first group III element, the transition layer The atoms of the first group III element will not form a tight bond substantially; then, at a temperature not lower than the melting point of the first group III element, the second gas reaction source containing the second group III element and the second gas reaction source containing the second group III element are introduced. The third gas reaction source of nitrogen element makes the second group III element atoms and nitrogen atoms interdiffused with the first group III element atoms in the transition layer and rearranges and bonds to form the ternary nitride buffer layer , and continue the subsequent epitaxial process to form a nitride light emitting stack.

依本发明的制法所形成的缓冲层的工艺简化,可简化传统工艺中繁杂的升降温过程与时间,并视工艺需要性,可将第二III族元素选定为镓元素,使得在完成适当厚度的第一III族元素过渡层后,更可直接进行后续的高温氮化镓叠层的外延步骤,其间该三元氮化物缓冲层可自然形成,不需特别处理,因此可大幅简化工艺复杂度,有效提升外延薄膜品质的掌控性,并同时降低生产的成本。The process of the buffer layer formed according to the method of the present invention is simplified, which can simplify the complex heating and cooling process and time in the traditional process, and depending on the process requirements, the second group III element can be selected as gallium element, so that after the completion After the transition layer of the first group III elements with an appropriate thickness, the subsequent epitaxial step of the high-temperature GaN stack can be directly carried out, during which the ternary nitride buffer layer can be formed naturally without special treatment, so the process can be greatly simplified Complexity, effectively improve the quality control of epitaxial film, and reduce the cost of production at the same time.

本发明的主要目的在于提供一种氮化物发光组件的缓冲层,该缓冲层的制造方法取代已知的氮化物缓冲层的制造方法,以简化外延工艺,降低生产的成本。The main purpose of the present invention is to provide a buffer layer of a nitride light-emitting component. The manufacturing method of the buffer layer replaces the known manufacturing method of the nitride buffer layer, so as to simplify the epitaxial process and reduce the production cost.

附图说明: Description of drawings:

图1为示意图,显示依本发明的较佳实施例的一种具有三元氮化物缓冲层的氮化物发光组件;FIG. 1 is a schematic diagram showing a nitride light-emitting component with a ternary nitride buffer layer according to a preferred embodiment of the present invention;

图2为示意图,显示依本发明的较佳实施例的一种具有三元氮化物缓冲层的氮化物发光组件;FIG. 2 is a schematic diagram showing a nitride light-emitting component with a ternary nitride buffer layer according to a preferred embodiment of the present invention;

图3a为以干涉式光学显微镜拍摄的照片,显示未使用缓冲层成长GaN层的表面;Figure 3a is a photo taken with an interferometric optical microscope, showing the surface of the GaN layer grown without using a buffer layer;

图3b为以干涉式光学显微镜拍摄的照片,显示使用传统二阶段低温GaN缓冲层成长的GaN层表面;Figure 3b is a photograph taken with an interferometric optical microscope showing the surface of a GaN layer grown using a conventional two-stage low-temperature GaN buffer layer;

图3c为以干涉式光学显微镜拍摄的照片,显示使用本发明技术的AlGaN缓冲层成长的GaN层表面;Figure 3c is a photo taken with an interference optical microscope, showing the surface of the GaN layer grown using the AlGaN buffer layer of the technology of the present invention;

图4为透过式电子显微镜(TEM)观察的剖面影像;Figure 4 is a cross-sectional image observed by a transmission electron microscope (TEM);

图5为外延成长实时反射率谱线图;Fig. 5 is a real-time reflectance spectrum diagram of epitaxial growth;

图6a为X-射线(X-Ray)(0004)衍射谱线图,以传统二阶段成长法制得的GaN层X-射线谱线;Figure 6a is an X-ray (X-Ray) (0004) diffraction spectrum diagram, the GaN layer X-ray spectrum line produced by the traditional two-stage growth method;

图6b为X-射线(0004)衍射谱线图,以本发明制得的GaN层X-射线谱线。Fig. 6b is an X-ray (0004) diffraction line diagram, the X-ray line of the GaN layer prepared by the present invention.

符号说明Symbol Description

10   蓝宝石衬底10 sapphire substrate

11   氮化铝镓缓冲层11 AlGaN buffer layer

12   N型氮化物半导体发光叠层12 N-type nitride semiconductor light emitting stack

121  外延区域121 epitaxial area

122  N型电极接触区域122 N-type electrode contact area

13   氮化物多个量子阱发光层13 Nitride multiple quantum well light-emitting layer

14   P型氮化物半导体叠层14 P-type nitride semiconductor stack

15   金属透明导电层15 Metal transparent conductive layer

16   N型电极16 N-type electrode

17   P型电极17 P-type electrode

28   透明氧化导电层28 transparent oxide conductive layer

29   反向隧道接触层29 reverse tunnel contact layer

具体实施方式 Detailed ways

实施例1Example 1

请参阅图1,依本发明较佳实施例为一种具有氮化铝镓(AlGaN)缓冲层的氮化物发光组件1,包含蓝宝石衬底10;形成于该蓝宝石衬底上的氮化铝镓缓冲层11;形成于该氮化铝镓缓冲层11上的N型氮化物半导体叠层12,其中该N型氮化物半导体叠层12远离衬底10的表面包含外延区域121及N型电极接触区域122;形成于该外延区域121上的氮化镓/氮化铟镓多个量子阱发光层13;形成于该氮化物多个量子阱发光层13上的P型氮化物半导体叠层14;形成于P型氮化物半导体叠层14上的金属透明导电层15;形成于N型电极接触区域122上的N型电极16;以及形成于该金属透明导电层15上的P型电极17。Please refer to FIG. 1, according to a preferred embodiment of the present invention, it is a nitride light-emitting component 1 with an aluminum gallium nitride (AlGaN) buffer layer, including a sapphire substrate 10; the aluminum gallium nitride formed on the sapphire substrate Buffer layer 11; N-type nitride semiconductor stack 12 formed on the aluminum gallium nitride buffer layer 11, wherein the surface of the N-type nitride semiconductor stack 12 away from the substrate 10 includes an epitaxial region 121 and an N-type electrode contact Region 122; gallium nitride/indium gallium nitride multiple quantum well light-emitting layer 13 formed on the epitaxial region 121; P-type nitride semiconductor stack 14 formed on the nitride multiple quantum well light-emitting layer 13; The metal transparent conductive layer 15 formed on the P-type nitride semiconductor stack 14 ; the N-type electrode 16 formed on the N-type electrode contact region 122 ; and the P-type electrode 17 formed on the metal transparent conductive layer 15 .

本实施例中的氮化铝镓缓冲层的形成步骤包含在800℃下通入有机铝反应源TMAl,使其形成富铝过渡层;在低V/III比例条件下(V/III<1000),通入有机镓反应源TMGa与氮反应源NH3;再于1050℃成长V/III比例(V/III>2000)的高温氮化镓层。其间,富铝过渡层中的铝原子会向上扩散、其上方的氮原子与镓原子亦会向下扩散与前述铝原子产生键结合并重新排列,进而形成氮化铝镓缓冲层。The formation step of the aluminum gallium nitride buffer layer in this embodiment includes passing through the organic aluminum reaction source TMAl at 800°C to form an aluminum-rich transition layer; under the condition of a low V/III ratio (V/III<1000) , feed organic gallium reaction source TMGa and nitrogen reaction source NH3; then grow a high-temperature gallium nitride layer with V/III ratio (V/III>2000) at 1050°C. During this time, the aluminum atoms in the Al-rich transition layer will diffuse upwards, and the nitrogen atoms and gallium atoms above it will also diffuse downwards to form bonds with the aforementioned aluminum atoms and rearrange, thereby forming the AlGaN buffer layer.

实施例2Example 2

依本发明另一较佳实施例为一种具有氮化铝镓(AlGaN)缓冲层的氮化物发光组件2,其组件结构与实施例1相似,仅缓冲层的材料与制法不同。该氮化铝镓缓冲层的形成步骤如下:Another preferred embodiment of the present invention is a nitride light-emitting component 2 with an aluminum gallium nitride (AlGaN) buffer layer. Its component structure is similar to that of embodiment 1, only the material and manufacturing method of the buffer layer are different. The formation steps of the aluminum gallium nitride buffer layer are as follows:

于1020℃下通入有机铝反应源TMAl,使其形成富铝过渡层;于相同温度下通入有机镓反应源TMGa与氮反应源NH3,直接成长高温氮化镓叠层;其间,富铝过渡层中的铝原子会向上扩散、其上方的氮原子与镓原子亦会向下扩散与前述铝原子产生键结合并重新排列,进而形成氮化铝镓缓冲层。The organic aluminum reaction source TMAl is introduced at 1020°C to form an aluminum-rich transition layer; the organic gallium reaction source TMGa and the nitrogen reaction source NH 3 are introduced at the same temperature to directly grow a high-temperature gallium nitride stack; The aluminum atoms in the aluminum transition layer will diffuse upwards, and the nitrogen atoms and gallium atoms above it will also diffuse downwards to form bonds with the aforementioned aluminum atoms and rearrange them, thereby forming the AlGaN buffer layer.

于本发明实施例1及2的具有氮化铝镓(AlGaN)缓冲层的氮化物发光组件中金属透明导电层亦可以透明氧化导电层取代的。由于透明氧化导电层较传统金属透明导电层具有更高的穿透率,故可再进一步提高发光效率。In the nitride light-emitting devices with aluminum gallium nitride (AlGaN) buffer layer in Embodiments 1 and 2 of the present invention, the metal transparent conductive layer can also be replaced by a transparent oxide conductive layer. Since the transparent oxide conductive layer has higher transmittance than the traditional metal transparent conductive layer, the luminous efficiency can be further improved.

实施例3Example 3

请参阅图2,依本发明另一较佳实施例一种具有氮化铝镓(AlGaN)缓冲层的氮化物发光组件3,其与具有氮化铝镓(AlGaN)缓冲层的氮化物发光组件1和2不同处在于于该P型氮化物半导体叠层14上的金属透明导电层以透明氧化导电层28取代,P型氮化物半导体叠层14与透明氧化导电层28之间形成高浓度N型的反向隧道接触层29,其厚度小于10nm,并且其载流子浓度高于1×1019cm-3以上。由于该透明氧化导电层28与P型氮化物半导体叠层14较不易形成良好的欧姆接触(奥姆接触),故通过形成于其间的高浓度N型的反向隧道接触层29,而使该透明氧化导电层28与该高浓度N型的反向隧道接触层29之间形成良好的欧姆接触;而当发光二极管操作于顺向偏压时,此N型的反向隧道接触层与P型氮化物半导体叠层的接口恰处于逆向偏压的作用而形成耗尽层,又因此N型的反向隧道接触层29实质上不厚,故透明氧化导电层28内的载流子可通过隧道效应而进入P型半导体叠层14中,并使组件保有低操作偏压的特性。于具有氮化铝镓(AlGaN)缓冲层的氮化物发光组件1、2或3中,其氮化铝镓(AlGaN)缓冲层可以其它的三元氮化物缓冲层取代,例如氮化铟镓(InGaN)或氮化铟铝(InAlN)缓冲层。Please refer to FIG. 2 , according to another preferred embodiment of the present invention, a nitride light-emitting component 3 with an aluminum gallium nitride (AlGaN) buffer layer, and a nitride light-emitting component with an aluminum gallium nitride (AlGaN) buffer layer The difference between 1 and 2 is that the metal transparent conductive layer on the P-type nitride semiconductor stack 14 is replaced by a transparent oxide conductive layer 28, and a high concentration of N is formed between the P-type nitride semiconductor stack 14 and the transparent oxide conductive layer 28. type reverse tunnel contact layer 29, its thickness is less than 10 nm, and its carrier concentration is higher than 1×10 19 cm −3 or more. Since the transparent oxide conductive layer 28 and the P-type nitride semiconductor stack 14 are less likely to form a good ohmic contact (Ohmic contact), the high-concentration N-type reverse tunnel contact layer 29 formed therebetween makes this A good ohmic contact is formed between the transparent oxide conductive layer 28 and the high-concentration N-type reverse tunnel contact layer 29; The interface of the nitride semiconductor stack is just under the effect of reverse bias to form a depletion layer, and therefore the N-type reverse tunnel contact layer 29 is not thick in nature, so the carriers in the transparent oxide conductive layer 28 can pass through the tunnel The effect enters the P-type semiconductor stack 14, and makes the device maintain the characteristic of low operating bias. In the nitride light-emitting element 1, 2 or 3 with an aluminum gallium nitride (AlGaN) buffer layer, the aluminum gallium nitride (AlGaN) buffer layer can be replaced by other ternary nitride buffer layers, such as indium gallium nitride ( InGaN) or indium aluminum nitride (InAlN) buffer layer.

图3为以干涉式光学显微镜拍摄的小片表面,分别为3a未使用缓冲层、3b使用传统二阶段成长的低温氮化镓缓冲层、及3c使用本发明的氮化铝镓三元氮化物缓冲层,再成长高温氮化镓层后的小片表面状态,可发现未使用缓冲层的小片,其表面呈雾面状,没有特定结晶形态。而使用本发明的氮化铝镓三元氮化物缓冲层的小片表面,可达到与传统二阶段成长法相同的良好镜面表面(mirror-like)。Figure 3 is the surface of a small piece taken with an interference optical microscope, respectively 3a without using a buffer layer, 3b using a traditional two-stage growth low-temperature GaN buffer layer, and 3c using the AlGaN ternary nitride buffer of the present invention Layer, the surface state of the small piece after growing the high-temperature gallium nitride layer, it can be found that the small piece without the buffer layer has a foggy surface and no specific crystal form. However, the surface of the chip using the AlGaN ternary nitride buffer layer of the present invention can achieve the same good mirror-like surface as the traditional two-stage growth method.

我们发现依本发明的方法要使外延后的小片表面呈现镜面状态所需的缓冲层厚度,要较传统二阶段成长的缓冲层厚度为薄。请参见图4,其为以透过式电子显微镜(TEM)观察的剖面影像,可见其缓冲层厚度仅约7nm,即可使小片表面呈现镜面状态,而传统二阶段成长的缓冲层最佳厚度范围约在20~40nm,才能得到镜面态的小片表面。We have found that the thickness of the buffer layer required to make the surface of the epitaxial chip appear mirror-like according to the method of the present invention is thinner than that of the traditional two-stage growth buffer layer. Please refer to Figure 4, which is a cross-sectional image observed with a transmission electron microscope (TEM). It can be seen that the thickness of the buffer layer is only about 7nm, which can make the surface of the small piece appear mirror-like, and the optimal thickness of the buffer layer for the traditional two-stage growth The range is about 20 ~ 40nm, in order to get the mirror state of the surface of the small pieces.

图5为使用本发明的氮化铝镓三元氮化物缓冲层技术,制备微量硅掺杂的氮化镓薄膜的成长实时反射率谱线图。图中可看出该过渡层形成的信号与后续高温氮化镓薄膜成长的信号。该氮化镓薄膜成长完毕后,以X-射线衍射仪与霍尔(Hall)测量,分别测得其(0004)的X-射线衍射谱半高宽为232弧秒(arcsec)(参见图6b),Hall的载流子浓度为1×1017cm-3、载流子迁移率(mobility)为690cm2/V.s,相较于对照组--以传统二阶段缓冲层技术的结果,(0004)的X-射线衍射谱半高宽为269弧秒(参见图6a),Hall的载流子浓度为1×1017cm-3、载流子迁移率(mobility)为620cm2/V.s而言,显示依本发明所制得的外延薄膜品质确有明显提升。Fig. 5 is a growth real-time reflectance spectral line diagram of a trace amount of silicon-doped GaN thin film prepared by using the AlGaN ternary nitride buffer layer technology of the present invention. It can be seen from the figure that the signal formed by the transition layer and the signal of subsequent high-temperature gallium nitride thin film growth can be seen. After the growth of the GaN thin film is completed, it is measured by X-ray diffractometer and Hall (Hall), and the half-maximum width of the X-ray diffraction spectrum of (0004) is 232 arc seconds (arcsec) respectively (see Figure 6b ), the carrier concentration of Hall is 1×10 17 cm -3 , and the carrier mobility (mobility) is 690cm 2 /Vs. ) X-ray diffraction spectrum half maximum width of 269 arc seconds (see Figure 6a), Hall's carrier concentration is 1×10 17 cm -3 , carrier mobility (mobility) is 620cm 2 /Vs , showing that the quality of the epitaxial film prepared according to the present invention is indeed significantly improved.

表1为依照本发明技术所制备的发光二极管特性与传统二阶段缓冲层技术制得的蓝光发光二极管(波长~470nm)特性的比较。由资料中显示,其不论在亮度、顺向偏压、逆向电流或逆向偏压特性上,都可达到与传统二阶段成长技术相似的水准,其在寿命测试上的结果,亦与传统技术无明显的差异,但如前所述,本发明的技术可大幅可省略繁杂的升降温过程与时间、简化工艺复杂度,有效提升外延薄膜品质的掌控性,并同时降低生产的成本,故实具明显的进步性。Table 1 is a comparison of the characteristics of the light emitting diode prepared according to the technology of the present invention and the blue light emitting diode (wavelength ~ 470nm) produced by the traditional two-stage buffer layer technology. According to the data, it can reach a level similar to that of traditional two-stage growth technology in terms of brightness, forward bias voltage, reverse current or reverse bias voltage characteristics, and its life test results are also incomparable with traditional technology. There are obvious differences, but as mentioned above, the technology of the present invention can greatly omit the complicated heating and cooling process and time, simplify the process complexity, effectively improve the controllability of the quality of the epitaxial film, and reduce the production cost at the same time, so it has obvious advantages. progress.

表1 本发明技术与传统技术的LED特性比较Table 1 Comparison of LED characteristics between the technology of the present invention and the traditional technology

 20mA电流下的亮度(mcd)Brightness at 20mA (mcd)   20mA电流下的顺向偏压(V)Forward Bias Voltage (V) at 20mA   5V逆向偏压下的逆向电流(μA)Reverse current at 5V reverse bias (μA)   10μA逆向电流下的逆向偏压(V)Reverse bias voltage at 10μA reverse current (V)   传统二阶段成长法缓冲层Traditional two-stage growth method buffer layer   37~4037~40   3.14-3.253.14-3.25   0.00-0.010.00-0.01   24-3224-32   本发明的三元氮化物缓冲层技术The ternary nitride buffer layer technology of the present invention   38~4238~42   3.17-3.243.17-3.24   0.00-0.010.00-0.01   20-3320-33

上述各实施例中,P型氮化物半导体叠层包含P型氮化物接触层,以及P型氮化物束缚层;该N型氮化物半导体叠层包含N型氮化物接触层,以及N型氮化物束缚层;该P型氮化物接触层包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料群组中的一种材料;该N型氮化物接触层包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料群组中的一种材料;该N型或P型氮化物束缚层系包含选自AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料组群中的至少一种材料;蓝宝石衬底亦可由SiC、GaAs、CaN、AlN、GaP、Si、ZnO、MgO及玻璃所构成材料组群中的至少一种材料或其它可代替的材料取代的;三元氮化物缓冲层可包含选自于InGaN、AlGaN及InAlN所构成材料群组中的一种材料;N型氮化物半导体叠层可包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料群组中的一种材料;氮化物多个量子阱发光层可包含选自于GaN、InGaN及AlInGaN所构成材料群组中的一种材料;P型氮化物半导体叠层可包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料群组中的一种材料;该金属透明导电层系包含选自于Ni/Au、NiO/Au、Ta/Au、TiWN及TiN所构成材料组群中的至少一种材料;该透明氧化导电层系包含选自于氧化铟锡、氧化镉锡、氧化锑锡、氧化锌铝及氧化锌锡所构成材料组群中的至少一种材料。In each of the above embodiments, the P-type nitride semiconductor stack includes a P-type nitride contact layer, and a P-type nitride confinement layer; the N-type nitride semiconductor stack includes an N-type nitride contact layer, and an N-type nitride Confinement layer; the P-type nitride contact layer includes a material selected from the material group consisting of AlN, GaN, AlGaN, InGaN and AlInGaN; the N-type nitride contact layer includes a material selected from AlN, GaN, AlGaN , a material in the material group consisting of InGaN and AlInGaN; the N-type or P-type nitride confinement layer contains at least one material selected from the material group consisting of AlN, GaN, AlGaN, InGaN and AlInGaN; The sapphire substrate can also be replaced by at least one material or other alternative materials in the material group formed by SiC, GaAs, CaN, AlN, GaP, Si, ZnO, MgO and glass; the ternary nitride buffer layer can include A material selected from the material group consisting of InGaN, AlGaN, and InAlN; the N-type nitride semiconductor stack may include a material selected from the material group consisting of AlN, GaN, AlGaN, InGaN, and AlInGaN The nitride multi-quantum well light-emitting layer may include a material selected from the material group consisting of GaN, InGaN, and AlInGaN; the P-type nitride semiconductor stack may include a material selected from AlN, GaN, AlGaN, InGaN, and A material in the group of materials composed of AlInGaN; the metal transparent conductive layer includes at least one material selected from the group of materials composed of Ni/Au, NiO/Au, Ta/Au, TiWN and TiN; the The transparent oxide conductive layer contains at least one material selected from the material group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide and zinc tin oxide.

以上所述者,仅为本发明的较佳实施例,本发明的范围不限于该等较佳实施例,凡依本发明所做的任何变更,皆属本发明申请专利的范围。因此对于本领域普通技术人员来说,在不脱离本发明的权利要求及精神下,当可做任何改变。The above-mentioned ones are only preferred embodiments of the present invention, and the scope of the present invention is not limited to these preferred embodiments. Any changes made according to the present invention belong to the scope of patent application of the present invention. Therefore, those skilled in the art can make any changes without departing from the claims and spirit of the present invention.

Claims (14)

1.一种氮化物发光组件的三元氮化物缓冲层的制造方法,其步骤至少包含:1. A method for manufacturing a ternary nitride buffer layer of a nitride light-emitting component, the steps of which at least include: 提供衬底;provide the substrate; 在第一预定温度下通入含第一III族元素的第一气体反应源,该第一III族元素的熔点温度小于该第一预定温度,其中该第一III族元素沉积于该衬底上;以及Passing a first gas reaction source containing a first group III element at a first predetermined temperature, the melting point temperature of the first group III element being lower than the first predetermined temperature, wherein the first group III element is deposited on the substrate ;as well as 在第二预定温度下通入含第二III族元素的第二气体反应源及含氮元素的第三气体反应源,与沉积于该衬底上的第一III族元素反应形成三元氮化物缓冲层,其中该在第二预定温度不小于该第一III族元素的熔点温度。At the second predetermined temperature, the second gas reaction source containing the second group III element and the third gas reaction source containing nitrogen element are introduced to react with the first group III element deposited on the substrate to form a ternary nitride The buffer layer, wherein the temperature at the second predetermined temperature is not less than the melting point of the first group III element. 2.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该衬底系包含选自蓝宝石、GaN、AlN、SiC、GaAs、GaP、Si、ZnO、MgO、MgAl2O4及玻璃所构成材料组群中的至少一种材料。2. The manufacturing method of the ternary nitride buffer layer of the nitride light-emitting component as claimed in claim 1, wherein, the substrate is composed of sapphire, GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO , MgAl 2 O 4 and glass constitute at least one material in the material group. 3.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该第一预定温度实质上为500℃以上。3. The method for manufacturing the ternary nitride buffer layer of the nitride light-emitting device as claimed in claim 1, wherein the first predetermined temperature is substantially above 500°C. 4.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该第二预定温度实质上为700℃以上。4. The method for manufacturing the ternary nitride buffer layer of the nitride light-emitting device as claimed in claim 1, wherein the second predetermined temperature is substantially above 700°C. 5.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该第一III族元素系包含选自于Al、Ga及In所构成材料组群中的至少一种材料。5. The manufacturing method of the ternary nitride buffer layer of the nitride light-emitting component as claimed in claim 1, wherein, the first group III element system comprises at least a material. 6.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该第二III族元素系包含选自于Al、Ga及In所构成材料组群中的至少一种材料。6. The manufacturing method of the ternary nitride buffer layer of the nitride light-emitting component as claimed in claim 1, wherein, the second group III element system comprises at least a material. 7.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该三元氮化物缓冲层的厚度介于1nm至500nm之间。7 . The method for manufacturing the ternary nitride buffer layer of the nitride light-emitting device according to claim 1 , wherein the thickness of the ternary nitride buffer layer is between 1 nm and 500 nm. 8.如权利要求1所述的氮化物发光组件的三元氮化物缓冲层的制造方法,其中,该三元氮化物缓冲层系包含选自于InGaN、AlGaN及InAlN所构成材料组群中的至少一种材料。8. The manufacturing method of the ternary nitride buffer layer of the nitride light-emitting device as claimed in claim 1, wherein the ternary nitride buffer layer comprises a material selected from the group consisting of InGaN, AlGaN and InAlN. at least one material. 9.一种氮化物发光组件,包括权利要求1至8中任一项的制造方法所制造成的三元氮化物缓冲层。9. A nitride light-emitting component, comprising the ternary nitride buffer layer manufactured by the manufacturing method according to any one of claims 1 to 8. 10.如权利要求9所述的氮化物发光组件,其中,该氮化物发光组件至少包含衬底、形成于该衬底上的该三元氮化物缓冲层、形成于该三元氮化物缓冲层上的第一导电型氮化物半导体层、形成于该第一导电型氮化物半导体层上的发光层、以及形成于该发光层上的第二导电型氮化物半导体层。10. The nitride light-emitting component according to claim 9, wherein the nitride light-emitting component at least comprises a substrate, the ternary nitride buffer layer formed on the substrate, and the ternary nitride buffer layer formed on the substrate The nitride semiconductor layer of the first conductivity type on the top, the light emitting layer formed on the nitride semiconductor layer of the first conductivity type, and the nitride semiconductor layer of the second conductivity type formed on the light emitting layer. 11.如权利要求10所述的氮化物发光组件,其中,该衬底系包含选自蓝宝石、GaN、AlN、SiC、GaAs、GaP、Si、ZnO、MgO、MgAl2O4及玻璃所构成材料组群中的至少一种材料。11. The nitride light-emitting device as claimed in claim 10, wherein the substrate is composed of materials selected from sapphire, GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl2O4 and glass At least one material in the group. 12.如权利要求10所述的氮化物发光组件,其中,该第一导电型氮化物半导体层包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料组群中的至少一种材料。12. The nitride light-emitting device as claimed in claim 10, wherein the nitride semiconductor layer of the first conductivity type comprises at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN and AlInGaN. 13.如权利要求10所述的氮化物发光组件,其中,该发光层系包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料组群中的至少一种材料。13. The nitride light-emitting device as claimed in claim 10, wherein the light-emitting layer comprises at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN and AlInGaN. 14.如权利要求10所述的氮化物发光组件,其中,该第二导电型氮化物半导体层系包含选自于AlN、GaN、AlGaN、InGaN及AlInGaN所构成材料组群中的至少一种材料。14. The nitride light emitting device according to claim 10, wherein the second conductivity type nitride semiconductor layer comprises at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN and AlInGaN .
CNB2004100597305A 2004-06-21 2004-06-21 Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof Expired - Lifetime CN100403559C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100597305A CN100403559C (en) 2004-06-21 2004-06-21 Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100597305A CN100403559C (en) 2004-06-21 2004-06-21 Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN1713405A CN1713405A (en) 2005-12-28
CN100403559C true CN100403559C (en) 2008-07-16

Family

ID=35718925

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100597305A Expired - Lifetime CN100403559C (en) 2004-06-21 2004-06-21 Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN100403559C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI547585B (en) * 2014-02-14 2016-09-01 國立交通大學 Method for growing aluminum indium nitride thin film
CN105633232B (en) * 2014-10-30 2019-04-16 山东浪潮华光光电子股份有限公司 A kind of GaN base LED epitaxial structure and preparation method thereof with GaN buffer layer substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US6115399A (en) * 1994-09-14 2000-09-05 Rohm Co. Ltd. Semiconductor light emitting device
EP1111663A2 (en) * 1999-12-20 2001-06-27 Nitride Semiconductors Co., Ltd. GaN-based compound semiconductor device and method of producing the same
US6555846B1 (en) * 1999-06-10 2003-04-29 Pioneer Corporation Method for manufacturing a nitride semiconductor device and device manufactured by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US6115399A (en) * 1994-09-14 2000-09-05 Rohm Co. Ltd. Semiconductor light emitting device
US6555846B1 (en) * 1999-06-10 2003-04-29 Pioneer Corporation Method for manufacturing a nitride semiconductor device and device manufactured by the method
EP1111663A2 (en) * 1999-12-20 2001-06-27 Nitride Semiconductors Co., Ltd. GaN-based compound semiconductor device and method of producing the same

Also Published As

Publication number Publication date
CN1713405A (en) 2005-12-28

Similar Documents

Publication Publication Date Title
US20080191191A1 (en) Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
US10553749B2 (en) Nitride-based semiconductor light-emitting device
CN106057988B (en) A kind of preparation method of the epitaxial wafer of GaN base light emitting
US8536565B2 (en) Nitride-based light-emitting device
JPH04199752A (en) Compound semiconductor light emitting device and its manufacturing method
CN106711295B (en) Growth method of GaN-based light emitting diode epitaxial wafer
JPH08139361A (en) Compound semiconductor light emitting device
CN103996769A (en) LED epitaxial layer structure, growing method of LED epitaxial layer structure and LED chip with the LED epitaxial layer structure
CN105742415A (en) Ultraviolet GaN-based LED epitaxy structure and manufacturing method thereof
TWI244222B (en) A ternary nitride buffer layer containing nitride light-emitting device and manufacturing method of the same
CN105789392A (en) GaN-based LED epitaxial structure and manufacturing method thereof
CN106328780B (en) The method of light emitting diode substrate epitaxial growth based on AlN templates
CN106848017B (en) Epitaxial wafer of GaN-based light emitting diode and growth method thereof
US20140017840A1 (en) Nitride-based light-emitting device
CN107799631B (en) High-brightness LED preparation process
KR100604617B1 (en) Manufacturing Method of Group III-V Compound Semiconductor
CN100403559C (en) Ternary nitride buffer layer of nitride light-emitting component and manufacturing method thereof
CN106711297A (en) Growth method of GaN-based light emitting diode epitaxial wafer
JPH0997921A (en) Method for producing group 3-5 compound semiconductor
CN111223971A (en) A LED epitaxial growth method for reducing the dislocation density of quantum wells
US8562738B2 (en) Nitride-based light-emitting device
CN105118904B (en) LED epitaxial layer structures growing method and gained epitaxial layer structure and LED chip
CN112768579B (en) A semiconductor epitaxial structure and its manufacturing method, and LED chip
CN108649108A (en) Mqw light emitting layer and light emitting diode and preparation method thereof
CN107919422A (en) Backlit display screen light emitting diode and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080716

CX01 Expiry of patent term