[go: up one dir, main page]

CN100402583C - Synthetic method of polyaniline nanoparticles - Google Patents

Synthetic method of polyaniline nanoparticles Download PDF

Info

Publication number
CN100402583C
CN100402583C CNB200610038613XA CN200610038613A CN100402583C CN 100402583 C CN100402583 C CN 100402583C CN B200610038613X A CNB200610038613X A CN B200610038613XA CN 200610038613 A CN200610038613 A CN 200610038613A CN 100402583 C CN100402583 C CN 100402583C
Authority
CN
China
Prior art keywords
solution
acid
concentration
polyaniline
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200610038613XA
Other languages
Chinese (zh)
Other versions
CN1814653A (en
Inventor
阚锦晴
周甦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CNB200610038613XA priority Critical patent/CN100402583C/en
Publication of CN1814653A publication Critical patent/CN1814653A/en
Application granted granted Critical
Publication of CN100402583C publication Critical patent/CN100402583C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

聚苯胺纳米粒子合成方法,涉及聚苯胺纳米粒子的一种合成方法。将浓度为0.1~4mol dm-3质子酸掺杂剂溶液和浓度为0.1~2mol dm-3苯胺单体溶液、浓度为0.1~2mol dm-3稀土氯化物掺杂剂溶液混合均匀后,倒进反应器中,在反应器两侧加上外磁场,控制磁场强度在200~2000mT,再向反应器内加入浓度为0.1~1.0mol dm-3的氧化型引发剂溶液;所述反应温度为常温到70℃,反应时间为1~8小时。本发明合成成本低,工艺易于控制。合成的球型聚苯胺纳米粒子,粒径在30~100nm。本发明产物聚苯胺纳米粒子在光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽和隐身技术上有着广泛的应用前景。The invention discloses a synthesis method of polyaniline nanoparticles, relating to a synthesis method of polyaniline nanoparticles. After mixing the protonic acid dopant solution with a concentration of 0.1-4mol dm -3 , the aniline monomer solution with a concentration of 0.1-2mol dm - 3, and the rare earth chloride dopant solution with a concentration of 0.1-2mol dm -3 , pour it into In the reactor, add an external magnetic field on both sides of the reactor, control the magnetic field strength at 200-2000mT, and then add an oxidized initiator solution with a concentration of 0.1-1.0mol dm -3 into the reactor; the reaction temperature is normal temperature To 70°C, the reaction time is 1 to 8 hours. The invention has low synthesis cost and easy process control. The synthesized spherical polyaniline nanoparticles have a particle diameter of 30-100nm. The polyaniline nano particles produced by the invention have broad application prospects in optoelectronic devices, information, sensors, molecular wires and molecular devices, as well as electromagnetic shielding and stealth technologies.

Description

聚苯胺纳米粒子合成方法 Synthetic method of polyaniline nanoparticles

技术领域 technical field

本发明涉及聚苯胺纳米粒子的一种合成方法。The invention relates to a synthesis method of polyaniline nanoparticles.

技术背景technical background

聚苯胺是一种重要的导电聚合物材料,它具有电导率高、良好的氧化还原可逆性和环境稳定性等优点。Mirmohseni A,Solhjo R.Preparation andcharacterization of aqueous polyaniline battery using a modified polyanilineelectrode.Euro.Polym.J.2003;39(2):219-223。Moraes SR,Huerta-Vilca D,Motheo AJ.Characteristics of polyaniline synthesized in phosphate buffersolution.Euro.Polym.J.2004;40(9):2033-2041。聚苯胺与稀土离子反应所形成的大分子配合物具有特殊的化学和物理性质。近二十年来纳米粒子由于它们特殊的物理和化学性质引起了人们的广泛关注,而人们对导电高聚物纳米粒子的兴趣主要来源于它们可以应用于催化、分子电子学、能量转换装置和药物控制释放的媒介。通常制备聚合物纳米粒子的技术有“模板合成法”、“微乳液法”、“冷冻干燥法”、“喷涂法”和“表面铺展膜修补法”。而通常模板法又分为硬模板和软模板法。使用的硬膜板如多孔氧化铝H.J.Qiu,J.Zhai,S.H.Li,M.X.Wan,Oriented growth of self-assembled polyanilinenanowire arrays using a novel method,Adv.Funct.Mater.,2003,13,925-928,软模板法如表面活性剂J.C.Michaelson and A.J.McEvoy,Chem.Commun.,1994,1,79-80。但这些方法往往存在着成本高、模板除去困难、及难以批量生产等不足,因此有必要进一步改进其合成方法。Polyaniline is an important conductive polymer material, which has the advantages of high electrical conductivity, good redox reversibility, and environmental stability. Mirmohseni A, Solhjo R. Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode. Euro. Polym. J. 2003; 39(2): 219-223. Moraes SR, Huerta-Vilca D, Motheo AJ. Characteristics of polyaniline synthesized in phosphate buffer solution. Euro. Polym. J. 2004; 40(9): 2033-2041. The macromolecular complexes formed by the reaction of polyaniline and rare earth ions have special chemical and physical properties. In the past two decades, nanoparticles have attracted widespread attention due to their special physical and chemical properties, and people's interest in conductive polymer nanoparticles mainly stems from their application in catalysis, molecular electronics, energy conversion devices and medicine. Controlled release medium. Generally, the techniques for preparing polymer nanoparticles include "template synthesis method", "microemulsion method", "freeze-drying method", "spray coating method" and "surface spreading film repair method". The template method is usually divided into hard template method and soft template method. The dura sheets used such as porous alumina H.J.Qiu, J.Zhai, S.H.Li, M.X.Wan, Oriented growth of self-assembled polyanilinenanowire arrays using a novel method, Adv.Funct.Mater., 2003, 13, 925-928, Soft template method such as surfactant J.C.Michaelson and A.J.McEvoy, Chem.Commun., 1994, 1, 79-80. However, these methods often have the disadvantages of high cost, difficulty in template removal, and difficulty in mass production, so it is necessary to further improve their synthesis methods.

发明内容 Contents of the invention

本发明的目的是:提供球型聚苯胺纳米粒子的合成方法。The purpose of the invention is to provide a synthetic method for spherical polyaniline nanoparticles.

将浓度为0.1~4mol dm-3质子酸掺杂剂溶液和浓度为0.1~2mol dm-3苯胺单体溶液、浓度为0.1~2mol dm-3稀土氯化物掺杂剂溶液混合均匀后,倒进反应器中,在反应器两侧加上外磁场,所述磁场强度为200~2000mT,再向反应器内加入浓度为0.1~1.0mol dm-3的氧化型引发剂溶液;所述反应温度为常温到70℃,反应时间为1~8小时;所述质子酸掺杂剂溶液为盐酸或硫酸或硝酸或磷酸或高氯酸或草酸。After mixing the protonic acid dopant solution with a concentration of 0.1-4mol dm -3 , the aniline monomer solution with a concentration of 0.1-2mol dm - 3, and the rare earth chloride dopant solution with a concentration of 0.1-2mol dm -3 , pour it into In the reactor, add an external magnetic field on both sides of the reactor, the magnetic field strength is 200-2000mT, and then add an oxidized initiator solution with a concentration of 0.1-1.0mol dm -3 into the reactor; the reaction temperature is From normal temperature to 70°C, the reaction time is 1-8 hours; the protonic acid dopant solution is hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid or oxalic acid.

本发明采用质子酸作为掺杂剂进行氧化聚合反应,通过控制反应的温度、质子酸的浓度、稀土盐浓度、单体浓度、引发剂浓度、磁场强度可以用来调控纳米粒子的大小。合成的成本低,工艺易于控制。合成的球型聚苯胺纳米粒子,粒径在30~100nm。本发明产物聚苯胺纳米粒子在光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽和隐身技术上有着广泛的应用前景。The invention uses protonic acid as a dopant to carry out oxidative polymerization reaction, and can be used to regulate the size of nanoparticles by controlling the reaction temperature, the concentration of protonic acid, the concentration of rare earth salt, the concentration of monomer, the concentration of initiator and the strength of magnetic field. The synthesis cost is low, and the process is easy to control. The synthesized spherical polyaniline nanoparticles have a particle diameter of 30-100nm. The polyaniline nano particles produced by the invention have broad application prospects in optoelectronic devices, information, sensors, molecular wires and molecular devices, as well as electromagnetic shielding and stealth technologies.

上述质子酸掺杂剂溶液与苯胺单体溶液、稀土氯化物掺杂剂溶液、氧化型引发剂溶液的重量比为3~7∶9~90∶30~40∶20~200。The weight ratio of the protonic acid dopant solution to the aniline monomer solution, the rare earth chloride dopant solution and the oxidized initiator solution is 3-7:9-90:30-40:20-200.

本发明所述氧化型引发剂为过硫酸盐或三氯化铁。The oxidizing initiator described in the present invention is persulfate or ferric chloride.

所述质子酸掺杂剂为无机酸。The protic acid dopant is an inorganic acid.

所述无机酸可以为盐酸或硫酸或硝酸或磷酸或高氯酸。The inorganic acid can be hydrochloric acid or sulfuric acid or nitric acid or phosphoric acid or perchloric acid.

所述质子酸掺杂剂为有机酸。The protonic acid dopant is an organic acid.

所述有机酸为草酸。The organic acid is oxalic acid.

所述稀土氯化物掺杂剂可以为SmCl3或GdCl3或LaCl3或NdCl3或ErCl3The rare earth chloride dopant may be SmCl 3 or GdCl 3 or LaCl 3 or NdCl 3 or ErCl 3 .

附图说明 Description of drawings

图1为本发明所得一种聚苯胺纳米粒子扫描电镜照片。Fig. 1 is a scanning electron micrograph of a kind of polyaniline nano-particle obtained in the present invention.

图2为本发明所得一种聚苯胺纳米粒子透射电镜照片。Fig. 2 is a transmission electron micrograph of polyaniline nanoparticles obtained in the present invention.

具体实施方式 Detailed ways

1、反应溶液的配制:质子酸掺杂剂(盐酸或硫酸或硝酸或磷酸或高氯酸或草酸溶液)浓度为0.1~2mol dm-3;苯胺单体溶液浓度为0.1~1.0mol dm-3;稀土氯化物掺杂剂溶液(SmCl3或GdCl3或LaCl3或NdCl3或ErCl3)浓度为0.1~2mol dm-31. Preparation of reaction solution: concentration of protonic acid dopant (hydrochloric acid or sulfuric acid or nitric acid or phosphoric acid or perchloric acid or oxalic acid solution) is 0.1~2mol dm -3 ; concentration of aniline monomer solution is 0.1~1.0mol dm -3 ; The concentration of the rare earth chloride dopant solution (SmCl 3 or GdCl 3 or LaCl 3 or NdCl 3 or ErCl 3 ) is 0.1-2mol dm -3 .

2、氧化型引发剂(过硫酸铵或三氯化铁)溶液的配制:浓度为0.1~1.0mol dm-32. Preparation of oxidative initiator (ammonium persulfate or ferric chloride) solution: the concentration is 0.1-1.0 mol dm -3 .

3、将配制好的3~7g质子掺杂剂盐酸溶液和9~90g苯胺单体溶液、30~40g稀土掺杂剂氯化钐(SmCl3)溶液混合均匀,待用。3. Mix the prepared 3-7g proton dopant hydrochloric acid solution, 9-90g aniline monomer solution, and 30-40g rare earth dopant samarium chloride (SmCl 3 ) solution evenly, and set aside.

4、将上述混合液倒入密闭反应器中,将反应器通过水浴加热来控制温度在70℃以下。在反应器的两侧加上磁场强度为200~2000mT磁场,在10分钟内,向反应器逐渐加入配制好的20~200g氧化型引发剂过硫酸铵,控制整个反应时间为1~8小时。4. Pour the above mixed solution into a closed reactor, and heat the reactor with a water bath to control the temperature below 70°C. Add a magnetic field with a magnetic field strength of 200-2000mT on both sides of the reactor, and gradually add 20-200g of the prepared oxidative initiator ammonium persulfate to the reactor within 10 minutes, and control the entire reaction time to 1-8 hours.

上述盐酸溶液可以用硫酸或硝酸或磷酸或高氯酸或草酸溶液替代。Above-mentioned hydrochloric acid solution can be replaced with sulfuric acid or nitric acid or phosphoric acid or perchloric acid or oxalic acid solution.

SmCl3溶液可以用GdCl3或LaCl3或NdCl3或ErCl3溶液替代。SmCl 3 solution can be replaced by GdCl 3 or LaCl 3 or NdCl 3 or ErCl 3 solution.

过硫酸铵溶液可以用三氯化铁溶液替代。Ammonium persulfate solution can be replaced by ferric chloride solution.

5、分析:5. Analysis:

反应完成后,得到墨绿色的悬浮液,经过滤后,用1.0mol dm-3稀盐酸洗涤至滤液为无色。干燥后用透射电镜(TEM)或扫描电镜(SEM)观察粒子形貌,产物主要是直径为30~100nm的聚苯胺纳米颗粒,如图1、2所示。红外光谱、紫外光谱分析表明,产物为含稀土的掺杂态聚苯胺。测定样品的电导率大致为0.1~10S cm-1范围内。After the reaction was completed, a dark green suspension was obtained, which was filtered and washed with 1.0 mol dm -3 dilute hydrochloric acid until the filtrate was colorless. After drying, observe the morphology of the particles with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). The product is mainly polyaniline nanoparticles with a diameter of 30-100 nm, as shown in Figures 1 and 2. Infrared spectrum and ultraviolet spectrum analysis showed that the product was doped polyaniline containing rare earth. The conductivity of the measured sample is roughly in the range of 0.1-10S cm -1 .

6、应用事例:6. Application examples:

与常规合成的聚苯胺难溶、难熔导致其加工困难相比,聚苯胺粒子的纳米化大大拓宽了其应用领域。现举例如下:Compared with conventionally synthesized polyaniline, which is insoluble and infusible, which makes its processing difficult, the nanonization of polyaniline particles greatly broadens its application fields. An example is as follows:

1)由于聚苯胺纳米粒子的粒径小于可见光波长,将聚苯胺纳米粒子与普通塑料共混复合制成的导电膜,保持两者导电率相同所需聚苯胺苯胺纳米粒子的用量大大低于常规聚苯胺的用量,使导电膜的可见光透过率达95%,这是常规合成的聚苯胺无法实现的。同时,采用聚苯胺纳米粒子,还能改善导电膜的力学性能。1) Since the particle size of polyaniline nanoparticles is smaller than the wavelength of visible light, the amount of polyaniline aniline nanoparticles required to maintain the same conductivity of the conductive film made by blending polyaniline nanoparticles with ordinary plastics is much lower than that of conventional plastics. The amount of polyaniline used makes the visible light transmittance of the conductive film reach 95%, which cannot be achieved by conventionally synthesized polyaniline. At the same time, the use of polyaniline nanoparticles can also improve the mechanical properties of the conductive film.

2)与常规合成的聚苯胺相比,由聚苯胺纳米粒子与普通塑料共混复合制成的导电膜具有良好的导电性,使其在抗静电涂层和抗静电薄膜等方面具有广阔的应用前景。2) Compared with conventionally synthesized polyaniline, the conductive film made of polyaniline nanoparticles blended with ordinary plastics has good conductivity, which makes it widely used in antistatic coatings and antistatic films. prospect.

3)在金属防腐涂料领域,聚苯胺纳米粒子也显示出优于传统聚苯胺的独特性能。由粒径为70~100nm的聚苯胺纳米粒子组成的防腐涂料,使金属的防腐性能提高70%以上。3) In the field of metal anti-corrosion coatings, polyaniline nanoparticles also show unique properties superior to traditional polyaniline. The anti-corrosion coating composed of polyaniline nanoparticles with a particle size of 70-100nm can improve the anti-corrosion performance of metals by more than 70%.

另外,由聚苯胺纳米粒子制成的自支撑膜,其气体阻隔性能也大大提高,它的透氧系数与传统聚苯胺相比减少了400%。预计在塑料包装膜、保鲜膜方面有着广泛的应用前景。In addition, the gas barrier performance of the self-supporting film made of polyaniline nanoparticles is also greatly improved, and its oxygen permeability coefficient is reduced by 400% compared with traditional polyaniline. It is expected to have a broad application prospect in plastic packaging film and plastic wrap.

Claims (4)

1.聚苯胺纳米粒子合成方法,其特征在于将浓度为0.1~4mol dm-3质子酸掺杂剂溶液和浓度为0.1~2mol dm-3苯胺单体溶液、浓度为0.1~2mol dm-3稀土氯化物掺杂剂溶液混合均匀后,倒进反应器中,在反应器两侧加上外磁场,所述磁场强度为200~2000mT,再向反应器内加入浓度为0.1~1.0moldm-3的氧化型引发剂溶液;所述反应温度为常温到70℃,反应时间为1~8小时;所述质子酸掺杂剂溶液为盐酸或硫酸或硝酸或磷酸或高氯酸或草酸。1. The method for synthesizing polyaniline nanoparticles, characterized in that the proton acid dopant solution with a concentration of 0.1 to 4mol dm -3 and the aniline monomer solution with a concentration of 0.1 to 2mol dm -3 and the rare earth with a concentration of 0.1 to 2mol dm -3 After the chloride dopant solution is mixed evenly, pour it into the reactor, apply an external magnetic field on both sides of the reactor, the magnetic field strength is 200-2000mT, and then add the Oxidative initiator solution; the reaction temperature is from normal temperature to 70°C, and the reaction time is 1-8 hours; the protonic acid dopant solution is hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid or oxalic acid. 2.根据权利要求1所述合成方法,其特征在于质子酸掺杂剂溶液与苯胺单体溶液、稀土氯化物掺杂剂溶液、氧化型引发剂溶液的重量比为3~7∶9~90∶30~40∶20~200。2. according to the described synthetic method of claim 1, it is characterized in that the weight ratio of protonic acid dopant solution and aniline monomer solution, rare earth chloride dopant solution, oxidized initiator solution is 3~7: 9~90 : 30~40: 20~200. 3.根据权利要求1或2所述合成方法,其特征在于所述氧化型引发剂为过硫酸盐或三氯化铁。3. according to the described synthetic method of claim 1 or 2, it is characterized in that described oxidation initiator is persulfate or iron trichloride. 4.根据权利要求1或2所述合成方法,其特征在于所述稀土氯化物掺杂剂为SmCl3或GdCl3或LaCl3或NdCl3或ErCl34. The synthesis method according to claim 1 or 2, characterized in that the rare earth chloride dopant is SmCl 3 or GdCl 3 or LaCl 3 or NdCl 3 or ErCl 3 .
CNB200610038613XA 2006-03-03 2006-03-03 Synthetic method of polyaniline nanoparticles Expired - Fee Related CN100402583C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200610038613XA CN100402583C (en) 2006-03-03 2006-03-03 Synthetic method of polyaniline nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200610038613XA CN100402583C (en) 2006-03-03 2006-03-03 Synthetic method of polyaniline nanoparticles

Publications (2)

Publication Number Publication Date
CN1814653A CN1814653A (en) 2006-08-09
CN100402583C true CN100402583C (en) 2008-07-16

Family

ID=36907024

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610038613XA Expired - Fee Related CN100402583C (en) 2006-03-03 2006-03-03 Synthetic method of polyaniline nanoparticles

Country Status (1)

Country Link
CN (1) CN100402583C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148772A1 (en) * 2012-03-28 2013-10-03 Dubois Chemicals, Inc. Pretreatment of metal surfaces prior to paint using polyaniline particles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408633C (en) * 2006-09-26 2008-08-06 重庆大学 Method for preparing highly conductive polyaniline by re-doping under the action of magnetic field
CN102585497B (en) * 2012-01-09 2014-01-15 南昌航空大学 A Perchloric Acid Doped Polyaniline/Carbonyl Iron Powder Composite Absorbing Material
CN103172875B (en) * 2013-04-18 2014-12-03 哈尔滨工业大学 Preparation method of doped polyaniline nano particles
CN103794380B (en) * 2014-02-26 2016-10-05 福州大学 A kind of polyaniline/graphite felt combination electrode and preparation method thereof
CN109942912A (en) * 2019-04-04 2019-06-28 许凤英 A kind of automobile tire material preparation method of low pressure compression and fatigue temperature rise
CN116966615A (en) * 2023-09-25 2023-10-31 江苏扬阳化工设备制造有限公司 Reverse concentration equipment for chemical raw materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030551A (en) * 1999-04-07 2000-02-29 Conpoly Technology Co., Ltd. Polyaniline-containing solution and method for preparing the same
US20040023061A1 (en) * 2000-11-21 2004-02-05 Elam-T Limited Electroluminescent device
WO2004083283A1 (en) * 2003-03-20 2004-09-30 Dongjin Semichem Co. Ltd. Method for preparing rod-shaped polyaniline nanoparticles having high conductivity using micro-emusion poly-merization
CN1667021A (en) * 2005-03-23 2005-09-14 南京大学 Controllable synthesis method and application of polyaniline nanostructure
CN1718611A (en) * 2005-08-04 2006-01-11 上海应用技术学院 A kind of preparation method of conductive polyaniline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030551A (en) * 1999-04-07 2000-02-29 Conpoly Technology Co., Ltd. Polyaniline-containing solution and method for preparing the same
US20040023061A1 (en) * 2000-11-21 2004-02-05 Elam-T Limited Electroluminescent device
WO2004083283A1 (en) * 2003-03-20 2004-09-30 Dongjin Semichem Co. Ltd. Method for preparing rod-shaped polyaniline nanoparticles having high conductivity using micro-emusion poly-merization
CN1667021A (en) * 2005-03-23 2005-09-14 南京大学 Controllable synthesis method and application of polyaniline nanostructure
CN1718611A (en) * 2005-08-04 2006-01-11 上海应用技术学院 A kind of preparation method of conductive polyaniline

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磁场和氯化铒对电化学合成聚苯胺纳米粒子的影响. 张淑玲.第十三次全国电化学会议论文摘要集(上集). 2005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148772A1 (en) * 2012-03-28 2013-10-03 Dubois Chemicals, Inc. Pretreatment of metal surfaces prior to paint using polyaniline particles
US9028920B2 (en) 2012-03-28 2015-05-12 Dubois Chemicals, Inc. Pretreatment of metal surfaces prior to paint using polyaniline particles

Also Published As

Publication number Publication date
CN1814653A (en) 2006-08-09

Similar Documents

Publication Publication Date Title
CN100402583C (en) Synthetic method of polyaniline nanoparticles
Chuang et al. Cerium dioxide/polyaniline core–shell nanocomposites
Dippong et al. A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites
CN101186745B (en) Method for preparing polythiophene-metal oxide nano composite material
Karim et al. Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization
CN101633779A (en) Conductive polyaniline composite electrode material and preparation method thereof
CN103611479B (en) A kind of Fe with nucleocapsid structure 3o 4/ SiO 2the preparation method of/PANI nano particle
CN101225204A (en) Preparation method of polystyrene/polyaniline conductive polymer composite microspheres with controllable morphology
CN105801901A (en) Preparation method of uniform magnetic cellulose aerogel material
CN111004391A (en) A kind of preparation method of size-controllable nano-polydopamine
CA2914834A1 (en) Conductive cellulose nanocrystals, method of producing same and uses thereof
CN102604147B (en) Preparation method for polypyrrole and graphene oxide based sponge structural material
CN103012791A (en) Preparation method of polypyrrole/graphene sheet/nickel oxide nano composite conductive material
CN101935396B (en) A preparation method of polypyrrole/Fe3O4/attapulgite nano-electromagnetic composite material
CN101983978B (en) Preparation method of monodisperse conducting polymer microballoon
CN101182041A (en) A kind of preparation method of spherical nano iron oxide
Karim et al. Sulfonated polyaniline–titanium dioxide nanocomposites synthesized by one-pot UV-curable polymerization method
CN108864425A (en) A kind of preparation method of poly- hydroxyanilines microballoon
CN103304711B (en) Preparation method of resin-wrapped aluminum hydroxide
CN103130937A (en) Preparing method of ferroferric oxide functionalized nanometer materials coated by polyacrylamide (PAM)
CN105860066A (en) Method for preparing carbon nano-tubes/polypyrrole nano-particles with negative dielectric constants
CN102337030A (en) Polypyrrole compound nanosphere possessing electromagnetic function and its preparation method
CN101928459A (en) A kind of method for preparing magnetic nano polypyrrole material
CN102443251A (en) Preparation method of iron oxide/poly (3, 4-dioxyethyl) thiophene composite nanorod
CN103772702A (en) Poly 1-naphthylamine nano hollow structure and its preparation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080716

Termination date: 20110303