CN100393899C - Production of immersing alloy for petroleum drilling bit - Google Patents
Production of immersing alloy for petroleum drilling bit Download PDFInfo
- Publication number
- CN100393899C CN100393899C CNB2006100132504A CN200610013250A CN100393899C CN 100393899 C CN100393899 C CN 100393899C CN B2006100132504 A CNB2006100132504 A CN B2006100132504A CN 200610013250 A CN200610013250 A CN 200610013250A CN 100393899 C CN100393899 C CN 100393899C
- Authority
- CN
- China
- Prior art keywords
- alloy
- master alloy
- immersing
- petroleum drilling
- drilling bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 89
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 88
- 238000005553 drilling Methods 0.000 title claims abstract description 27
- 239000003208 petroleum Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title description 2
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 238000003723 Smelting Methods 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 7
- 238000007670 refining Methods 0.000 claims abstract description 7
- 230000006698 induction Effects 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 19
- 229910016347 CuSn Inorganic materials 0.000 claims description 16
- 229910004072 SiFe Inorganic materials 0.000 claims description 12
- OPHUWKNKFYBPDR-UHFFFAOYSA-N copper lithium Chemical compound [Li].[Cu] OPHUWKNKFYBPDR-UHFFFAOYSA-N 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 238000010079 rubber tapping Methods 0.000 claims description 5
- 239000007858 starting material Substances 0.000 claims description 5
- 238000010907 mechanical stirring Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 230000008595 infiltration Effects 0.000 abstract description 10
- 238000001764 infiltration Methods 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000004615 ingredient Substances 0.000 abstract 3
- 150000002739 metals Chemical class 0.000 abstract 3
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 238000010438 heat treatment Methods 0.000 abstract 2
- 241001275902 Parabramis pekinensis Species 0.000 abstract 1
- 229910052718 tin Inorganic materials 0.000 abstract 1
- 239000011572 manganese Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 229910001573 adamantine Inorganic materials 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Earth Drilling (AREA)
Abstract
The present invention relates to a method for preparing infiltration alloy for petroleum well drilling drill bit, particularly to basis brasses. The method comprises the steps: a is material proportioning, raw materials are weighted according to the proportion of ingredients of Ni: Cu: master alloy of the Cu and Mn: master alloy of the Cu and Sn which is from 8 to 12 %: from 65 to 75 %: from 5 to 10%: from 6 to 13 %, wherein the proportion of ingredients of the master alloy of the Cu and the Mn is the Cu: the Mn: Ti which is from 64.5 to 75.5%: from 23 to 34 %: from 0.5 to 1.5%, the proportion of ingredients of the master alloy of the Cu and the Sn is the Cu: the Sn: Cr which is from 64.5 to 75.5%: from 23 to 34%: from 0.5 to 1.5%. B is smelting, the raw materials of A are orderly charged in a vacuum induction heating furnace to be heated, the heating does not stop until all of the metals are melted, deoxidizing agents Si and Fe of which the weight is from 0.3 to 1.0 % of the weight of the metals of the raw materials and alterative Cu and Li of which the weight is from 0.3 to 0.9% of the weight of the metals of the raw materials are added and stirred. C is refining, the mixture of the melted raw materials, the deoxidizing agents and the alterative are vacuum remelted for 10 to 20 minutes within the temperature range which is from 50 to 220 DEG C. higher than the smelting temperature and cast, and the infiltration alloy used for a petroleum well drilling drill bit is made. Compared with the existing infiltration alloy, the infiltration alloy for the petroleum well drilling drill bit made by the method has the advantages of low melting point, high strength, low material cost and good flowability.
Description
Technical field
Technical scheme of the present invention relates to a kind of copper base alloy, specifically a kind of preparation method of immersing alloy for petroleum drilling bit.
Background technology
Petroleum drilling has stronger wear resistance with polycrystalline diamond stone flour combination (hereinafter to be referred as PDC) the superhard PDC that drill edge adopted, the drilling efficiency height, and bit life is long, is adapted to the use of mine locating excavation works such as petroleum drilling, mining, coal mining.
Since 2003, the nonpetroleum drilling well released of the tame well-known drill bit of U.S. Clayton Christensen company, Smith's drill bit company etc. 13 manufacturing company is adopted casting tungsten carbide powder (hereinafter to be referred as WC) to add immersing alloy pressureless sintering with the PDC drill bit to make in the world.The work-ing life of drill bit, anti-shear ability, wear resisting property all depend on the good and bad degree of immersing alloy performance.Present employed immersing alloy great majority are the Cu-Ni-Mn alloy, and composition is Ni:30-40%, Mn:10-20%, Cu surplus.The cost height of this alloy material, tensile strength is lower, flowability is poor, fusing point is higher, and its infiltration temperature is 1200 ℃~1210 ℃.CN 91100132.8 has disclosed the low melting-point coper-manganese-zinc alloy as infiltration binder in the matrix rock drill bit.It is a kind of manganese that contains 5% to 65% weight of having an appointment, the zinc of 35% following weight, and all the other are the novel infiltration alloy of copper, this infiltration alloy preferably contains the manganese of 20% weight, the zinc of 20% weight, all the other are copper.Though the infiltration temperature of this infiltration alloy decreases, mobile decline.And, add high-load Mn and just inevitably make the crystal grain of its matrix alloy thick, reduced the intensity and the toughness of matrix alloy again.
In a word, the difficulty of existing immersing alloy for petroleum drilling bit development aspect is at present:
1. the fusing point along with alloy reduces strength of materials reduction: copper base alloy commonly used at present, and as brass, bronze, when lesser temps was cast, tensile strength was on the low side under the as cast condition, and the wettability of alloy substrate and tungsten carbide powder is bad, and interface binding power is poor.
2. when comparatively high temps is cast, the flowability that improves alloy along with the wetting property of alloy degenerates: the fusing point along with the increase alloy of nickel content in immersing alloy raises, and just needs high forming and sintering temperature.Temperature is too high to cause damage to the matrix tungsten carbide powder.Along with the increase of manganese content has improved the wetting property of alloy, but mobile decline.
Summary of the invention
Technical problem to be solved by this invention is: a kind of preparation method of immersing alloy for petroleum drilling bit is provided, and the immersing alloy for petroleum drilling bit of this method preparation is lower than the fusing point of existing immersing alloy, intensity is high, the cost of material is low, good fluidity.
The present invention solves this technical problem the technical scheme that is adopted: the preparation method of immersing alloy for petroleum drilling bit of the present invention the steps include:
A. batching: with starting material by Ni: Cu: CuMn master alloy: CuSn master alloy=8~12%: 65~75%: 5~10%: 6~13% component proportions weighs up, wherein, the CuMn master alloy consist of Cu: Mn: Ti=64.5~75.5%: 23~34%: 0.5~1.5%, the CuSn master alloy consist of Cu: Sn: Cr=64.5~75.5%: 23~34%: 0.5~1.5%;
B. melting: the Ni that will weigh up according to the above ratio, Cu, CuMn master alloy, CuSn master alloy add in the vacuum induction process furnace successively, vacuumize, vacuum tightness is 1.3~1.6 * 10Pa, be heated to 1200 ℃~1250 ℃, to metal be 0.3~1.0% SiFe of raw material metal weight and 0.3~0.9% CuLi after the fusing all with alterant, and carry out magnetic field and stir and/or mechanical stirring, SiFe consists of 55~85%Si: 15~45%Fe, and CuLi consists of 95.1~99.1%Cu: 0.9~4.9%Li;
C. refining: carried out vacuum remelting 10~20 minutes in the temperature range that is higher than 50~220 ℃ of smelting temperatures, tapping casting promptly makes the immersing alloy that petroleum drilling bit is used then.
Various components contents are than all being weight percentage in the aforesaid method.
The invention has the beneficial effects as follows:
1. cost reduces: the nickel content of immersing alloy for petroleum drilling bit of the present invention has reduced by 10%, thereby the existing immersing alloy for petroleum drilling bit of material cost has reduced by 1 times.
2. fusing point reduces: added low-melting Sn in alloy of the present invention.Sn can significantly improve matrix alloy to adamantine wettability, and the Ni in Sn and the matrix alloy forms sosoloid, make the fusing point of alloy be reduced to 1030 ℃~1050 ℃, compare fusing point with existing immersing alloy for petroleum drilling bit and reduced by 150 ℃, saved the energy.
3. the content of Mn is lower in the alloy of the present invention, and has added 0.3~1.0%SiFe and the 0.3~0.9%CuLi that plays the grain refining effect, and this is crystal grain thinning significantly just, significantly improves the mechanical property of matrix alloy.Tensile strength of alloys of the present invention and shearing resistance have improved 100~120MPa than existing immersing alloy for petroleum drilling bit.(seeing the following form 2)
4. add an amount of Mn in the alloy of the present invention, the flowability of alloy is improved greatly.
The composition of table 1 immersing alloy for petroleum drilling bit
Material number | Material composition | Remarks |
No. 1 | 8~12%Ni: 65~75%Cu: 5~10%CuMn master alloy: 6~13%CuSn master alloy adds 0.3~1.0%SiFe and 0.3~0.9%CuLi | Alloy of the present invention |
No. 2 | Cu-38Ni-15Mn | Alloy is arranged earlier |
The performance of table 2 immersing alloy for petroleum drilling bit
In the table 2, UTS is the english abbreviation of ultimate tensile strength, and MPa is a volume unit, is general in the world literary style.
Embodiment
Embodiment 1
1. batching: with starting material by Ni: Cu: CuMn master alloy: CuSn master alloy=8%: 75%: 5%: 12% component proportions weighs up, wherein, the CuMn master alloy consist of Cu: Mn: Ti=75.5%: 23%: 1.5%, the CuSn master alloy consist of Cu: Sn: Cr=75.5%: 23%: 1.5%;
2. melting: the Ni that will weigh up in proportion, Cu, CuMn master alloy, CuSn master alloy add in the 50kg vacuum induction process furnace successively, vacuumize, vacuum tightness is 1.3 * 10Pa, be heated to 1200 ℃, to metal be 0.3% SiFe of raw material metal weight and 0.3% CuLi after the fusing all with alterant, and carry out that stir in magnetic field and mechanical stirring, and SiFe consists of 55%Si: 45%Fe, and CuLi consists of 95.1%Cu: 4.9%Li;
3. refining: carried out vacuum remelting 10 minutes under the temperature that is higher than 50 ℃ of smelting temperatures, tapping casting promptly makes the immersing alloy that petroleum drilling bit is used then.
Various components contents are than all being weight percentage in the aforesaid method.
Embodiment 2
1. batching: with starting material by 10% electrolytic nickel: 73% electrolytic copper: 7.5%CuMn master alloy: the component proportions of 9.5%CuSn master alloy weighs up, wherein, the CuMn master alloy consist of Cu: Mn: Ti=70%: 29%: 1%, the CuSn master alloy consist of Cu: Sn: Cr=70%: 29%: 1%;
2. melting: the Ni that will weigh up in proportion, Cu, CuMn master alloy, CuSn master alloy add in the vacuum induction process furnace successively, vacuumize, vacuum tightness is 1.5 * 10Pa, be heated to 1230 ℃, all add 0.6% SiFe that deoxidation and alterant are raw material metal weight and 0.6% CuLi after the fusing to metal, and carry out magnetic field and stir, SiFe consists of 70%Si: 30%Fe, and CuLi consists of 97.1%Cu: 2.9%Li;
3. refining: carried out vacuum remelting 15 minutes under the temperature that is higher than 140 ℃ of smelting temperatures, tapping casting promptly makes the immersing alloy that petroleum drilling bit is used then.
Various components contents are than all being weight percentage in the aforesaid method.
Embodiment 3
1. batching: with starting material by Ni: Cu: CuMn master alloy: CuSn master alloy=12%: 69%: 10%: 9% component proportions weighs up, wherein, the CuMn master alloy consist of Cu: Mn: Ti=65.5%: 34%: 0.5%, the CuSn master alloy consist of Cu: Sn: Cr=65.5%: 34%: 0.5%;
2. melting: the Ni that will weigh up in proportion, Cu, CuMn master alloy, CuSn master alloy add in the 50kg vacuum induction process furnace successively, vacuumize, vacuum tightness is 1.6 * 10Pa, be heated to 1250 ℃, to metal be 1.0% SiFe of raw material metal weight and 0.9% CuLi after the fusing all with alterant, and carry out mechanical stirring, and SiFe consists of 85%Si: 15%Fe, and CuLi consists of 99.1%Cu: 0.9%Li;
3. refining: carried out vacuum remelting 20 minutes under the temperature that is higher than 220 ℃ of smelting temperatures, tapping casting promptly makes the immersing alloy that petroleum drilling bit is used then.
Various components contents are than all being weight percentage in the aforesaid method.
Claims (2)
1. the preparation method of immersing alloy for petroleum drilling bit is characterized in that step is:
A. batching: with starting material by Ni: Cu: CuMn master alloy: CuSn master alloy=8~12%: 65~75%: 5~10%: 6~13% component proportions weighs up, wherein, the CuMn master alloy consist of Cu: Mn: Ti=64.5~75.5%: 23~34%: 0.5~1.5%, the CuSn master alloy consist of Cu: Sn: Cr=64.5~75.5%: 23~34%: 0.5~1.5%;
B. melting: the Ni that will weigh up according to the above ratio, Cu, CuMn master alloy, CuSn master alloy add in the vacuum induction process furnace successively, vacuumize, vacuum tightness is 1.3~1.6 * 10Pa, be heated to 1200 ℃~1250 ℃, to metal be 0.3~1.0% SiFe of raw material metal weight and 0.3~0.9% CuLi after the fusing all with alterant, and carry out magnetic field and stir and/or mechanical stirring, SiFe consists of 55~85%Si: 15~45%Fe, and CuLi consists of 95.1~99.1%Cu: 0.9~4.9%Li;
C. refining: carried out vacuum remelting 10~20 minutes in the temperature range that is higher than 50~220 ℃ of smelting temperatures, tapping casting promptly makes the immersing alloy that petroleum drilling bit is used then;
Various components contents are than all being weight percentage in the aforesaid method.
2. the preparation method of immersing alloy for petroleum drilling bit according to claim 1, it is characterized in that: used raw material Ni is an electrolytic nickel, and raw material Cu is an electrolytic copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100132504A CN100393899C (en) | 2006-03-07 | 2006-03-07 | Production of immersing alloy for petroleum drilling bit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100132504A CN100393899C (en) | 2006-03-07 | 2006-03-07 | Production of immersing alloy for petroleum drilling bit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1818104A CN1818104A (en) | 2006-08-16 |
CN100393899C true CN100393899C (en) | 2008-06-11 |
Family
ID=36918299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100132504A Expired - Fee Related CN100393899C (en) | 2006-03-07 | 2006-03-07 | Production of immersing alloy for petroleum drilling bit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100393899C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105087863A (en) * | 2015-09-16 | 2015-11-25 | 安徽贝利机械制造有限公司 | Method for preparing metal for drill bit |
CN114672692B (en) * | 2022-03-10 | 2023-01-03 | 中机智能装备创新研究院(宁波)有限公司 | Impregnating alloy for polycrystalline diamond drill bit and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1026337C (en) * | 1990-01-05 | 1994-10-26 | 诺顿公司 | Integral bonding matrix and manufacturing method thereof |
US5662183A (en) * | 1995-08-15 | 1997-09-02 | Smith International, Inc. | High strength matrix material for PDC drag bits |
CN1059711C (en) * | 1996-10-04 | 2000-12-20 | 姚雷雨 | Manganese-copper alloy and its manufacture |
US6461401B1 (en) * | 1999-08-12 | 2002-10-08 | Smith International, Inc. | Composition for binder material particularly for drill bit bodies |
US20040244540A1 (en) * | 2003-06-05 | 2004-12-09 | Oldham Thomas W. | Drill bit body with multiple binders |
CN1664145A (en) * | 2005-04-04 | 2005-09-07 | 北京科技大学 | A method of manufacturing oxide dispersion strengthened ferrite alloy by chemical infiltration method |
CN1230566C (en) * | 2002-08-21 | 2005-12-07 | 中国科学院金属研究所 | Preparation method of siluer metal oxide electric contact material |
-
2006
- 2006-03-07 CN CNB2006100132504A patent/CN100393899C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1026337C (en) * | 1990-01-05 | 1994-10-26 | 诺顿公司 | Integral bonding matrix and manufacturing method thereof |
US5662183A (en) * | 1995-08-15 | 1997-09-02 | Smith International, Inc. | High strength matrix material for PDC drag bits |
CN1059711C (en) * | 1996-10-04 | 2000-12-20 | 姚雷雨 | Manganese-copper alloy and its manufacture |
US6461401B1 (en) * | 1999-08-12 | 2002-10-08 | Smith International, Inc. | Composition for binder material particularly for drill bit bodies |
CN1230566C (en) * | 2002-08-21 | 2005-12-07 | 中国科学院金属研究所 | Preparation method of siluer metal oxide electric contact material |
US20040244540A1 (en) * | 2003-06-05 | 2004-12-09 | Oldham Thomas W. | Drill bit body with multiple binders |
CN1664145A (en) * | 2005-04-04 | 2005-09-07 | 北京科技大学 | A method of manufacturing oxide dispersion strengthened ferrite alloy by chemical infiltration method |
Also Published As
Publication number | Publication date |
---|---|
CN1818104A (en) | 2006-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101961784B (en) | Powder metallurgy material and method for manufacturing diamond bit | |
CN101748298B (en) | Method for treating laterite nickel ore and producing ferronickel by combining tunnel kiln prereduction and melting furnace final reduction | |
CN101381814A (en) | Method for preparing rare-earth aluminum silicon alloy by waste aluminum recovery and rare-earth aluminum silicon alloy thereof | |
CN103589903B (en) | A kind of high-strength wear-resistant copper alloy and manufacture method thereof | |
CN101985717A (en) | Method for preparing high-tenacity super-coarse-grained tungsten and cobalt hard alloy | |
CN101153363A (en) | Method of producing polycrystal diamond complex sheet drill blank bits | |
CN106238962A (en) | A kind of active solder alloy | |
EP1927667B1 (en) | A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace | |
AU2005299184A1 (en) | A smelting process of ferronickel with nickel oxide ore containing of crystal water in a blast furnace | |
CN103298960B (en) | Low lead pig | |
CN102776427A (en) | Rare earth-containing heat-resisting magnesium alloy | |
CN100393899C (en) | Production of immersing alloy for petroleum drilling bit | |
CN107914019B (en) | A kind of iron-nickel-aluminum-based bond diamond tool and preparation method thereof | |
CN101280380A (en) | Low temperature in situ generation of TiC particles reinforced magnesium matrix composites and its preparation process | |
CN107130157B (en) | A kind of rare earth antifriction alloy | |
CN114761587B (en) | Pyrometallurgical process for recovery of nickel, manganese and cobalt | |
CN112647006A (en) | Tungsten carbide-based hard alloy and preparation method thereof | |
CN111206176A (en) | Ternary boride composite cermet using nickel-iron alloy as raw material and preparation method and application thereof | |
CN103805855A (en) | Rare earth phosphorus-rich iron-based pre-alloy binding agent | |
CN108425049A (en) | A kind of high-strength, high-anti-friction acieral and plunger pump cylinder body casting preparation method | |
CN101435035A (en) | High-strength wear resistant brass | |
CN109706342B (en) | Copper-zinc-silicon-based powdery brazing material containing alterant and preparation method thereof | |
CN103184382A (en) | Corrosion-resistant hard alloy and preparation method thereof | |
CN103060628A (en) | P-containing-complex-modified Al-Si aluminum alloy material and preparation method thereof | |
Huadong et al. | Decreasing the sintering temperature of diamond-bit matrix material by the addition of the element P |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080611 |