CN100392268C - An integrated magnetic levitation flywheel magnetic bearing digital control device - Google Patents
An integrated magnetic levitation flywheel magnetic bearing digital control device Download PDFInfo
- Publication number
- CN100392268C CN100392268C CNB2006101651611A CN200610165161A CN100392268C CN 100392268 C CN100392268 C CN 100392268C CN B2006101651611 A CNB2006101651611 A CN B2006101651611A CN 200610165161 A CN200610165161 A CN 200610165161A CN 100392268 C CN100392268 C CN 100392268C
- Authority
- CN
- China
- Prior art keywords
- signal
- analog
- chip
- control
- digital conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一种集成化磁悬浮飞轮磁轴承数字控制装置,用来对磁悬浮飞轮磁轴承系统进行主动控制,主要包括接口电路、模数转换芯片、FPGA模块。该装置通过接口电路和模数转换芯片获取磁轴承转子位移信号、线圈电流、转速信号数据,FPGA模块按照在FPGA芯片内基于硬件编程实现的控制算法生成控制量,根据生成的控制量并结合电流信号,进行PWM调制后输出给功放环节,生成磁轴承线圈所需的控制电流,从而实现对磁悬浮飞轮磁轴承系统的主动控制。
An integrated magnetic levitation flywheel magnetic bearing digital control device is used to actively control the magnetic levitation flywheel magnetic bearing system, and mainly includes an interface circuit, an analog-to-digital conversion chip, and an FPGA module. The device obtains the magnetic bearing rotor displacement signal, coil current, and speed signal data through the interface circuit and the analog-to-digital conversion chip. The FPGA module generates the control amount according to the control algorithm based on hardware programming in the FPGA chip. The signal is PWM modulated and then output to the power amplifier link to generate the control current required by the magnetic bearing coil, thereby realizing the active control of the magnetic bearing system of the magnetic levitation flywheel.
Description
技术领域 technical field
本发明涉及一种集成化磁悬浮飞轮磁轴承数字控制装置,用于对磁悬浮飞轮等磁轴承系统进行控制,适用于高可靠性、高集成度、低功耗等应用场合,特别适合航天及空间应用。The invention relates to an integrated magnetic bearing digital control device for a magnetic levitation flywheel, which is used for controlling magnetic bearing systems such as a magnetic levitation flywheel, and is suitable for applications such as high reliability, high integration, and low power consumption, and is especially suitable for aerospace and space applications .
背景技术 Background technique
飞轮是中小型卫星上基本的姿态控制执行机构。磁悬浮飞轮与传统机械轴承飞轮相比具有无接触、无摩擦、无需润滑、高精度、长寿命等优点,因而在卫星上具有广阔的应用前景。The flywheel is the basic attitude control actuator on small and medium-sized satellites. Compared with the traditional mechanical bearing flywheel, the magnetic levitation flywheel has the advantages of no contact, no friction, no lubrication, high precision, long life, etc., so it has broad application prospects in satellites.
现有的磁悬浮飞轮控制器分为模拟控制器和数字控制器两大类。模拟控制器存在功耗大,抗干扰能力差,控制参数修改困难,调试过程复杂,难于实现比较复杂的控制算法等缺点。数字控制器的优点表现在:参数修改方便,适合集成化,而且功耗明显降低,这对于航天应用非常有吸引力。The existing maglev flywheel controllers are divided into two categories: analog controllers and digital controllers. The analog controller has the disadvantages of large power consumption, poor anti-interference ability, difficult modification of control parameters, complicated debugging process, and difficulty in implementing more complex control algorithms. The advantages of the digital controller are: easy parameter modification, suitable for integration, and significantly reduced power consumption, which is very attractive for aerospace applications.
现有的数字控制器又有两类。目前以Ti的C2000系列DSP为核心的磁轴承控制器比较普遍,它具有参数调试方便、集成度高、功耗小等优点,但因其算法均由DSP软件实现,对于航天和空间应用中环境、温度等特殊情况往往存在可靠性差的问题,因此无法应用于航天和空间环境中。另一类数字控制器采用Ti的C3000浮点型DSP做控制算法,采用FPGA芯片控制外围器件,同时与DSP通讯。此类控制器具有高性能等优点,但因其控制算法所需的磁轴承转子位移、磁轴承线圈电流等控制信号均由FPGA获取,而其控制算法要由DSP内部采用软件实现,控制算法生成的控制量还要再送回FPGA进行PWM调制,所以DSP模块与FPGA模块之间必须有频繁的数据通讯,这对于航天和空间应用也存在可靠性差的问题,并且由于同时采用了DSP芯片与FPGA芯片,与其它数字控制器相比其集成度较差、功耗偏高。There are two types of existing digital controllers. At present, the magnetic bearing controller with Ti's C2000 series DSP as the core is relatively common. It has the advantages of convenient parameter debugging, high integration, and low power consumption. , temperature and other special conditions often have the problem of poor reliability, so they cannot be applied in aerospace and space environments. Another type of digital controller uses Ti's C3000 floating-point DSP as the control algorithm, uses an FPGA chip to control peripheral devices, and communicates with the DSP at the same time. This type of controller has the advantages of high performance, but because the control signals required by the control algorithm, such as the displacement of the magnetic bearing rotor and the current of the magnetic bearing coil, are obtained by the FPGA, and the control algorithm must be implemented by software inside the DSP, and the control algorithm is generated The control amount must be sent back to the FPGA for PWM modulation, so there must be frequent data communication between the DSP module and the FPGA module, which also has poor reliability for aerospace and space applications, and because the DSP chip and the FPGA chip are used at the same time , Compared with other digital controllers, its integration is poor and power consumption is high.
发明内容 Contents of the invention
本发明的技术解决问题:克服现有的两类数字控制器对于航天和空间应用的可靠性差、集成度差、功耗偏高等问题,提供一种高可靠、集成化、低功耗的磁悬浮飞轮数字控制装置。The technical problem of the present invention is to overcome the problems of poor reliability, poor integration, and high power consumption of the existing two types of digital controllers for aerospace and space applications, and provide a highly reliable, integrated, and low-power magnetic levitation flywheel Digital controls.
本发明的技术解决方案:一种集成化磁悬浮飞轮磁轴承数字控制装置,其特征在于:包括:Technical solution of the present invention: an integrated magnetic levitation flywheel magnetic bearing digital control device, characterized in that it includes:
接口电路:与电流信号模数转换芯片和位移信号模数转换芯片相接,包括电流传感器接口电路和位移传感器接口电路,将由电流传感器输入的电流信号和位移传感器输入的位移信号转换成0~5V的模拟电压信号;Interface circuit: connected with the current signal analog-to-digital conversion chip and the displacement signal analog-to-digital conversion chip, including the current sensor interface circuit and the displacement sensor interface circuit, which converts the current signal input by the current sensor and the displacement signal input by the displacement sensor into 0~5V The analog voltage signal;
电流信号模数转换芯片和位移信号模数转换芯片:将接口电路输出的0~5V的模拟电压信号转换为0~5V数字化的电流信号和位移信号输出给电平转换芯片;Current signal analog-to-digital conversion chip and displacement signal analog-to-digital conversion chip: convert the 0-5V analog voltage signal output by the interface circuit into a 0-5V digital current signal and displacement signal and output it to the level conversion chip;
电平转换芯片:与电流信号模数转换芯片、位移信号模数转换芯片、霍尔传感器和FPGA模块相接,将0~5V的数字化电流信号和位移信号以及由霍尔传感器输出的0~5V的飞轮转速信号转换为0~3.3V送至FPGA模块;Level conversion chip: connected with current signal analog-to-digital conversion chip, displacement signal analog-to-digital conversion chip, Hall sensor and FPGA module, digital current signal and displacement signal of 0-5V and 0-5V outputted by Hall sensor The flywheel speed signal is converted to 0~3.3V and sent to the FPGA module;
FPGA模块:控制电流信号转换模块和位移信号转换模块对由电流传感器输入的电流信号和位移传感器输入的位移信号进行采样;根据测速逻辑对经电平转换芯片转换后的0~3.3V飞轮转速信号进行转速计算;对经电平转换后的数字化位移信号和转速信号进行运算处理,得到功放所需的控制量。FPGA module: control the current signal conversion module and the displacement signal conversion module to sample the current signal input by the current sensor and the displacement signal input by the displacement sensor; according to the speed measurement logic, the 0~3.3V flywheel speed signal converted by the level conversion chip Carry out calculation of rotational speed; carry out arithmetic processing on the digitized displacement signal and rotational speed signal after level conversion, and obtain the control amount required by the power amplifier.
所述的FPGA模块包括硬件电路部分和在FPGA芯片内基于硬件编程实现的控制算法部分。硬件电路部分包括配置芯片和FPGA芯片,其中FPGA芯片采用一片XinlinxXC3S××芯片;基于硬件编程实现控制算法部分,包括模数转换控制算法,转速计算算法,分散PID+交叉反馈控制算法和PWM调制算法,FPGA芯片通过模数转换控制算法控制电流信号模数转换芯片和位移信号模数转换芯片对电流信号和位移信号进行模数转换;同时通过转速计算算法对霍尔传感器所给出的转速信号进行转速计算;分散PID+交叉反馈控制算法对位移信号和转速信号进行计算,得到PWM调制算法所需的控制量;由PWM调制算法对分散PID+交叉反馈控制算法生成的控制量和模数转换控制算法得到的电流信号进行PWM调制,并将调制结果输出功放,完成磁悬浮飞轮转子5个自由度的控制。The FPGA module includes a hardware circuit part and a control algorithm part realized based on hardware programming in the FPGA chip. The hardware circuit part includes a configuration chip and an FPGA chip. The FPGA chip uses a XinlinxXC3S×× chip; the control algorithm part is realized based on hardware programming, including analog-to-digital conversion control algorithm, speed calculation algorithm, decentralized PID+cross feedback control algorithm and PWM modulation algorithm. The FPGA chip controls the current signal analog-to-digital conversion chip and the displacement signal analog-to-digital conversion chip through the analog-to-digital conversion control algorithm to perform analog-to-digital conversion on the current signal and the displacement signal; Calculation; the distributed PID+cross feedback control algorithm calculates the displacement signal and the speed signal to obtain the control quantity required by the PWM modulation algorithm; the control quantity generated by the decentralized PID+cross feedback control algorithm and the analog-to-digital conversion control algorithm are obtained by the PWM modulation algorithm The current signal is PWM modulated, and the modulated result is output to the power amplifier to complete the control of the five degrees of freedom of the maglev flywheel rotor.
本发明的原理:FPGA芯片采用基于硬件编程实现的模数转换控制算法控制电流信号模数转换芯片和位移信号模数转换芯片,对电流信号和位移信号进行采样,转换结果读入FPGA芯片中的RAM中。当有转速信号时,在FPGA芯片设计的转速计算算法将对转速进行计算得到转速值,在FPGA芯片基于硬件实现的分散PID+交叉反馈控制算法根据位移量和转速值,执行控制算法得到控制量,FPGA芯片设计的PWM调制算法根据控制算法得到的控制量,并结合电流信号采样值进行调制,PWM调制后输出给功放环节,从而在磁轴承线圈中得到需要的控制电流,实现磁悬浮飞轮磁轴承系统的主动控制。Principle of the present invention: the FPGA chip adopts the analog-to-digital conversion control algorithm realized based on hardware programming to control the current signal analog-to-digital conversion chip and the displacement signal analog-to-digital conversion chip, to sample the current signal and the displacement signal, and read the conversion result into the FPGA chip. in RAM. When there is a speed signal, the speed calculation algorithm designed on the FPGA chip will calculate the speed to obtain the speed value, and the hardware-based decentralized PID+cross feedback control algorithm implemented on the FPGA chip will execute the control algorithm to obtain the control amount according to the displacement and speed value. The PWM modulation algorithm designed by the FPGA chip is based on the control amount obtained by the control algorithm, combined with the current signal sampling value for modulation, and the PWM modulation is output to the power amplifier link, so as to obtain the required control current in the magnetic bearing coil and realize the magnetic levitation flywheel magnetic bearing system active control.
与现有的磁悬浮飞轮磁轴承普遍采用的模拟控制器和两类数字控制器相比具有以下特点:本发明采用具有高性能的FPGA芯片XC3S××构建磁悬浮飞轮控制算法的执行核心,基于硬件编程实现了控制算法,同时对外围器件进行控制,获得控制算法所需的磁轴承转子位移信号和磁轴承线圈电流信号,并根据控制算法所得控制量对功率模块所需的PWM信号进行调制。因为本发明将控制算法由硬件予以实现,并且传感器信号的获取、控制量的计算和PWM信号调制在同一芯片中进行,减少了中间软硬件通讯的环节,因此具有高可靠、集成化、低功耗的优点。本发明与现有技术相比的优点在于:Compared with the analog controller and two types of digital controllers commonly used in the existing maglev flywheel magnetic bearings, it has the following characteristics: the present invention uses a high-performance FPGA chip XC3S×× to construct the execution core of the maglev flywheel control algorithm, based on hardware programming The control algorithm is implemented, and the peripheral devices are controlled at the same time to obtain the magnetic bearing rotor displacement signal and the magnetic bearing coil current signal required by the control algorithm, and modulate the PWM signal required by the power module according to the control amount obtained by the control algorithm. Because the present invention realizes the control algorithm by hardware, and the acquisition of the sensor signal, the calculation of the control amount and the modulation of the PWM signal are carried out in the same chip, which reduces the link of intermediate software and hardware communication, so it has high reliability, integration, low power advantage of consumption. The advantage of the present invention compared with prior art is:
(1)较传统的以运算放大器为核心的模拟控制器而言,本发明具有数字控制器的优点:调试灵活、方便、体积小、重量轻、便于实现较复杂的控制算法。较现有的定点DSP为核心的数字控制器和浮点DSP结合FPGA的数字控制器而言,本发明所采用的控制算法由FPGA芯片基于硬件编程实现,且传感器信号的获取、控制量的计算和PWM信号调制均在同一芯片中进行,减少了中间软硬件通讯的环节,所以其可靠性明显提高,能够满足航天和空间应用中对可靠性的要求。(1) Compared with the traditional analog controller with an operational amplifier as the core, the present invention has the advantages of a digital controller: flexible debugging, convenience, small size, light weight, and easy implementation of more complex control algorithms. Compared with the existing digital controller with fixed-point DSP as the core and the digital controller with floating-point DSP combined with FPGA, the control algorithm adopted in the present invention is implemented by FPGA chip based on hardware programming, and the acquisition of sensor signals and the calculation of control amount Both modulation and PWM signal modulation are carried out in the same chip, which reduces the link of intermediate software and hardware communication, so its reliability is significantly improved, and it can meet the reliability requirements in aerospace and space applications.
(2)该发明实现了系统的数字化和集成化,降低了控制器功耗,提高了控制系统的可靠性,特别适用于航空航天等对功耗、可靠性有严格要求的领域。(2) The invention realizes the digitalization and integration of the system, reduces the power consumption of the controller, and improves the reliability of the control system, and is especially suitable for aerospace and other fields that have strict requirements on power consumption and reliability.
附图说明 Description of drawings
图1为本发明的结构组成框图;Fig. 1 is a structural block diagram of the present invention;
图2为本发明的控制原理框图;Fig. 2 is a control principle block diagram of the present invention;
图3为本发明的FPGA芯片内基于硬件实现的控制算法框图;Fig. 3 is the control algorithm block diagram based on hardware realization in the FPGA chip of the present invention;
图4为本发明的位移传感器接口电路的电路原理图;Fig. 4 is the circuit schematic diagram of the displacement sensor interface circuit of the present invention;
图5为本发明的电流传感器接口电路的电路原理图;Fig. 5 is the circuit schematic diagram of the current sensor interface circuit of the present invention;
图6为本发明的位移信号模数转换芯片和电流信号模数转换芯片的电路;Fig. 6 is the circuit of displacement signal analog-to-digital conversion chip and current signal analog-to-digital conversion chip of the present invention;
图7为本发明的FPGA芯片与其它器件信号连接的电路图;Fig. 7 is the circuit diagram that FPGA chip of the present invention is connected with other device signals;
图8为本发明采用的模数转换控制算法流程图;Fig. 8 is the flow chart of the analog-to-digital conversion control algorithm adopted by the present invention;
图9为本发明采用的分散PID+交叉反馈控制原理框图;Fig. 9 is a block diagram of the principle of decentralized PID+cross feedback control adopted by the present invention;
图10为本发明采用的转速计算算法流程图;Fig. 10 is the flow chart of the rotational speed calculation algorithm that the present invention adopts;
图11为本发明采用的PWM调制算法原理框图。Fig. 11 is a functional block diagram of the PWM modulation algorithm adopted in the present invention.
具体实施方式 Detailed ways
如图1所示,本发明的磁悬浮飞轮磁轴承数字控制装置主要由接口电路8、位移信号模数转换芯片6、电流信号模数转换芯片13、电平转换芯片14和FPGA模块3组成,其中接口电路8包括位移传感器接口电路7和电流传感器接口电路12,FPGA模块3包括配置芯片1和FPGA芯片2。位移传感器接口电路7将位移传感器10检测到的磁轴承转子位移信号转换成位移信号模数转换芯片6所要求的0V~5V范围、电流传感器接口电路12将电流传感器11检测到的磁轴承线圈电流信号转换成电流信号模数转换芯片13所要求的0V~5V范围,FPGA芯片2控制位移信号模数转换芯片6和电流信号模数转换芯片13分别对磁轴承转子位移信号和磁轴承线圈信号进行采样,采样结果经电平转换芯片14转换为FPGA芯片2所要求的0V~3.3V范围,FPGA芯片2中通过基于硬件编程实现控制算法以对磁轴承转子位移信号、转速信号进行运算生成控制量,并结合电流信号采样值进行调制,PWM调制后输出给功放环节,从而生成磁轴承线圈所需的控制电流,实现磁悬浮飞轮磁轴承系统的主动控制。As shown in Figure 1, the magnetic levitation flywheel magnetic bearing digital control device of the present invention is mainly made up of
如图2所示,给出了本发明的控制原理,FPGA模块3控制位移信号模数转换芯片6和电流信号模数转换芯片13对磁轴承转子位移信号和磁轴承线圈电流信号进行采样,同时FPGA模块3对飞轮转速信号的进行检测。根据测得的磁轴承转子位移信号和转速信号计算得控制量后结合电流信号进行PWM调制,由功放4根据FPGA模块3输出的PWM信号转换成相应的线圈电流,实现磁悬浮飞轮的主动控制。As shown in Figure 2, the control principle of the present invention is provided, the
如图3所示,FPGA芯片内基于硬件实现的控制算法包括:模数转换控制算法18,转速计算算法17,分散PID+交叉反馈控制算法16和PWM调制算法19。其中FPGA芯片2通过模数转换控制算法18控制电流信号模数转换芯片13和位移信号模数转换芯片6对电流信号和位移信号进行模数转换;同时通过转速计算算法17对霍尔传感器9所给出的转速信号进行转速计算;FPGA芯片2中基于硬件实现的分散PID+交叉反馈控制算法16对位移信号和转速信号进行计算,得到PWM调制算法19所需的控制量;由PWM调制算法19对分散PID+交叉反馈控制算法16生成的控制量和模数转换控制算法18得到的电流信号进行PWM调制,并将调制结果输出功放4,完成磁悬浮飞轮转子5个自由度的控制。As shown in Figure 3, the hardware-based control algorithms in the FPGA chip include: analog-to-digital
如图4所示,位移传感器10得到的磁轴承转子位移信号经过比例变换、电平偏移、限幅后,变为位移信号模数转换芯片6所需的0V~5V电压信号,然后经过抗混叠低通滤波去除高频噪声后送至位移信号模数转换芯片6。As shown in Figure 4, the magnetic bearing rotor displacement signal obtained by the
如图5所示,电流传感器11得到的磁轴承线圈电流信号经过比例变换、电平偏移、限幅后,变为电流信号模数转换芯片13所需的0V~5V电压信号,然后经过抗混叠低通滤波去除高频噪声后送至电流信号模数转换芯片13。As shown in Figure 5, the current signal of the magnetic bearing coil obtained by the
如图6所示,本发明采用的模数转换芯片采用的是BB公司的ADS7861,该芯片具有12位精度、4路差分输入、8个独立的采样保持器、两个500KHZ的转换器和串行接口,而其功耗只有25mW。采用三片芯片(共12路输入)可以满足电流信号和位移信号的路数要求(共10路,其中电流信号5路,包括径向电流信号4路,轴向电流信号1路;位移信号5路,包括径向位移信号4路,轴向位移信号1路),独立的采样保持器保证了信号的相位关系,两个500KHz的转换器完全可以满足系统的实时性要求,高速串行接口保证了转换结果的高速输出并减小了对系统的噪声,25mW的低功耗使得该芯片非常适合航天应用。这三个芯片的接口信号经电平转换芯片(本实施例采用74LVC164245)进行电平转换后与FPGA芯片连接。As shown in Fig. 6, what the analog-to-digital conversion chip that the present invention adopts adopts is the ADS7861 of BB Company, and this chip has 12-bit precision, 4 road differential inputs, 8 independent sample holders, two 500KHZ converters and serial Line interface, and its power consumption is only 25mW. The use of three chips (12 input channels in total) can meet the requirements of the number of current signals and displacement signals (10 channels in total, including 5 channels of current signals, including 4 channels of radial current signals, 1 channel of axial current signals; 5 channels of displacement signals road, including 4 roads of radial displacement signal and 1 road of axial displacement signal), the independent sample and hold device ensures the phase relationship of the signal, two 500KHz converters can fully meet the real-time requirements of the system, and the high-speed serial interface guarantees The high-speed output of the conversion result reduces the noise to the system, and the low power consumption of 25mW makes the chip very suitable for aerospace applications. The interface signals of these three chips are connected to the FPGA chip after being level converted by a level conversion chip (74LVC164245 is used in this embodiment).
如图7所示,本发明所采用的FPGA芯片为Xilinx公司的XC3S400,该芯片采用50M的晶振作为系统时钟,内部有40万个逻辑门电路,288K片内RAM,并集成有16个18×18位的乘法器,保证了控制算法与PWM调制的高速执行,264个用户自定义I/O资源使得与外围芯片的接口非常方便。该芯片控制位移信号和电流信号的采样,当有转速信号输入时对转速信号进行计算,并通过控制算法对位移信号、转速信号进行运算生成控制量,然后PWM调制算法根据控制量结合电流信号采样值执行功率模块的控制算法,进行PWM调制后输出给功放环节。As shown in Fig. 7, the FPGA chip that the present invention adopts is XC3S400 of Xilinx Company, and this chip adopts the crystal oscillator of 50M as the system clock, internally has 400,000 logic gate circuits, 288K on-chip RAM, and is integrated with 16 18× The 18-bit multiplier ensures the high-speed execution of the control algorithm and PWM modulation, and the 264 user-defined I/O resources make the interface with peripheral chips very convenient. The chip controls the sampling of the displacement signal and the current signal. When the rotational speed signal is input, the rotational speed signal is calculated, and the displacement signal and the rotational speed signal are calculated by the control algorithm to generate the control amount, and then the PWM modulation algorithm is combined with the current signal sampling according to the control amount. The value executes the control algorithm of the power module, and outputs it to the power amplifier after PWM modulation.
本发明FPGA芯片2采用的模数转换控制算法流程图如图8所示:当设定的定时时间(如0.1ms)到时,触发模数转换芯片(ADS7861)对电流和位移信号进行模数转换;当等待延时时间(如0.5ns)到后,对模数转换的串行输出结果进行读取;当12位数据读取完毕后,结束本次模数转换,等待下次定时时间到。The flow chart of the analog-to-digital conversion control algorithm adopted by the
本发明采用的分散PID+交叉反馈控制算法框图如图9所示:由位移传感器检测出飞轮径向X两端位移信号Xa、Xb和径向Y两端位移信号Ya、Yb,其中一路分别送至四个分散PID控制模块,用于实现飞轮的静态悬浮和低转速下的稳定控制;另一路,Xa、Xb送至X向交叉反馈控制模块输入端,Ya、Yb送至Y向交叉反馈控制模块的输入端,X向交叉反馈控制模块的输出以相反的极性分别与Y向两端两个分散PID控制模块的输出相并联后输出为OUTYa和OUTYb,用于PWM调制算法的输入,Y向交叉反馈控制模块的输出以相反的极性分别与X向两端两个分散PID控制模块的输出相并联后输出为OUTXa和OUTYb,用于PWM调制算法的输入;同时,转速计算算法将霍尔传感器给出的霍尔信号进行计算,得到飞轮转速信号,分别送至X向和Y向交叉反馈控制模块,用于交叉反馈控制模块跟踪飞轮转子的转速,以便能够随时调节其相位超前量和交叉反馈量。The block diagram of the distributed PID+cross feedback control algorithm adopted by the present invention is shown in Figure 9: the displacement signals Xa, Xb at both ends of the radial direction X of the flywheel and Ya, Yb of the displacement signals at both ends of the radial direction Y are detected by the displacement sensor, and one of them is sent to the Four decentralized PID control modules are used to realize the static suspension of the flywheel and the stable control at low speed; the other way, Xa and Xb are sent to the input terminal of the X-direction cross feedback control module, and Ya and Yb are sent to the Y-direction cross feedback control module The input terminal of the X-direction cross feedback control module is connected in parallel with the outputs of the two decentralized PID control modules at both ends of the Y direction with opposite polarities, and the outputs are OUTYa and OUTYb, which are used for the input of the PWM modulation algorithm. The output of the cross feedback control module is connected in parallel with the outputs of the two decentralized PID control modules at both ends of the X direction with opposite polarities, and the outputs are OUTXa and OUTYb, which are used for the input of the PWM modulation algorithm; at the same time, the speed calculation algorithm uses Hall The Hall signal given by the sensor is calculated to obtain the flywheel speed signal, which is sent to the X-direction and Y-direction cross feedback control module, which is used for the cross feedback control module to track the speed of the flywheel rotor, so that its phase lead and crossover can be adjusted at any time. amount of feedback.
本发明FPGA芯片2采用的转速计算算法流程图如图10所示:本实施例利用飞轮电机三个霍尔中的任意两个计算转速。当第一个霍尔信号到时,启动定时器进行计数;当下一个霍尔信号到时,对计数值进行锁存,并进行转速计算,转速计算公式为:The flow chart of the rotational speed calculation algorithm adopted by the
本发明FPGA芯片2采用的PWM调制算法原理框图如图11所示:由电流信号和分散PID+交叉反馈控制所产生的控制量通过加权求和,得到要进行PWM调制的调制量;将调制量与载波信号计数器的当前值通过比较器进行比较,比较器的输出即为调制出的PWM信号。The principle block diagram of the PWM modulation algorithm adopted by the
本发明虽为磁悬浮飞轮磁轴承系统的控制装置,但也可以作为一种通用的磁轴承控制平台作为其他磁轴承系统的控制器,应用者可以根据其特殊的应用领域通过修改FPGA设计来灵活方便地实现其功能。Although the present invention is a control device for a magnetic suspension flywheel magnetic bearing system, it can also be used as a general-purpose magnetic bearing control platform as a controller for other magnetic bearing systems. The user can modify the FPGA design according to its special application field to be flexible and convenient. realize its function.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101651611A CN100392268C (en) | 2006-12-14 | 2006-12-14 | An integrated magnetic levitation flywheel magnetic bearing digital control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101651611A CN100392268C (en) | 2006-12-14 | 2006-12-14 | An integrated magnetic levitation flywheel magnetic bearing digital control device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101012852A CN101012852A (en) | 2007-08-08 |
CN100392268C true CN100392268C (en) | 2008-06-04 |
Family
ID=38700537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101651611A Expired - Fee Related CN100392268C (en) | 2006-12-14 | 2006-12-14 | An integrated magnetic levitation flywheel magnetic bearing digital control device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100392268C (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101196213B (en) * | 2007-12-26 | 2010-09-01 | 北京航空航天大学 | Integrated digital control system for high temperature superconducting magnetic suspension energy accumulation flywheel magnetic bearing |
CN101931371B (en) * | 2010-08-06 | 2013-07-03 | 中国人民解放军国防科学技术大学 | Magnetic suspension bearing control power amplification integrated system |
CN102013859B (en) * | 2010-12-01 | 2012-12-12 | 北京奇峰聚能科技有限公司 | Control digital system for high-reliability energy storage flywheel dragging motor |
CN102122180B (en) * | 2011-02-16 | 2012-10-17 | 哈尔滨工业大学 | A Flywheel Simulator Based on FPGA |
CN102829116B (en) * | 2012-08-28 | 2015-01-14 | 清华大学 | Method for diminishing vibration of base in magnetic bearing system |
FI127524B (en) * | 2014-06-06 | 2018-08-15 | Lappeenrannan Teknillinen Yliopisto | A control device and a method for controlling a magnetic levitation system |
CN105065452B (en) * | 2015-07-13 | 2017-02-08 | 北京航空航天大学 | Integrated magnetic-bearing digital control system for magnetic-suspension inertially-stabilized platform |
TWI627410B (en) | 2017-05-17 | 2018-06-21 | 財團法人工業技術研究院 | Rotor driving system and method for driving rotor |
CN110030264B (en) * | 2019-05-08 | 2024-11-26 | 珠海格力电器股份有限公司 | Magnetic bearing displacement detection equipment and magnetic suspension system |
CN112833097B (en) * | 2020-11-27 | 2022-09-20 | 中国航发四川燃气涡轮研究院 | Integrated digital control method for electromagnetic bearing based on generalized control mode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002021851A (en) * | 2000-07-04 | 2002-01-23 | Koyo Seiko Co Ltd | Magnetic bearing control device |
US6472787B1 (en) * | 1999-07-29 | 2002-10-29 | Koyo Seiko Co., Ltd. | Controller of magnetic bearing |
JP2002349566A (en) * | 2001-05-29 | 2002-12-04 | Boc Edwards Technologies Ltd | Magnetic bearing control device |
CN1719716A (en) * | 2005-07-08 | 2006-01-11 | 北京航空航天大学 | A high-performance, integrated digital control device for the magnetic bearing of the magnetic levitation flywheel |
CN1728528A (en) * | 2005-06-21 | 2006-02-01 | 北京航空航天大学 | An integrated, low-power magnetic bearing digital control device |
CN1738183A (en) * | 2005-07-21 | 2006-02-22 | 北京航空航天大学 | A high-speed magnetic levitation flywheel stability control system |
-
2006
- 2006-12-14 CN CNB2006101651611A patent/CN100392268C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6472787B1 (en) * | 1999-07-29 | 2002-10-29 | Koyo Seiko Co., Ltd. | Controller of magnetic bearing |
JP2002021851A (en) * | 2000-07-04 | 2002-01-23 | Koyo Seiko Co Ltd | Magnetic bearing control device |
JP2002349566A (en) * | 2001-05-29 | 2002-12-04 | Boc Edwards Technologies Ltd | Magnetic bearing control device |
CN1728528A (en) * | 2005-06-21 | 2006-02-01 | 北京航空航天大学 | An integrated, low-power magnetic bearing digital control device |
CN1719716A (en) * | 2005-07-08 | 2006-01-11 | 北京航空航天大学 | A high-performance, integrated digital control device for the magnetic bearing of the magnetic levitation flywheel |
CN1738183A (en) * | 2005-07-21 | 2006-02-22 | 北京航空航天大学 | A high-speed magnetic levitation flywheel stability control system |
Also Published As
Publication number | Publication date |
---|---|
CN101012852A (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100392268C (en) | An integrated magnetic levitation flywheel magnetic bearing digital control device | |
CN101576745B (en) | Full digital driving controller of permanent magnetic linear voice coil motor used for direct driving valve | |
CN1719716A (en) | A high-performance, integrated digital control device for the magnetic bearing of the magnetic levitation flywheel | |
CN101931371B (en) | Magnetic suspension bearing control power amplification integrated system | |
CN105065452B (en) | Integrated magnetic-bearing digital control system for magnetic-suspension inertially-stabilized platform | |
CN101488031B (en) | High-precision magnetic bearing axial control method based on interference observer | |
CN102110010A (en) | Hardware-in-the-loop (HIL) real-time simulation platform of permanent magnet linear synchronous motor | |
CN205748484U (en) | A kind of multichannel data acquisition system based on FPGA | |
Du et al. | Design and implement of a low cost control system of active magnetic bearings using LabVIEW Interface for Arduino | |
CN106526299B (en) | A kind of power converter current detection method based on Non-smooth surface observation technology | |
CN103438876B (en) | A kind of Magnetic Heading System based on numeral fluxgate | |
CN102223132A (en) | A Multi-Stator Arc Motor Control Method for Large Telescope | |
CN107329441A (en) | A Magnetic Suspension Magnetic Bearing Detection System Based on DSP Control | |
CN203732702U (en) | DSP and FPGA based variable frequency power supply electrical parameter measuring system | |
CN102497166B (en) | Excitation circuit of bell-shaped vibrator | |
CN112671408B (en) | Temperature and voltage sensor, chip and electronic equipment | |
CN100387358C (en) | Electric Arc Spraying Power Supply Digital Control System | |
CN204963869U (en) | MEMS attitude sensor based on thermoelectric generation | |
CN204669259U (en) | A kind of DC globular motor control device | |
CN206211959U (en) | Voltage comparison circuit, application circuit and electronic device | |
CN203747709U (en) | Drive device of medical non-contact direct current motor | |
Gao et al. | Research on Self-powered Sensors Based on Piezoelectric Energy Capture | |
Zhang et al. | Control system design for AC-DC three-degree-of-freedom hybrid magnetic bearing | |
Wang et al. | Data Acquisition and Processing System under Hydrogen Sensor | |
CN203615923U (en) | Demodulator being capable of raising measuring precision and measuring range of tiny signal of sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080604 Termination date: 20181214 |
|
CF01 | Termination of patent right due to non-payment of annual fee |