CN100389075C - Drainage disposal method and device - Google Patents
Drainage disposal method and device Download PDFInfo
- Publication number
- CN100389075C CN100389075C CNB2005100902410A CN200510090241A CN100389075C CN 100389075 C CN100389075 C CN 100389075C CN B2005100902410 A CNB2005100902410 A CN B2005100902410A CN 200510090241 A CN200510090241 A CN 200510090241A CN 100389075 C CN100389075 C CN 100389075C
- Authority
- CN
- China
- Prior art keywords
- ions
- anion exchange
- wastewater
- phosphate
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title abstract description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 98
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 88
- 239000002351 wastewater Substances 0.000 claims abstract description 86
- -1 nitrate ions Chemical class 0.000 claims abstract description 67
- 238000004065 wastewater treatment Methods 0.000 claims abstract description 59
- 150000002500 ions Chemical class 0.000 claims abstract description 51
- 230000002378 acidificating effect Effects 0.000 claims abstract description 36
- 238000005342 ion exchange Methods 0.000 claims abstract description 31
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 27
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 17
- 150000001450 anions Chemical class 0.000 claims description 92
- 238000005349 anion exchange Methods 0.000 claims description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 78
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 52
- 239000007864 aqueous solution Substances 0.000 claims description 39
- 238000005406 washing Methods 0.000 claims description 38
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 33
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 32
- 238000011084 recovery Methods 0.000 claims description 29
- 239000000243 solution Substances 0.000 claims description 29
- 239000001488 sodium phosphate Substances 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 18
- 239000004973 liquid crystal related substance Substances 0.000 claims description 17
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 17
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 16
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 229940085991 phosphate ion Drugs 0.000 claims description 9
- 229910019142 PO4 Inorganic materials 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 7
- 229910021645 metal ion Inorganic materials 0.000 claims description 7
- 239000010452 phosphate Substances 0.000 claims description 7
- 229910000160 potassium phosphate Inorganic materials 0.000 claims description 5
- 235000011009 potassium phosphates Nutrition 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910001414 potassium ion Inorganic materials 0.000 claims 4
- 229910001415 sodium ion Inorganic materials 0.000 claims 4
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims 3
- 229910001425 magnesium ion Inorganic materials 0.000 claims 3
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 69
- 230000008929 regeneration Effects 0.000 description 50
- 238000011069 regeneration method Methods 0.000 description 50
- 238000011282 treatment Methods 0.000 description 32
- 239000007788 liquid Substances 0.000 description 26
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 25
- 235000011008 sodium phosphates Nutrition 0.000 description 15
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 13
- 235000019799 monosodium phosphate Nutrition 0.000 description 13
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 13
- 229920006395 saturated elastomer Polymers 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 8
- 235000021317 phosphate Nutrition 0.000 description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000004255 ion exchange chromatography Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 4
- 235000019801 trisodium phosphate Nutrition 0.000 description 4
- 239000003729 cation exchange resin Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 3
- 235000019796 monopotassium phosphate Nutrition 0.000 description 3
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 2
- 235000019798 tripotassium phosphate Nutrition 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 239000005955 Ferric phosphate Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940032958 ferric phosphate Drugs 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001449 indium ion Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011071 total organic carbon measurement Methods 0.000 description 1
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
本发明提供一种排水方法,其可从含有硝酸离子、硫酸离子、碘离子等的离子和磷酸离子的排水中简便地选择性地回收磷酸离子。本发明提供一种排水处理方法,该方法是从含有选自硝酸离子、硫酸离子、碘离子中的至少1种离子和磷酸离子的排水中回收磷酸离子的排水处理方法,其特征在于,在呈酸性的状态下,使排水与阴离子交换树脂接触,使上述排水中含有的硝酸离子、硫酸离子、碘离子中的离子进行离子交换,然后再次与阴离子交换树脂接触,使磷酸离子与阴离子交换树脂进行离子交换,来回收磷酸离子,本发明还提供该方法中使用的排水处理装置。
The present invention provides a drainage method capable of simply and selectively recovering phosphate ions from wastewater containing ions such as nitrate ions, sulfate ions, iodide ions, and phosphate ions. The present invention provides a wastewater treatment method, which is a wastewater treatment method for recovering phosphate ions from wastewater containing at least one ion selected from nitrate ions, sulfate ions, and iodide ions, and phosphate ions. In an acidic state, the wastewater is brought into contact with an anion exchange resin, and the ions in the nitrate ions, sulfate ions, and iodide ions contained in the above wastewater are ion-exchanged, and then contacted with the anion exchange resin again, so that the phosphate ions are exchanged with the anion exchange resin. Ion exchange is used to recover phosphate ions, and the invention also provides a wastewater treatment device used in the method.
Description
技术领域 technical field
本发明涉及排水处理方法,详细地说是涉及含有磷酸离子的酸性排水的处理方法和处理装置。The present invention relates to a wastewater treatment method, in particular to a treatment method and a treatment device for acidic wastewater containing phosphate ions.
背景技术 Background technique
作为液晶显示板等的基板,使用在绝缘材料上形成有铝单层、或者由铝和钼这两层形成的导电层的图形的基板。As a substrate of a liquid crystal display panel or the like, a substrate in which a single layer of aluminum or a pattern of a conductive layer formed of two layers of aluminum and molybdenum is formed on an insulating material is used.
在形成该导电层的图形时,一直以来人们使用利用由硝酸、磷酸、醋酸的混合物形成的蚀刻液进行蚀刻的方法。When forming the pattern of this conductive layer, a method of etching with an etchant composed of a mixture of nitric acid, phosphoric acid, and acetic acid has been conventionally used.
在制造这样的液晶显示板等的基板时,由于所产生的蚀刻液的废液浓度高、容易进行循环,因此容易转用至其他用途中。另一方面,洗涤了蚀刻后的液晶基板的排水,与蚀刻液的废液相比,其磷酸离子浓度较低,因此不进行循环,而与其他废液同样进行生物学处理。在该生物学处理中,由于每单位时间所消耗的磷酸离子量基本恒定,所以根据排水中含有的磷酸离子浓度,来改变水面积负载。即,根据排水,来改变每单位时间的处理量而进行处理。When producing substrates such as such a liquid crystal display panel, the waste liquid concentration of the etchant produced is high and easy to circulate, so it is easy to divert to other uses. On the other hand, the effluent of the etched liquid crystal substrate has a lower concentration of phosphate ions than the waste liquid of the etchant, so it is not circulated, but is subjected to biological treatment in the same manner as other waste liquids. In this biological treatment, since the amount of phosphate ions consumed per unit time is substantially constant, the water area load is changed according to the concentration of phosphate ions contained in the wastewater. That is, the treatment is performed while changing the treatment amount per unit time according to the drainage.
但是,由于近年来环境意识提高,所以也期待对该洗涤了蚀刻后的液晶基板的排水那样的离子浓度低的排水进行循环处理。特别是磷成分,由于利用价值较高,因此尝试着对磷酸离子进行选择性回收,专利文献1中公开了通过电场向含有磷酸离子的排水中加入铁离子或铝离子,使其以磷酸铁或磷酸铝的形式来沉淀。However, since environmental awareness has increased in recent years, it is also expected to circulate the waste water with a low ion concentration, such as the waste water from which the liquid crystal substrate after etching has been washed. Especially the phosphorus component, because the utilization value is higher, so try to carry out the selective recovery of phosphate ion, disclose in the
但是,在专利文献1所记载的方法中,必须根据排水中含有的离子浓度的变化,来调整所生成的铁离子或铝离子的量,处理变得繁杂。However, in the method described in
进而,由于利用电场来产成铁离子或铝离子,所以需要很高的能量成本,特别是很难使磷酸离子浓度达到磷酸铁或磷酸铝的溶解度或其以下,因此磷酸浓度越低,则处理效率越低,在实际中难以采用磷酸离子浓度为例如1%或其以下的低浓度的排水等。Furthermore, because the electric field is used to generate iron ions or aluminum ions, high energy costs are required, and it is particularly difficult to make the concentration of phosphate ions reach the solubility of iron phosphate or aluminum phosphate or below, so the lower the concentration of phosphoric acid, the treatment The lower the efficiency, the more difficult it is to actually use low-concentration drainage such as phosphate ion concentration of 1% or less.
另外,这样获得的沉淀物有可能含有磷酸盐以外的铁盐或铝盐,不能说磷酸离子被选择性回收。In addition, the precipitate obtained in this way may contain iron or aluminum salts other than phosphate, and it cannot be said that phosphate ions are selectively recovered.
另外,为了回收磷酸离子,还可以考虑利用阴离子交换树脂等进行离子交换,但已知,通常,硝酸离子、硫酸离子、碘离子等阴离子,与磷酸离子一样,容易用阴离子交换树脂进行离子交换,从而不能用阴离子交换树脂使排水进行离子交换来回收磷酸离子。In addition, in order to recover phosphate ions, it is also conceivable to perform ion exchange using an anion exchange resin, etc., but it is known that generally, anions such as nitrate ions, sulfate ions, and iodide ions are easily ion exchanged with anion exchange resins like phosphoric acid ions. Therefore, phosphate ions cannot be recovered by ion-exchanging the wastewater with an anion-exchange resin.
这样,在现有技术的排水处理中存在着难以选择性地回收磷酸的问题。Thus, there is a problem that it is difficult to selectively recover phosphoric acid in conventional wastewater treatment.
另外,这种问题不仅存在于从例如洗涤了液晶基板的排水那样的含低浓度磷酸离子的排水中选择性回收磷酸离子的排水处理中,而且也存在于从含有硝酸离子、硫酸离子、碘离子等的离子和磷酸离子的排水中选择性回收磷酸离子的排水处理中。In addition, this problem exists not only in the wastewater treatment that selectively recovers phosphate ions from wastewater containing low-concentration phosphate ions, such as wastewater that has washed liquid crystal substrates, but also in wastewater containing nitrate ions, sulfate ions, and iodide ions. In the wastewater treatment of selective recovery of phosphate ions in the wastewater of equal ions and phosphate ions.
【专利文献1】特开平10-225690号公报[Patent Document 1] Japanese Unexamined Patent Publication No. 10-225690
发明内容 Contents of the invention
本发明的课题鉴于上述问题,提供一种排水处理方法,该方法从含有硝酸离子、硫酸离子、碘离子等的离子和磷酸离子的排水中简便地选择性回收磷酸离子,还提供一种排水处理装置。The object of the present invention is to provide a wastewater treatment method in view of the above problems, which simply and selectively recovers phosphate ions from wastewater containing ions such as nitrate ions, sulfate ions, iodide ions, and phosphate ions, and also provides a wastewater treatment method. device.
磷酸离子与硝酸离子、硫酸离子、碘离子等阴离子一样,容易用阴离子交换树脂进行离子交换,现有技术中还未进行过利用阴离子交换树脂来分离这些离子与磷酸离子。Phosphate ions, like anions such as nitrate ions, sulfate ions, and iodide ions, are easily ion-exchanged with anion-exchange resins. In the prior art, anion-exchange resins have not been used to separate these ions from phosphate ions.
但是,本发明者对于该问题进行了深入研究,发现在排水为酸性的情况下,与硝酸离子、硫酸离子、碘离子等阴离子相比,磷酸离子可以被看作是难以用阴离子交换树脂进行离子交换的离子,由此完成了本发明。However, the inventors of the present invention conducted extensive research on this problem and found that when the drainage is acidic, phosphate ions can be regarded as difficult to ionize with anion exchange resins compared with anions such as nitrate ions, sulfate ions, and iodide ions. exchanged ions, thus completing the present invention.
即,本发明为了解决上述课题,提供一种排水处理方法,该方法是从含有选自硝酸离子、硫酸离子、碘离子的至少1种离子和磷酸离子的排水中回收磷酸离子的排水处理方法,其特征在于,在呈酸性的状态下,使排水与阴离子交换树脂接触,使上述排水中含有的硝酸离子、硫酸离子、碘离子中的离子进行离子交换,然后再次与阴离子交换树脂接触,使磷酸离子与阴离子交换树脂进行离子交换,来回收磷酸离子。本发明还提供一种排水处理装置,该装置是从含有选自硝酸离子、硫酸离子、碘离子中的至少1种离子和磷酸离子、并且呈酸性状态的排水中回收磷酸离子的排水处理装置,其特征在于,为使上述排水通过并可以实施2次或其以上的阴离子交换,串连配置有2台或其以上的装备有阴离子交换树脂的阴离子交换器。That is, in order to solve the above-mentioned problems, the present invention provides a wastewater treatment method for recovering phosphate ions from wastewater containing at least one ion selected from the group consisting of nitrate ions, sulfate ions, and iodide ions, and phosphate ions. It is characterized in that, in an acidic state, the drain water is brought into contact with an anion exchange resin, the ions in the nitrate ion, sulfate ion, and iodide ion contained in the above drain are ion-exchanged, and then the anion exchange resin is contacted again to make the phosphoric acid The ions are ion exchanged with an anion exchange resin to recover phosphate ions. The present invention also provides a waste water treatment device, which is a waste water treatment device that recovers phosphate ions from waste water that contains at least one ion selected from nitrate ions, sulfate ions, and iodide ions and phosphoric acid ions and is in an acidic state, It is characterized in that two or more anion exchangers equipped with anion exchange resins are arranged in series in order to allow the above-mentioned waste water to pass through and perform anion exchange twice or more.
根据本发明,在排水呈酸性的状态下,与硝酸离子、硫酸离子、碘离子相比,磷酸离子难以用阴离子交换树脂进行离子交换,因而可以通过使排水与阴离子交换树脂接触,首先,使硝酸离子、硫酸离子、碘离子与阴离子交换树脂进行离子交换,然后,再次使排水与阴离子交换树脂接触,使磷酸离子与该阴离子交换树脂选择性地进行离子交换,来进行回收。According to the present invention, in the acidic state of the drainage, compared with nitrate ions, sulfate ions, and iodide ions, it is difficult for phosphate ions to be ion-exchanged with the anion exchange resin. The ions, sulfate ions, and iodide ions are ion-exchanged with an anion-exchange resin, and then the wastewater is brought into contact with the anion-exchange resin again, and phosphate ions are selectively ion-exchanged with the anion-exchange resin for recovery.
进而,即使在排水中磷酸离子浓度发生变化的情况下,也由于可使每单位时间的排水处理量成为恒定,所以可进行稳定的排水处理。Furthermore, even when the concentration of phosphate ions in the waste water varies, since the waste water treatment amount per unit time can be kept constant, stable waste water treatment can be performed.
另外,也无需如利用电场的沉淀方法那样的高能量成本,可应用于排水中的磷酸离子浓度为1%或其以下的低浓度,例如直至几个ppm的排水。In addition, there is no need for high energy costs like the precipitation method using an electric field, and it can be applied to wastewater where the concentration of phosphate ions in wastewater is 1% or less, for example, up to several ppm.
附图说明 Description of drawings
图1为显示第一实施方式中使用的排水处理装置的框图。FIG. 1 is a block diagram showing a waste water treatment device used in a first embodiment.
图2为显示第一实施方式的第一、第二阴离子交换塔的排出水状况的离子浓度变化图表。Fig. 2 is a graph showing changes in ion concentration of the discharge water from the first and second anion exchange towers according to the first embodiment.
图3为显示第一实施方式的第二阴离子交换塔的排出水状况的离子浓度变化图表。Fig. 3 is a graph showing changes in ion concentration of the discharge water of the second anion exchange tower according to the first embodiment.
图4为显示第一实施方式的磷酸钠盐回收装置的框图。Fig. 4 is a block diagram showing the sodium phosphate salt recovery device of the first embodiment.
图5为显示第二实施方式中使用的排水处理装置的框图。Fig. 5 is a block diagram showing a waste water treatment device used in a second embodiment.
符号的说明Explanation of symbols
1:第一阴离子交换塔1: The first anion exchange tower
2:第二阴离子交换塔2: The second anion exchange tower
3:注水管3: water injection pipe
4:连接管4: connecting pipe
5:排水管5: drain pipe
6:电磁阀6: Solenoid valve
11、12:阴离子交换器11, 12: Anion exchanger
21、12:阴离子交换器21, 12: Anion exchanger
19、29:碱再生液贮存槽19, 29: Alkali regeneration liquid storage tank
具体实施方式 Detailed ways
下面,对本发明的优选实施方式进行说明。Next, preferred embodiments of the present invention will be described.
首先,将在本实施方式的排水处理方法中使用的排水处理装置作为第一实施方式,并基于图1进行说明。First, a waste water treatment device used in the waste water treatment method of this embodiment will be described as a first embodiment based on FIG. 1 .
上述排水处理装置具有下述构成:第一阴离子交换塔1,其使排水与阴离子交换树脂接触,使硝酸离子、硫酸离子、碘离子等的离子进行离子交换;第一贮存槽13,其暂时贮存通过了该第一阴离子交换塔1的排水;第二阴离子交换塔2,其使通过了上述第一阴离子交换塔1的排水再次与阴离子交换树脂接触,使磷酸离子进行离子交换;第二贮存槽23,其暂时贮存通过了第二阴离子交换塔2的排水。The above-mentioned waste water treatment device has the following structure: a first
另外,上述排水处理装置具有,用于向上述第一阴离子交换塔1导入排水的注水管3;用于将与第一阴离子交换塔1的阴离子交换树脂接触过的排水导入第二阴离子交换塔2的连接管4;将在第二阴离子交换塔2中进行了阴离子交换的排水排出至系统外的排出管5。In addition, the above-mentioned waste water treatment device has a
进一步,上述排水处理装置具有,将通过了第一阴离子交换塔1的排水再次返回到第一阴离子交换塔1的第一回流管14和将通过了第二阴离子交换塔2的排水再次返回至第二阴离子交换塔2的第二回流管24。Further, the above-mentioned drainage treatment device has the
在上述第一阴离子交换塔1中装备有两台阴离子交换器11、12,它们是在装备有注水口和排水口的容器中填充有弱碱性阴离子交换树脂的交换器。另外,这两台阴离子交换器11,12的构成是,二台阴离子交换器的注水口和注水管相连,并且利用电磁阀6向各个阴离子交换器切换排水水流,以便在使用一台阴离子交换器进行排水处理,随着排水处理的进行,阴离子交换树脂的阴离子交换性能趋于降低的情况下,可以将排水的流向切换至另一台阴离子交换器,来继续进行排水处理。另外,各排水口与将排水导入上述第一贮存槽13的第一排水管15相连。另外,在图1的电磁阀6以外的位置未标记符号,但是与图1的电磁阀6使用相同记号的位置表示使用电磁阀。The above-mentioned first
另外,上述第二阴离子交换塔2也具有与上述第一阴离子交换塔1同样的构成,两台阴离子交换器21、22,其注水口与连接管4连接,排水口与第二排水管25连接。In addition, the above-mentioned second
另外,注水管3、第一排水管15和第二排水管25中装备有总有机碳(TOC)测定器,第一排水管15和第二排水管25中进一步装备有电导率(EC)测定器,测定流过管的排水的TOC和EC,用于判定流过各个管的排水中含有的离子。In addition, the
作为填充在这样的阴离子交换器中的弱碱性阴离子交换树脂,可使用离子交换容量为1.1~1.7eq/L-树脂的树脂。As the weakly basic anion exchange resin filled in such an anion exchanger, a resin having an ion exchange capacity of 1.1 to 1.7 eq/L-resin can be used.
另外,对其形态没有特别限定,通常可使用形成为直径小于等于几个mm的珠粒状的树脂。In addition, the form is not particularly limited, and generally, a bead-like resin having a diameter of several mm or less can be used.
接着,对于使用这样的排水处理装置来处理利用蚀刻液进行蚀刻处理了的液晶基板用纯水洗涤而产生的酸性排水的排水处理方法,参照图2来阐述,该图2示出了流过第一排水管和第二排水管的排水的离子浓度的时间变化。Next, a method for treating acidic waste water generated by washing liquid crystal substrates etched with an etchant with pure water using such a waste water treatment device will be described with reference to FIG. Temporal changes in the ion concentrations of the drains from the first drain pipe and the second drain pipe.
在液晶基板用纯水洗涤而产生的酸性排水中,通常含有100~1000ppm的磷酸离子、5~50ppm的硝酸离子,进而,还含有10~100ppm比酸性排水中的磷酸离子更难以与阴离子交换树脂进行离子交换的醋酸离子,使pH变成约为2。In the acidic drainage produced by washing the liquid crystal substrate with pure water, it usually contains 100-1000ppm of phosphate ions and 5-50ppm of nitrate ions, and furthermore, 10-100ppm is more difficult to combine with anion exchange resin than phosphate ions in acidic drainage. The acetate ions undergo ion exchange, bringing the pH to approximately 2.
对该酸性排水中含有的各离子的离子浓度,预先采用离子浓度计等进行测定,以便根据酸性排水的通水量来把握阴离子交换器的离子交换状况。然后,通过一般的液体输送装置,例如泵(无图示)等将酸性排水导入至上述排水处理装置中。The ion concentration of each ion contained in the acid wastewater is measured in advance with an ion concentration meter or the like in order to grasp the ion exchange status of the anion exchanger based on the flow rate of the acid wastewater. Then, the acidic waste water is introduced into the above-mentioned waste water treatment device by a general liquid delivery device such as a pump (not shown).
利用上述电磁阀,使所导入的酸性排水按照注水管、第一阴离子交换塔的第一阴离子交换器、第一贮存槽、连接管、第二阴离子交换塔的第一阴离子交换器、第二贮存槽、排水管的顺序通过排水处理装置来进行处理。Utilize above-mentioned solenoid valve, make the acidic drainage that introduces according to water injection pipe, the first anion exchanger of the first anion exchange tower, the first storage tank, connecting pipe, the first anion exchanger of the second anion exchange tower, the second storage The order of the tank and the drain pipe is processed by the drainage treatment device.
另外,在上述酸性排水的处理开始后,如图2中时间0~a所示那样,在第一阴离子交换塔的第一阴离子交换器中,使硝酸离子、磷酸离子、醋酸离子全部进行离子交换,从第一排水管排出纯水。这样,可以通过观测第一排水管的TOC、EC均变成很低的值,例如TOC<0.1ppm、EC<1μS/cm,来判定全部离子在第一阴离子交换塔中进行了离子交换。In addition, after the above-mentioned treatment of acidic wastewater starts, as shown in time 0-a in Figure 2, in the first anion exchanger of the first anion exchange tower, all nitrate ions, phosphoric acid ions, and acetate ions are ion-exchanged. , to discharge pure water from the first drain. In this way, it can be judged that all ions have undergone ion exchange in the first anion exchange tower by observing that the TOC and EC of the first drainpipe both become very low values, such as TOC<0.1ppm and EC<1μS/cm.
然后,在时间a时,在第一阴离子交换塔的第一阴离子交换器中装备的离子交换树脂被硝酸离子、磷酸离子和醋酸离子饱和。在接下来的时间a~b期间,通过使酸性排水在第一阴离子交换塔中进行离子交换,使得离子交换选择性低的离子可与离子交换选择性高的离子发生置换,而成为被排出的状态。即,利用酸性排水中含有的硝酸离子和磷酸离子,可以使与上述阴离子交换树脂发生了离子交换的醋酸离子脱离,取而代之,使硝酸离子和磷酸离子与醋酸离子脱离了的阴离子交换树脂进行离子交换。Then, at time a, the ion exchange resin provided in the first anion exchanger of the first anion exchange column is saturated with nitrate ions, phosphate ions and acetate ions. During the next time a~b, by making the acidic drainage undergo ion exchange in the first anion exchange tower, ions with low ion exchange selectivity can be replaced with ions with high ion exchange selectivity, and become discharged state. That is, by using the nitrate ions and phosphate ions contained in the acidic wastewater, the acetate ions that have been ion-exchanged with the above-mentioned anion exchange resin can be detached, and instead, the anion exchange resin that has detached the nitrate ions and phosphate ions and the acetate ions can be ion-exchanged. .
这样,由于从第一排水管中排出本来的酸性排水中含有的醋酸离子和从阴离子交换树脂中脱离出的醋酸离子,所以第一排水管的TOC一旦比注水管的TOC高,很快在时间b时,醋酸离子从阴离子交换树脂中脱离完毕时,二者的TOC又显示出相同的值。In this way, since the acetate ions contained in the original acidic drainage and the acetate ions detached from the anion exchange resin are discharged from the first drainage pipe, once the TOC of the first drainage pipe is higher than the TOC of the water injection pipe, it will soon be In b, when the acetate ions are completely detached from the anion exchange resin, the TOC of the two shows the same value again.
此时,可从第一排水管的TOC、EC的值稍微上升来判定醋酸开始排出(例如TOC=0.7ppm、EC=4μS/cm)。但是,由于从第一阴离子交换塔排出的醋酸离子可以在第二离子交换塔中进行离子交换,因此可从排出管排出纯水。At this time, it can be judged that acetic acid starts to be discharged from the value of TOC and EC of the first drain pipe rising slightly (for example, TOC=0.7ppm, EC=4μS/cm). However, since the acetate ions discharged from the first anion exchange tower can be ion-exchanged in the second ion exchange tower, pure water can be discharged from the discharge pipe.
进而,在时间b以后,同样,继续进行排水处理,在酸性排水中含有的硝酸离子使利用第一阴离子交换塔的阴离子交换树脂进行离子交换的磷酸离子脱离,取而代之,使酸性排水中含有的硝酸离子与阴离子交换树脂进行离子交换。Furthermore, after time b, similarly, the wastewater treatment is continued, and the nitrate ions contained in the acidic wastewater detach the phosphate ions ion-exchanged by the anion exchange resin of the first anion exchange tower, and replace them with the nitric acid contained in the acidic wastewater. The ions are ion exchanged with an anion exchange resin.
此时,由于从第一阴离子交换塔排出磷酸离子和醋酸离子,所以醋酸离子和磷酸离子使第一排水管的EC值大大上升,例如为EC=100μS/cm。At this time, since phosphate ions and acetate ions are discharged from the first anion exchange tower, the acetate ions and phosphate ions greatly increase the EC value of the first drainage pipe, for example, EC=100 μS/cm.
另外,此时也由于从第一排水管中排出本来的酸性排水中含有的磷酸离子和从阴离子交换树脂脱离出的磷酸离子,所以流出比酸性排水中的磷酸离子浓度更高的排水。Also at this time, the phosphate ions contained in the acidic wastewater and the phosphate ions desorbed from the anion exchange resin are discharged from the first drainage pipe, so that the phosphate ion concentration of the acidic wastewater is higher than that of the acidic wastewater.
另外,此时也由于从第一阴离子交换塔排出的磷酸离子,可以与醋酸离子一起在第二阴离子交换塔中进行离子交换,因此依然可从排出管排出纯水。In addition, at this time, since the phosphate ions discharged from the first anion exchange tower can perform ion exchange together with acetate ions in the second anion exchange tower, pure water can still be discharged from the discharge pipe.
进而,在继续进行排水处理而达到时间c时,第二阴离子交换塔的离子交换树脂可形成被磷酸离子和醋酸离子饱和了的状态,从连接管导入至第二阴离子交换塔中的醋酸离子可以形成通过第二阴离子交换塔而排出至第二排水管中的状态,进一步,继续进行排水处理,可以使已与第二阴离子交换塔的阴离子交换树脂进行了离子交换的醋酸离子脱离,取而代之,使磷酸离子进行离子交换。And then, when continuing to carry out drainage treatment and reach time c, the ion exchange resin of the second anion exchange tower can form the state that is saturated by phosphoric acid ion and acetate ion, and the acetate ion that is introduced into the second anion exchange tower from connecting pipe can be Form the state that is discharged into the second drainpipe by the second anion exchange tower, and further, continue to carry out drainage treatment, can make the acetate ion that ion exchange has been carried out with the anion exchange resin of the second anion exchange tower be detached, replace it, make Phosphate ions are ion exchanged.
此时,也由于从第二排水管中排出本来的酸性排水中含有的醋酸离子和从阴离子交换树脂脱离的醋酸离子,所以第二排水管的TOC一旦在比第一排水管的TOC高,很快在时间d处,醋酸离子从阴离子交换树脂中脱离完毕时,二者的TOC又变成显示出相同的值。At this time, since the acetate ions contained in the original acidic drainage and the acetate ions detached from the anion exchange resin are discharged from the second drain pipe, once the TOC of the second drain pipe is higher than the TOC of the first drain pipe, the Shortly after time d, when the acetate ions are detached from the anion exchange resin, the TOCs of the two become to show the same value again.
即,在时间d处,第二阴离子交换塔的第一阴离子交换器可看作处于被磷酸离子饱和了的状态,通过回收该阴离子交换器,可将磷酸离子进行选择性回收。That is, at time d, the first anion exchanger of the second anion exchange column can be regarded as being saturated with phosphate ions, and by recovering the anion exchanger, phosphate ions can be selectively recovered.
另外,在该时间c~d期间,也存在着与醋酸离子一起排出少量磷酸离子的情况,但是如果需要,则可以通过切换排出管与第二回流管的电磁阀开关,使第二贮存槽的排水不流向排出管而在第二阴离子交换塔中再次进行离子交换,由此使磷酸离子不排出到系统外而进行回收。另外,对于所排出的醋酸离子,可以作为生物学处理的营养源来使用。In addition, during the time c~d, there is also the situation that a small amount of phosphate ions are discharged together with acetate ions, but if necessary, the solenoid valve switch of the discharge pipe and the second return pipe can be switched to make the second storage tank Ion exchange is performed again in the second anion exchange tower without draining the drain to the discharge pipe, whereby phosphoric acid ions are recovered without being discharged out of the system. In addition, the discharged acetate ions can be used as a nutrient source for biological treatment.
另外,在第二阴离子交换塔中的这样的磷酸离子的选择性的回收,在直至到第一阴离子交换塔的阴离子交换器用硝酸离子进行饱和的时间e为止的期间内,可通过使用第二阴离子交换塔的电磁阀,来切换在第二阴离子交换塔中使排水进行离子交换的阴离子交换器,从而可以反复实施。In addition, such selective recovery of phosphate ions in the second anion exchange column can be achieved by using the second anion The electromagnetic valve of the exchange tower is used to switch the anion exchanger for ion-exchanging the drain water in the second anion exchange tower, so that it can be repeatedly implemented.
即,在图3所示的t2、t4、t6、t8的时间点切换第二阴离子交换塔的阴离子交换器的情况下的从第二排水管排出的排水的离子浓度的图表所表明的那样,通过切换阴离子交换器,可以在0~t1、t2~t3、t4~t5、t6~t7期间回收纯水,并且在t2、t4、t6、t8的时间点,将被磷酸离子饱和了的阴离子交换器更换为新的交换器,或者用碱性水溶液等使磷酸离子从阴离子交换树脂中脱离,来对磷酸离子进行回收。That is, as shown in the graph of the ion concentration of the wastewater discharged from the second drain pipe when the anion exchanger of the second anion exchange tower is switched at time points t2, t4, t6, and t8 shown in FIG. 3 , By switching the anion exchanger, pure water can be recovered during 0~t1, t2~t3, t4~t5, t6~t7, and at the time points of t2, t4, t6, t8, the anions saturated with phosphate ions can be exchanged Replace the phosphate ion with a new one, or use an alkaline aqueous solution to separate the phosphate ions from the anion exchange resin to recover the phosphate ions.
这里,在t1~t2、t3~t4、t5~t6、t7~t8期间,磷酸离子和醋酸离子被排出,但是在该情况下,第二贮存槽的排水也不流入排出管,而是在第二离子交换塔中再次进行离子交换,由此可以不使磷酸离子排出至系统外来进行回收。Here, during t1~t2, t3~t4, t5~t6, t7~t8, phosphate ions and acetate ions are discharged, but in this case, the drainage of the second storage tank does not flow into the discharge pipe, but Ion exchange is performed again in the secondary ion exchange tower, whereby phosphate ions can be recovered without being discharged to the outside of the system.
如果在达到图2中的时间e时,将在第一阴离子交换塔中进行酸性排水处理的阴离子交换器进行切换,则可以反复实施上述一连串的处理(0~t8),可不中断处理,进行连续的排水处理。If the anion exchanger for the acid wastewater treatment in the first anion exchange tower is switched when the time e in Fig. 2 is reached, the above-mentioned series of treatments (0-t8) can be repeatedly implemented, and continuous treatment can be carried out without interrupting the treatment. drainage treatment.
另外,在本实施方式中设置用于确认的TOC、EC,但是实际的在第一阴离子交换塔中的阴离子交换器的上述切换,可以根据事先测定出的排水中的各离子的离子浓度和通水量来确定。但是不仅限于该方法,如果需要,还可参照EC和TOC的值来确定上述切换时间。例如,还可以预先使通水量保持为一定值,根据第一排水管的EC值来判断到达图2所示的时间b,然后,用计时器等,在达到时间e的状态之前,切换第一阴离子交换塔中使排水进行离子交换的阴离子交换器,抑制硝酸离子流入第一贮存槽或第二阴离子交换塔中。In addition, in this embodiment, TOC and EC are set for confirmation, but the actual switching of the anion exchanger in the first anion exchange tower can be based on the ion concentration and flow rate of each ion in the wastewater measured in advance. Determine the amount of water. However, it is not limited to this method, and if necessary, the aforementioned switching time may be determined with reference to the values of EC and TOC. For example, it is also possible to keep the flow rate at a certain value in advance, judge the time b shown in Figure 2 according to the EC value of the first drain pipe, and then use a timer or the like to switch the first drain pipe before reaching the state of time e. In the anion exchange tower, the anion exchanger for ion-exchanging the drain water suppresses the flow of nitrate ions into the first storage tank or the second anion exchange tower.
另外,同样,第二阴离子交换塔中的阴离子交换器的切换时间,也可以在将通水量保持为一定值后,由计时器来确定。In addition, similarly, the switching time of the anion exchanger in the second anion exchange tower can also be determined by a timer after the water flow is kept at a certain value.
另外,与第二阴离子交换塔的阴离子交换树脂进行了离子交换的磷酸离子,可在上述树脂中,用含有钠、钾、镁中的任何一种金属离子的碱性水溶液来以含有高浓度的磷酸盐的磷酸盐水溶液的形式回收,例如,还可以使用氢氧化钠、氢氧化钾、氢氧化镁的水溶液等来使阴离子交换树脂再生,以含有所脱离出的磷酸离子和上述金属离子的磷酸金属盐的水溶液的形式而回收。In addition, the phosphate ions that have been ion-exchanged with the anion-exchange resin of the second anion-exchange tower can be contained in a high-concentration alkaline aqueous solution containing any metal ion in sodium, potassium, and magnesium in the above-mentioned resin. Phosphate is recovered in the form of phosphate aqueous solution. For example, an aqueous solution of sodium hydroxide, potassium hydroxide, magnesium hydroxide, etc. can also be used to regenerate the anion exchange resin, so that the phosphoric acid containing the detached phosphate ion and the above-mentioned metal ions can be recovered. recovered in the form of an aqueous solution of metal salts.
此时,通过使用含有更高浓度的金属离子的碱性水溶液,可以提高磷酸水溶液的浓度,可以削减磷酸盐水溶液的输送或磷酸盐的干燥固化所需的费用。In this case, by using an alkaline aqueous solution containing a higher concentration of metal ions, the concentration of the phosphoric acid aqueous solution can be increased, and the costs for transporting the aqueous phosphate solution or drying and solidifying the phosphate can be reduced.
另外,这样获得的磷酸盐中,作为磷酸钠盐,通常以磷酸二氢钠与磷酸氢二钠的混合物的形式回收,通过调整将要回收的磷酸钠水溶液的pH,可提高磷酸二氢钠、磷酸氢二钠或磷酸三钠的含有率。In addition, among the phosphates obtained in this way, as sodium phosphate, it is usually recovered in the form of a mixture of sodium dihydrogen phosphate and disodium hydrogen phosphate. By adjusting the pH of the aqueous sodium phosphate solution to be recovered, the sodium dihydrogen phosphate, phosphoric acid The content rate of disodium hydrogen or trisodium phosphate.
更具体地,通过使pH为4.3~4.9,可以以磷酸二氢钠的形式回收,通过使pH为9.0~9.6,可以以磷酸氢二钠的形式回收,通过使pH为11.5~12.5,可以以磷酸三钠的形式回收。More specifically, by making the pH 4.3 to 4.9, it can be recovered as sodium dihydrogen phosphate, by making the pH 9.0 to 9.6, it can be recovered as disodium hydrogen phosphate, and by making the pH 11.5 to 12.5, it can be recovered as Trisodium phosphate is recovered as trisodium phosphate.
特别地,回收时使用的氢氧化钠的量可以很少,从可以更廉价地进行回收,和将所回收的磷酸以食品添加剂的形式进行利用的观点出发,优选以磷酸二氢钠和磷酸氢二钠的形式来回收。In particular, the amount of sodium hydroxide used in the recovery can be small, and from the viewpoint of being able to recover more cheaply and utilizing the recovered phosphoric acid as a food additive, it is preferable to use sodium dihydrogen phosphate and hydrogen phosphate recovered in the form of disodium.
另外,由于磷酸氢二钠比磷酸二氢钠更容易析出,所以从可以更高浓度来回收磷酸的观点出发,优选以磷酸二氢钠的形式来回收。In addition, since disodium hydrogen phosphate is easier to precipitate than sodium dihydrogen phosphate, it is preferable to recover phosphoric acid as sodium dihydrogen phosphate from the viewpoint that phosphoric acid can be recovered at a higher concentration.
即,磷酸钠水溶液的回收,优选在pH为4.3~4.9的范围内实施,以磷酸二氢钠的水溶液的形式回收。That is, the recovery of the sodium phosphate aqueous solution is preferably carried out in a pH range of 4.3 to 4.9, and it is recovered as an aqueous solution of sodium dihydrogen phosphate.
另外,在磷酸氢二钠和磷酸三钠的回收中,可以通过调整氢氧化钠的添加量等来调节pH,进而,在氢氧化钠比回收磷酸钠所需的理论量更多的情况下,可以进行阴离子交换树脂的再生,因此是适合的。In addition, in the recovery of disodium hydrogen phosphate and trisodium phosphate, the pH can be adjusted by adjusting the amount of sodium hydroxide added, etc., and then, when sodium hydroxide is more than the theoretical amount required to recover sodium phosphate, Regeneration of the anion exchange resin can be performed, so it is suitable.
另外,同样,在利用氢氧化钾的情况下获得的磷酸盐中,作为磷酸钾盐,通常可以磷酸二氢钾与磷酸氢二钾的混合物的形式回收,而通过调整要回收的磷酸钾水溶液的pH,可提高磷酸二氢钾、磷酸氢二钾或磷酸三钾的含有率。In addition, similarly, among the phosphate salts obtained in the case of utilizing potassium hydroxide, the potassium phosphate salt can usually be recovered in the form of a mixture of potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and by adjusting the concentration of the potassium phosphate aqueous solution to be recovered pH can increase the content of potassium dihydrogen phosphate, dipotassium hydrogen phosphate or tripotassium phosphate.
更具体地说是,通过使pH为4.4~4.9,可以以磷酸二氢钾的形式回收,通过使pH为8.7~9.3,可以以磷酸氢二钾的形式回收,通过使pH为11.5~12.5,可以以磷酸三钾的形式回收。More specifically, by making the pH 4.4 to 4.9, it can be recovered as potassium dihydrogen phosphate, by making the pH 8.7 to 9.3, it can be recovered as dipotassium hydrogen phosphate, and by making the pH 11.5 to 12.5, It can be recovered as tripotassium phosphate.
另外,在磷酸二氢钠的回收中,如图4所示那样,暂时将再生液贮存在回收槽100中,接着,使用泵101来将上述再生液导入至阳离子交换器103中,进行钠的离子交换。由此,在将再生液的pH降低而成为4.3~4.9范围的阶段,通过关闭电磁阀102、终止阳离子交换,可进一步抑制向回收槽100的再生液中混入磷酸氢二钠,可以使所回收的磷酸二氢钠水溶液的纯度很高。In addition, in the recovery of sodium dihydrogen phosphate, as shown in FIG. 4, the regenerated liquid is temporarily stored in the
在这样的再生中,与使用盐酸、硫酸及其盐等使再生液的pH在4.3~4.9的范围内的情况相比,其可以防止在磷酸二氢钠中混入氯、硫等杂质。In such regeneration, it is possible to prevent contamination of impurities such as chlorine and sulfur in the sodium dihydrogen phosphate, compared with the case where the pH of the regeneration solution is in the range of 4.3 to 4.9 using hydrochloric acid, sulfuric acid and their salts.
下面,基于图5对第二实施方式进行说明。Next, a second embodiment will be described based on FIG. 5 .
该第二实施方式与上述第一实施方式相比,在第二实施方式的排水处理装置中,不具有第一实施方式所具备的第一贮存槽13、第二贮存槽23,而是第一阴离子交换塔1与第二阴离子交换塔2直接由管连接,从第二阴离子交换塔2排出的排水直接从排水管5排出到系统外部,在这些方面是不同的。另外,也不具备所谓第一回流管14和第二回流管24的、使从第一、第二贮存槽的排水回流的装置。即,第二实施方式的排水处理装置,其第一排水管15与连接管4直接连接,第二排水管25与排水管5直接连接。但是,在第一阴离子交换塔1、第二阴离子交换塔2这两个阴离子交换塔的各阴离子交换塔中各具有2台阴离子交换器这一点上,该第二实施方式与上述第一实施方式是相同的。另外,在被构成为可以将一个阴离子交换塔所具备的二台阴离子交换器进行切换来使用这一点上也是相同的。另外,尽管图中未示出,但是在注水管3、第一排水管15和第二排水管25中装备有总有机碳(TOC)测定器,在第一排水管15和第二排水管25中进一步装备有电导率(EC)测定器,测定流过管的排水的TOC和EC来用于确认流过各管的排水中含有的离子;以及通过预先测定排水中的各离子浓度,根据该测定值和排水向离子交换塔的流入量进行计算,来进行各个离子交换塔中的离子交换器的切换,在这些方面也与第一实施方式的排水处理装置相同。Compared with the above-mentioned first embodiment, this second embodiment does not have the
该第二实施方式的排水处理装置,进一步构成为,可以用纯水来逆向洗涤第一、第二阴离子交换塔的阴离子交换器,在这一点上与第一实施方式不同。另外,进一步被构成为,在第一、第二阴离子交换塔的阴离子交换器中,可以使含有钠、钾、镁中的任何一种金属离子的水溶液通过,来使阴离子交换树脂再生。The wastewater treatment device of the second embodiment is further different from the first embodiment in that the anion exchangers of the first and second anion exchange towers can be backwashed with pure water. In addition, the anion exchange resin can be regenerated by passing an aqueous solution containing metal ions of sodium, potassium, and magnesium through the anion exchangers of the first and second anion exchange towers.
作为上述逆向洗涤用的设备,其具备贮存用于逆向洗涤的纯水的逆向洗涤用纯水槽16、26,将该逆向洗涤用纯水槽16、26中的纯水导入至各阴离子交换器11、12、21、22中的逆向洗涤水导入管17a、27a,进而用于从各阴离子交换器11、12、21、22中排出逆向洗涤水的逆向洗涤水排出管17b、27b,以及贮存经由该逆向洗涤管17b、27b从各阴离子交换器11、12、21、22中排出的逆向洗涤排水的逆向洗涤排水贮存槽18、28。As the above-mentioned equipment for reverse washing, it is equipped with pure water tanks 16 and 26 for reverse washing that store pure water for reverse washing, and the pure water in the pure water tanks 16 and 26 for reverse washing is introduced into each
另外被构成为,上述逆向洗涤水导入管17a、27a连接在各阴离子交换器11、12、21、22的下游侧(排水口侧),上述逆向洗涤水排出管17b、27b连接在各阴离子交换器11、12、21、22的上游侧(注水口侧),在各阴离子交换器11、12、21、22中可从下游侧向上游侧流通洗涤水来进行洗涤。In addition, the above-mentioned reverse washing
另外,作为用于对阴离子交换树脂进行上述再生的设备,具有碱性再生液贮存槽19、29,其贮存用于对离子交换过的阴离子交换树脂进行再生的碱性水溶液;纯水贮存槽110、210,其贮存纯水,该纯水用于对该碱性再生液再生后残留在各离子交换器11、12、21、22中的碱性再生液进行流洗;再生液导入管111a、211a,其将碱性再生液或纯水从这些碱性再生液贮存槽19、29和纯水贮存槽110、210导入至各阴离子交换器11、12、21、22;再生液排出管111b、211b,其用于从各阴离子交换器11、12、21、22排出碱性再生液或纯水;再生排水贮存槽112、212,其贮存经由该再生液排出管111b、211b从各阴离子交换器11、12、21、22排出的碱性再生液或纯水。In addition, as the above-mentioned regeneration equipment for the anion exchange resin, there are alkaline regeneration
另外被构成为,上述再生液导入管111a、211a连接在各阴离子交换器11、12、21、22的上游侧(注水口侧),上述再生液排出管111b、211b连接在各阴离子交换器11、12、21、22的下游侧(排水口侧),在各阴离子交换器11、12、21、22中可从上游侧向下游侧流通再生液或纯水、用再生液对阴离子交换器的阴离子交换树脂进行再生、或者用纯水对阴离子交换器中的再生液进行洗涤。In addition, the regeneration
下面,以将氢氧化钠水溶液作为碱性再生液的情况为例来对下述方法进行说明,该方法是使用这样的排水处理装置,来对蚀刻处理过的液晶基板用纯水洗涤而产生的酸性排水用阴离子交换树脂进行离子交换,同时用碱性再生液对被阴离子交换树脂离子交换了的磷酸离子进行再生,来回收磷酸盐的方法。Next, the following method will be described by taking an aqueous solution of sodium hydroxide as an alkaline regeneration solution as an example. This method is produced by washing an etched liquid crystal substrate with pure water using such a wastewater treatment device. A method of ion-exchanging acidic wastewater with anion-exchange resin, and at the same time regenerating the phosphate ions ion-exchanged by the anion-exchange resin with alkaline regeneration solution to recover phosphate.
这里,除了不进行下述工序以外,直到将第二阴离子交换塔2的阴离子交换器21用磷酸离子进行饱和为止的顺序,均与上述第一实施方式相同,所述不进行的工序为,将从第一、第二阴离子交换塔排出的排水暂时贮存在第一贮存槽13或第二贮存槽23中;将贮存在该第一、第二贮存槽中的排水分别在第一、第二回流管中回流。Here, the procedure up to saturating the
在该第二阴离子交换塔2的一个阴离子交换器21被磷酸离子饱和了的情况下,通过关闭设置在该饱和了的阴离子交换器21的注水口侧、排水口侧处的电磁阀,同时打开另一个阴离子交换器22的注水口侧、排水口侧的电磁阀,可以将从连接管4导入的排水的流路切换至另一阴离子交换器22,用该阴离子交换器22继续进行离子交换。然后,在用磷酸离子饱和了的阴离子交换器21中,打开设置在逆向洗涤管27a和逆向洗涤水排出管27b处的电磁阀,在使设置在逆向洗涤用纯水槽26中的泵运转的同时,打开该泵出口处的电磁阀,来向阴离子交换器21中供给逆向洗涤用的纯水,使残留于阴离子交换器21中的排水排出,并贮存到逆向洗涤排水贮存槽28中。Under the situation that an
在该逆向洗涤完成后,停止逆向洗涤用纯水槽26的泵,关闭该泵出口处的电磁阀和逆向洗涤管27a、逆向洗涤水排出管27b这两个管的电磁阀,在使碱性再生液贮存槽29的泵运转的同时,打开设置在该泵出口处的电磁阀和再生液导入管211a、再生液排出管211b的电磁阀,通过再生液导入管211a将氢氧化钠水溶液导入至阴离子交换器21中。然后,使阴离子交换器21的阴离子交换树脂进行再生,同时使与该阴离子交换树脂进行了离子交换的磷酸离子脱离,并以磷酸钠的形式从阴离子交换器21通过再生液排出管211b而排出,以磷酸钠水溶液的形式贮存到再生排水贮存槽212中。After the reverse washing is completed, stop the pump of the pure water tank 26 for reverse washing, close the electromagnetic valve at the outlet of the pump and the electromagnetic valves of the two pipes of the
在该阴离子交换树脂的再生完成后,停止碱性再生液贮存槽29的泵,关闭设置在该泵出口处的电磁阀,取而代之,在运转纯水贮存槽210的泵的同时,打开设置在该泵出口处的电磁阀,向阴离子交换器21中导入纯水。然后,排出残留在阴离子交换器21中的氢氧化钠水溶液,使阴离子交换器21内恢复磷酸离子发生离子交换前的状态(初期状态),停止纯水贮存槽210的泵。然后,关闭设置在纯水贮存槽210的泵出口处的电磁阀,和设置在再生液导入管211a、再生液排出管211b的各管处的电磁阀。另外,利用该纯水使从阴离子交换器21排出的氢氧化钠水溶液也通过再生液排出管211b,贮存到再生排水贮存槽212中。After the regeneration of the anion exchange resin is completed, stop the pump of the alkaline regeneration solution storage tank 29, close the solenoid valve arranged at the outlet of the pump, instead, open the pump installed at the outlet of the pure
如上所述,由于在该阴离子交换器21再生期间,由另一阴离子交换器22实施磷酸离子的离子交换,所以可不中断地连续实施酸性排水的处理。As described above, since the ion exchange of phosphoric acid ions is performed by the
另外,阴离子交换器21的再生,在全部阴离子交换树脂用氢氧化钠水溶液进行了再生时结束,但是对于是否全部阴离子交换树脂被氢氧化钠水溶液再生,可根据阴离子交换树脂的离子交换能力和再生所使用的氢氧化钠水溶液的浓度和量来判定。In addition, the regeneration of the
另外,在用氢氧化钠水溶液将阴离子交换器21的阴离子交换树脂进行再生时,还可以采用这样的方法:通过测定从阴离子交换器21排出的氢氧化钠水溶液(磷酸钠水溶液)的温度,来对阴离子交换器21内的阴离子交换树脂的再生情况进行更详细的判定。即,由于氢氧化钠水溶液,在使磷酸离子从阴离子交换树脂脱离的情况下发生放热反应,所以从阴离子交换器21排出的氢氧化钠水溶液的温度上升,但是很快,随着磷酸离子从阴离子交换树脂脱离,从阴离子交换器21排出的氢氧化钠水溶液的温度降低。因此,通过测定从阴离子交换器21排出的氢氧化钠水溶液的温度,可对阴离子交换器21内的阴离子交换树脂的再生情况进行更详细的判定。In addition, when the anion exchange resin of the
对于从该阴离子交换器21排出的氢氧化钠水溶液的温度测定,通过在紧接于阴离子交换器21排水口后的再生液排出管211b处设置热电偶等即可。作为用于该温度测定的温度计测器,通常,只要精度为0.1K左右,就能用于判定阴离子交换树脂再生的情况。For measuring the temperature of the aqueous sodium hydroxide solution discharged from the
另外,在另一阴离子交换器22的阴离子交换树脂被磷酸离子饱和了的情况下,也可同样操作来进行磷酸钠的回收。In addition, when the anion exchange resin of the
进而,在该第二实施方式中,由于在第一阴离子交换塔1中也装备有逆向洗涤和阴离子交换树脂再生用的设备,因此第一阴离子交换塔1的阴离子交换器被硝酸离子饱和的情况也与第二阴离子交换塔2的阴离子交换器被磷酸离子饱和的情况一样,可以在实施酸性排水处理的同时,实施阴离子交换器的再生。另外,由该第一阴离子交换塔1的阴离子交换树脂的再生而贮存在再生排水贮存槽112中的硝酸钠水溶液通过其它途径进行废弃处理。另外,在该废弃处理中,通过蒸发浓缩等来对硝酸钠水溶液进行浓缩处理,这可使处理对象物体积减小,从该方面看是优选的。Furthermore, in this second embodiment, since the first
另外,在上述第一和第二实施方式中,虽然使用利用蚀刻液进行蚀刻处理过的液晶基板用纯水洗涤而产生的酸性排水进行排水处理,该排水处理方法具有以下优势,即,排出水除了硝酸离子、磷酸离子、醋酸离子之外、基本不含浮游物和阳离子等,直至在排出管中排出醋酸离子之前,被排出的排出水都可作为纯水进行再利用,但是在本发明中不仅限定于这样的对液晶基板进行洗涤而产生的酸性排水。In addition, in the above-mentioned first and second embodiments, although the acidic drainage generated by washing the liquid crystal substrate etched with an etching solution with pure water is used for drainage treatment, this drainage treatment method has the advantage that the discharged water Except for nitrate ions, phosphate ions, and acetate ions, substantially free of floating matter and cations, etc., the discharged discharge water can be reused as pure water until acetate ions are discharged from the discharge pipe, but in the present invention It is not limited to acidic drainage generated by washing such a liquid crystal substrate.
另外,在呈酸性的排水中,虽然使用含有作为比磷酸离子更容易与阴离子交换树脂进行离子交换的离子的硝酸离子的排水,但是在本发明中,除了上述硝酸离子以外,还可以使用含有硫酸离子、碘离子的排水。In addition, in acidic waste water, waste water containing nitrate ions, which are ions that are more easily ion-exchanged with anion exchange resins than phosphate ions, is used. Drainage of ions and iodide ions.
进而,在可以更加切实地抑制硝酸离子被导入到第二阴离子塔中的方面,和在将第二阴离子交换塔的排出水作为纯水进行再利用时可抑制醋酸离子的混入的方面,虽然进行了事先测定排水中含有的各离子的离子浓度,根据上述测定出的离子浓度的值和阴离子交换树脂的量,求出切换第一阴离子交换塔中的阴离子交换器的处理水量或处理时间的处理,但是,也可以事先不实施离子浓度的测定,使用TOC测定器或EC测定器来进行判定,如果需要,还可以利用pH计对pH进行测定,来判定该地点处的排水的离子状况。Furthermore, in terms of being able to more reliably suppress the introduction of nitrate ions into the second anion tower, and when reusing the discharge water of the second anion exchange tower as pure water, the mixing of acetate ions can be suppressed. The ion concentration of each ion contained in the wastewater is measured in advance, and the treatment water volume or treatment time of switching the anion exchanger in the first anion exchange tower is obtained based on the value of the ion concentration measured above and the amount of anion exchange resin However, it is also possible to use a TOC measuring device or an EC measuring device to determine without prior ion concentration measurement. If necessary, a pH meter can also be used to measure pH to determine the ion status of the drainage at this point.
另外,作为阴离子交换树脂,可以使用弱碱性阴离子交换树脂、强碱性阴离子交换树脂中的任何一种。In addition, as the anion exchange resin, any of weakly basic anion exchange resins and strongly basic anion exchange resins can be used.
另外,从可以防止排水处理的中断的观点出发,采用了在第一、第二阴离子交换塔中各使用两台阴离子交换器的方法,但是在本发明中,还可使用一台阴离子交换器,采用利用间歇处理方式的排水处理。另外,也可使用三台或其以上的阴离子交换器来实施。In addition, from the viewpoint of preventing the interruption of wastewater treatment, the method of using two anion exchangers in each of the first and second anion exchange towers has been adopted, but in the present invention, one anion exchanger can also be used, Drainage treatment using a batch treatment method is adopted. In addition, it can also be implemented using three or more anion exchangers.
进而,对阴离子交换塔,也不仅限定于两个塔,还可为具有大于等于2个塔的多段塔。Furthermore, the anion exchange tower is not limited to two towers, but may be a multi-stage tower having two or more towers.
如果需要,也可以在使用1个塔的离子交换塔来预先除去比磷酸离子的离子选择性更高的离子后,使该阴离子交换塔的阴离子交换树脂再生,接着,进行磷酸离子的离子交换。If necessary, after removing ions with higher ion selectivity than phosphate ions in advance using a single ion exchange column, the anion exchange resin of the anion exchange column may be regenerated, and then ion exchange of phosphate ions may be performed.
这些阴离子交换器、阴离子交换塔的数量和大小等可根据将要处理的排水量进行适宜的改变。The number and size of these anion exchangers and anion exchange towers can be appropriately changed according to the amount of wastewater to be treated.
另外,在将阴离子交换树脂装备成更多段的情况下,可更切实地仅对磷酸离子进行回收。In addition, when anion exchange resins are installed in more stages, only phosphate ions can be recovered more reliably.
另外,虽然为了切换排水的流路而使用了电磁阀,但是,在本发明中,不仅仅限于电磁阀,还可采用用于切换一般的流路的装置,另外,也可以不使用这样装置。In addition, although a solenoid valve is used to switch the drain flow path, in the present invention, not only the solenoid valve but also a device for switching a general flow path may be used, and such a device may not be used.
另外,如果需要,还可装备用于预先使排水进行阳离子交换的阳离子交换器、用于除去浮游微粒等的膜分离装置等,来进行排水处理。In addition, if necessary, a cation exchanger for cation-exchanging the wastewater in advance, a membrane separation device for removing floating particles, etc. can also be equipped for wastewater treatment.
在使用上述阳离子交换树脂的情况下,可除去铝离子、钛离子、铟离子、钼离子等阳离子。When the above-mentioned cation exchange resin is used, cations such as aluminum ions, titanium ions, indium ions, and molybdenum ions can be removed.
另外,虽然使磷酸离子以磷酸钠盐等的形式进行了回收,但是在本发明中,磷酸离子的回收不仅限定于这样的回收。In addition, although phosphate ions were recovered as sodium phosphate salt or the like, in the present invention, recovery of phosphate ions is not limited to such recovery.
另外,磷酸钠盐等的盐可利用沉淀反应来进行回收,从可以简便地进行回收的观点出发,其是优选的。In addition, salts such as sodium phosphate salt can be recovered by precipitation reaction, which is preferable from the viewpoint of easy recovery.
实施例Example
下面,例举实施例来对本发明进行更详细的说明,但是本发明不限于这些实施例。Hereinafter, examples are given to illustrate the present invention in more detail, but the present invention is not limited to these examples.
实施例1Example 1
<排水处理以及磷酸钠盐的回收><Wastewater treatment and recovery of sodium phosphate>
在第一、第二阴离子交换塔中分别配置バイエルケミカルズ社的“レバチツトMP62WS”作为阴离子交换树脂,并使各自的空塔速度SV=(处理量/树脂量)=10[1/h],作为要处理的排水,使含300ppm磷酸离子、25ppm醋酸离子、8ppm硝酸离子的酸性排水以3L/分的流量连续通过第一、第二阴离子交换塔后,进行纯水洗涤,进而,用2倍当量的10wt%的氢氧化钠水溶液进行再生处理,获得磷酸钠水溶液。In the first and second anion exchange towers, "Rebachitto MP62WS" of Bayer Chemical Co., Ltd. is respectively arranged as an anion exchange resin, and the respective superficial velocity SV=(treatment amount/resin amount)=10[1/h], as For the wastewater to be treated, make the acidic wastewater containing 300ppm phosphate ions, 25ppm acetate ions, and 8ppm nitrate ions pass through the first and second anion exchange towers continuously at a flow rate of 3L/min, then wash with pure water, and then use 2 times the equivalent The 10wt% sodium hydroxide aqueous solution is regenerated to obtain the sodium phosphate aqueous solution.
<结果><result>
通过上述回收,可以将排水中的磷酸离子以8wt%的磷酸钠盐水溶液的形式回收80%或其以上。另外,将上述磷酸钠盐利用离子色谱进行分析,测定磷与钠的摩尔比,结果基本为1.5,由此可以确认所回收的磷酸钠盐为磷酸二氢钠与磷酸氢二钠的混合物。Through the above recovery, 80% or more of the phosphate ions in the wastewater can be recovered in the form of an 8 wt% sodium phosphate salt solution. In addition, the above-mentioned sodium phosphate salt was analyzed by ion chromatography, and the molar ratio of phosphorus to sodium was measured, and the result was almost 1.5, thus confirming that the recovered sodium phosphate salt was a mixture of sodium dihydrogen phosphate and disodium hydrogen phosphate.
进而,将再生液贮存在再生槽中,使用循环用的泵,并使用作为阳离子交换树脂的ダウケミカルズ社“650C-H”进行离子交换,当pH达到4.5时,使循环泵停止,将所回收的上述磷酸钠盐利用离子色谱进行分析,测定磷与钠的摩尔比,结果基本为1,由此可确认磷酸钠盐可以以磷酸二氢钠的状态来回收。Furthermore, the regenerated solution was stored in a regenerated tank, and ion exchange was carried out using a circulation pump, "650C-H" from Dow Chemical Karls Co., Ltd. as a cation exchange resin. When the pH reached 4.5, the circulation pump was stopped, and the recovered The above-mentioned sodium phosphate salt was analyzed by ion chromatography, and the molar ratio of phosphorus to sodium was measured, and the result was almost 1, thus confirming that the sodium phosphate salt can be recovered in the state of sodium dihydrogen phosphate.
实施例2Example 2
<排水处理以及磷酸钠盐的回收><Wastewater treatment and recovery of sodium phosphate>
除了使在再生时使用的氢氧化钠水溶液为25wt%之外,均与实施例1同样进行排水处理和磷酸钠的回收。Wastewater treatment and recovery of sodium phosphate were performed in the same manner as in Example 1 except that the aqueous sodium hydroxide solution used for regeneration was 25 wt %.
<结果><result>
通过上述回收,可使得排水中的磷酸离子以15wt%的磷酸钠盐水溶液的形式回收80%或其以上。Through the above recovery, 80% or more of the phosphate ions in the wastewater can be recovered in the form of a 15 wt% sodium phosphate salt solution.
另外,与上述同样使再生液接触阳离子交换树脂而形成pH为4.5的磷酸钠盐,对其利用离子色谱进行分析,测定磷与钠的摩尔比,结果基本为1,由此可确认所回收的磷酸钠盐为磷酸二氢钠。In addition, in the same manner as above, the regenerated solution was contacted with the cation exchange resin to form a sodium phosphate salt with a pH of 4.5, which was analyzed by ion chromatography, and the molar ratio of phosphorus to sodium was measured. The result was basically 1, thus confirming that the recovered Sodium phosphate is sodium dihydrogen phosphate.
实施例3Example 3
<排水处理以及磷酸钠盐的回收><Wastewater treatment and recovery of sodium phosphate>
除了使在再生时使用的氢氧化钠水溶液为40wt%以外,均与实施例1同样进行排水处理和磷酸钠的回收。Wastewater treatment and recovery of sodium phosphate were performed in the same manner as in Example 1 except that the aqueous sodium hydroxide solution used for regeneration was 40 wt %.
<结果><result>
通过上述回收,可以使排水中的磷酸离子以17wt%的磷酸钠盐水溶液的形式回收。By the recovery described above, the phosphate ions in the waste water can be recovered as a 17 wt % sodium phosphate salt solution.
但是,观察到,由于添加氢氧化钠时的放热,使离子交换树脂达到70~80℃,并且磷酸氢二钠非常容易析出。However, it was observed that the ion exchange resin reached 70 to 80° C. due to the heat generation when adding sodium hydroxide, and disodium hydrogen phosphate was very easily precipitated.
实施例4Example 4
<排水处理以及磷酸钾盐的回收><Wastewater Treatment and Recovery of Potassium Phosphate>
除了代替氢氧化钠而使用氢氧化钾,用浓度为20wt%、2.5倍当量来进行再生处理以外,均与实施例1同样进行回收。Recovery was performed in the same manner as in Example 1, except that potassium hydroxide was used instead of sodium hydroxide, and the concentration was 20 wt %, 2.5 times the equivalent for regeneration treatment.
<结果><result>
通过上述回收,可使排水中的磷酸离子以15wt%的磷酸钾盐水溶液的形式回收80%左右。Through the above recovery, about 80% of the phosphate ions in the wastewater can be recovered in the form of a 15 wt% potassium phosphate aqueous solution.
另外,利用离子色谱来对所获得的磷酸钾盐进行分析,测定磷酸与钾的摩尔比(钾/磷酸),结果为2或其以上。In addition, when the obtained potassium phosphate salt was analyzed by ion chromatography, and the molar ratio of phosphoric acid to potassium (potassium/phosphoric acid) was measured, it was 2 or more.
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP233543/2004 | 2004-08-10 | ||
JP2004233543 | 2004-08-10 | ||
JP186376/2005 | 2005-06-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1736891A CN1736891A (en) | 2006-02-22 |
CN100389075C true CN100389075C (en) | 2008-05-21 |
Family
ID=36079881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100902410A Expired - Fee Related CN100389075C (en) | 2004-08-10 | 2005-08-10 | Drainage disposal method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100389075C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6402754B2 (en) * | 2016-08-23 | 2018-10-10 | 栗田工業株式会社 | Regenerative ion exchange apparatus and operation method thereof |
CN110054315A (en) * | 2019-03-28 | 2019-07-26 | 浙江理工大学 | A kind of method that quick adsorption removes ammonia nitrogen in dyeing waste water |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0760135A (en) * | 1993-08-26 | 1995-03-07 | Sumitomo Metal Mining Co Ltd | Regeneration method of anion exchange resin for rhenium adsorption |
JP2828496B2 (en) * | 1990-09-17 | 1998-11-25 | オルガノ株式会社 | Method for recovering phosphoric acid from acid waste liquid |
US6670505B1 (en) * | 2000-03-07 | 2003-12-30 | Eastman Chemical Company | Process for the recovery of organic acids from aqueous solutions |
-
2005
- 2005-08-10 CN CNB2005100902410A patent/CN100389075C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2828496B2 (en) * | 1990-09-17 | 1998-11-25 | オルガノ株式会社 | Method for recovering phosphoric acid from acid waste liquid |
JPH0760135A (en) * | 1993-08-26 | 1995-03-07 | Sumitomo Metal Mining Co Ltd | Regeneration method of anion exchange resin for rhenium adsorption |
US6670505B1 (en) * | 2000-03-07 | 2003-12-30 | Eastman Chemical Company | Process for the recovery of organic acids from aqueous solutions |
Also Published As
Publication number | Publication date |
---|---|
CN1736891A (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100784438B1 (en) | apparatus and method for continuous electrodeionization | |
KR101079071B1 (en) | Method of treating wastewater and apparatus for treating wastewater | |
CA2617270A1 (en) | System and method of slurry treatment | |
KR20020086883A (en) | Method and apparatus for metal removal by ion exchange | |
JP2002136994A (en) | Boiler feedwater treatment apparatus and boiler feedwater treatment method | |
CN102510853A (en) | Process for production of tetraalkylammonium hydroxide | |
CN101610984A (en) | Be used for the system and method that process-stream is handled | |
CN101139659B (en) | A method for recovering nickel from acidic nickel plating wastewater | |
JP5987286B2 (en) | Water treatment method | |
CN100389075C (en) | Drainage disposal method and device | |
JP5167253B2 (en) | Processing method of developing waste liquid containing tetraalkylammonium ions | |
WO2016063581A1 (en) | Treatment method and treatment apparatus for ammonia-containing wastewater | |
TWI423836B (en) | Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same | |
US20100108609A1 (en) | System and method of slurry treatment | |
JP3043199B2 (en) | Method and apparatus for treating recovered water to obtain reused water | |
JP3570350B2 (en) | Electrodeionization equipment and pure water production equipment | |
JP2000126766A (en) | Treatment of tetraalkylammonium ion-containing liquid | |
CN102686520A (en) | Method for reusing waste liquid from which tetraalkylammonium ions have been removed | |
JP3614548B2 (en) | Hydrogen peroxide purification method | |
JP2007284271A (en) | Method for producing metal phosphate particles using phosphate ion-containing wastewater | |
CN221988258U (en) | Ammonia copper waste liquid treatment system | |
CN219950598U (en) | Reverse osmosis water treatment system | |
TWM658705U (en) | Ammonia copper wastewater process system | |
JPH0143592B2 (en) | ||
TW202346212A (en) | Ultrapure water production device, and operation management method of ultrapure water production device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080521 Termination date: 20190810 |
|
CF01 | Termination of patent right due to non-payment of annual fee |