CN100388699C - Discrete Fourier Transform Device in Asymmetric Digital Subscriber Loop System - Google Patents
Discrete Fourier Transform Device in Asymmetric Digital Subscriber Loop System Download PDFInfo
- Publication number
- CN100388699C CN100388699C CNB021121885A CN02112188A CN100388699C CN 100388699 C CN100388699 C CN 100388699C CN B021121885 A CNB021121885 A CN B021121885A CN 02112188 A CN02112188 A CN 02112188A CN 100388699 C CN100388699 C CN 100388699C
- Authority
- CN
- China
- Prior art keywords
- selector
- data
- dual
- module
- port ram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Complex Calculations (AREA)
Abstract
本发明提供了ADSL系统中的离散傅里叶变换装置,可以用于256个信道的调制和解调,完成512点的DFT(I-DFT和F-DFT)处理,包括1个双口RAM12、旋转因子模块14、时序控制模块10、读写地址产生模块11和蝶形运算模块13;在前级输入双口RAM A的数据准备好后,时序控制模块10启动读写地址产生模块11开始读写数据和旋转因子,蝶形运算模块13利用厄米特对称算法根据数据和旋转因子进行蝶形运算,中间数据存储在双口RAM12中;本发明采用串行处理的方式,只需用较少的硬件便可实现,解决了硬件资源紧张的问题;另外采用厄米特算法使离散傅里叶变换的计算进一步简化,减小近50%的运算量。
The present invention provides the discrete Fourier transform device in the ADSL system, can be used for the modulation and the demodulation of 256 channels, finishes the DFT (I-DFT and F-DFT) processing of 512 points, comprises 1 dual-port RAM12, Twiddle factor module 14, timing control module 10, read-write address generation module 11 and butterfly operation module 13; after the data of front-stage input dual-port RAM A is ready, timing control module 10 starts read-write address generation module 11 to start reading Write data and twiddle factor, butterfly operation module 13 utilizes Hermitian symmetry algorithm to carry out butterfly operation according to data and twiddle factor, intermediate data is stored in the dual-port RAM12; The present invention adopts the mode of serial processing, only needs to use less The hardware can be realized, which solves the problem of shortage of hardware resources; in addition, the Hermitian algorithm is used to further simplify the calculation of discrete Fourier transform, reducing the amount of calculation by nearly 50%.
Description
技术领域 technical field
本发明涉及数据通信领域,具体地说,涉及非对称数字用户环线(Asymmetrical Digital Subscriber Loop,简称ADSL)系统中的离散傅里叶变换(DFT)装置。The present invention relates to the field of data communication, in particular to a discrete Fourier transform (DFT) device in an asymmetrical digital subscriber loop (ADSL for short) system.
背景技术 Background technique
ADSL系统采用先进的数字调制和信号处理技术,在普通电话线上传输电话业务的同时,提供上下行速率同时可达640kbit\s和8Mbit\s左右的高速宽带数据业务和视频业务,其关键技术在于高速信道的离散多音频(DMT)调制技术。在ADSL系统中,通过DMT技术把1MHz带宽分为256个子信道,每个子信道的带宽为4.3125kHz,然后根据信道衰减特性和噪声状况,把输入数据自适应地分配到各个子信道中。The ADSL system adopts advanced digital modulation and signal processing technology. While transmitting telephone services on ordinary telephone lines, it provides high-speed broadband data services and video services with up to 640kbit\s and 8Mbit\s speeds at the same time. Its key technology Discrete Multi-Tone (DMT) modulation technology in high-speed channels. In the ADSL system, the 1MHz bandwidth is divided into 256 sub-channels through DMT technology, and the bandwidth of each sub-channel is 4.3125kHz, and then according to the channel attenuation characteristics and noise conditions, the input data is adaptively allocated to each sub-channel.
ADSL系统中DMT系统的结构图如图1所示,箭头方向是数据的传输方向。在调制方向,需发送的信号经过比特分配、星座编码和增益调整后,经离散傅里叶逆变换(I-DFT)进行调制,调制后的信号再经过加循环前缀和削波处理后发送出去;在解调方向,接收的信号先经过时域均衡和去循环前缀,通过离散傅里叶正变换(F-DFT)进行解调,然后进行频域均衡、星座解码和比特解配。实际上,解调是调制的逆过程,其中离散傅里叶变换DFT(I-DFT、F-DFT)是完成256个信道调制解调的关键所在。根据美国国家标准ANSIT1.413的规定,一个帧周期为68/69*250≈246μs,进行一次512点DFT处理的时间必须小于一个帧周期。The structural diagram of the DMT system in the ADSL system is shown in Figure 1, and the direction of the arrow is the transmission direction of the data. In the modulation direction, the signal to be sent is modulated by inverse discrete Fourier transform (I-DFT) after bit allocation, constellation coding and gain adjustment, and the modulated signal is sent out after adding cyclic prefix and clipping processing ; In the demodulation direction, the received signal is firstly subjected to time domain equalization and decyclic prefix, demodulated by forward discrete Fourier transform (F-DFT), and then frequency domain equalization, constellation decoding and bit demodulation. In fact, demodulation is the inverse process of modulation, among which discrete Fourier transform DFT (I-DFT, F-DFT) is the key to complete the modulation and demodulation of 256 channels. According to the regulations of the American National Standard ANSIT1.413, a frame period is 68/69*250≈246μs, and the time for a 512-point DFT process must be less than a frame period.
目前的DFT装置为了提高运算速度,一般多采用并行处理的方式,即将N点的DFT的每个蝶形运算单元同时进行运算。如果采用常规的时间抽取(DIT)或频率抽取(DIF)方法进行N点FFT蝶形运算,则需要6Nlog2 2N个实数加法器和4Nlog2 2N个实数乘法器,这样会占用相当大的硬件资源,是硬件实现的一大弊端。为了节省硬件,美国专利6,157,938“FAST FOURIER TRANSFORMDEVICE AITH PARALLEL LATTICE ARCHITECTURE”提出了一种新的快速傅里叶变换装置。图2是上述快速傅里叶变换装置在DMT系统中的示意图,它将并行的N个频域数据通过共轭转换成为2N个数据,再经过快速傅里叶逆变换(IFFT)运算获得2N个数据,然后将其并串转换成时域数据,通过传输通道后的2N个时域数据流经串并转换,再对串并转换后的数据进行快速傅里叶变换(FFT)运算,以获得前N个频域数据。图3是上述美国专利提出的IFFT的结构图,乘法处理模块1对N个数据同时进行乘法处理,分别获得两组数据MDCT和MDST,然后经过电路扩展模块2和左移模块后,得到2N个经过IFFT的数据。由此得知,采用该美国专利处理IFFT需要4(N-1)个实数乘法器和[5(N-1)+2]个实数加法器,仍然需要较多的硬件资源。在ADSL系统中,由于DMT涉及的模块非常多,如何节省硬件资源成为最重要的问题之一,而现有技术并不能很好地满足要求,因此迫切需要适合ADSL系统的DFT装置,以达到有效控制硬件资源和实时快速完成调制解调的目的。In order to improve the operation speed, the current DFT device generally adopts a parallel processing method, that is, each butterfly operation unit of the N-point DFT performs operation at the same time. If the conventional time decimation (DIT) or frequency decimation (DIF) method is used for N-point FFT butterfly operation, 6Nlog 2 2N real number adders and 4Nlog 2 2N real number multipliers are required, which will take up considerable hardware resources , is a major disadvantage of hardware implementation. In order to save hardware, US Patent 6,157,938 "FAST FOURIER TRANSFORMDEVICE AITH PARALLEL LATTICE ARCHITECTURE" proposes a new fast Fourier transform device. Figure 2 is a schematic diagram of the above-mentioned fast Fourier transform device in the DMT system, which converts the parallel N frequency domain data into 2N data through conjugation, and then obtains 2N data through inverse fast Fourier transform (IFFT) operation data, and then convert it into time-domain data in parallel and serial, and the 2N time-domain data flows through the transmission channel undergo serial-to-parallel conversion, and then perform fast Fourier transform (FFT) operation on the serial-to-parallel converted data to obtain The first N frequency domain data. Figure 3 is the structure diagram of the IFFT proposed by the above-mentioned US patent. The
发明内容 Contents of the invention
本发明所要解决的技术问题在于提供ADSL系统中的离散傅里叶变换装置,可以用于DMT系统中256个信道的调制和解调,完成512点的DFT(I-DFT和F-DFT)处理。The technical problem to be solved by the present invention is to provide the discrete Fourier transform device in the ADSL system, which can be used for the modulation and demodulation of 256 channels in the DMT system, and completes the DFT (I-DFT and F-DFT) processing of 512 points .
本发明所述离散傅里叶变换装置,包括1个双口RAM、旋转因子模块、时序控制模块、读写地址产生模块和蝶形运算模块;The discrete Fourier transform device of the present invention includes a dual-port RAM, a twiddle factor module, a timing control module, a read-write address generation module and a butterfly operation module;
所述双口RAM:受所述读写地址产生模块的控制,对所述蝶形运算模块的中间运算数据进行读写;The dual-port RAM: under the control of the read-write address generation module, reads and writes the intermediate operation data of the butterfly operation module;
所述旋转因子模块:用于存放蝶形运算过程中所需的旋转因子W2N ±k,通过所述读写地址产生模块读取,输出至所述蝶形运算模块;The twiddle factor module: used to store the twiddle factor W 2N ±k required in the butterfly operation process, which is read by the read-write address generation module and output to the butterfly operation module;
所述时序控制模块:用于控制所述读写地址产生模块的读写,并控制每个模块的工作时序;The timing control module: used to control the reading and writing of the reading and writing address generation module, and control the working timing of each module;
所述读写地址产生模块:受所述时序控制模块控制,读取所述双口RAM和外部的双口RAM A中的数据,以及所述旋转因子模块中的旋转因子给所述蝶形运算模块,并控制计算结果写入所述双口RAM和外部的双口RAM C中;The read-write address generation module: controlled by the timing control module, reads the data in the dual-port RAM and the external dual-port RAM A, and the twiddle factor in the twiddle factor module is given to the butterfly operation module, and control calculation results are written in the dual-port RAM and the external dual-port RAM C;
所述蝶形运算模块:用于利用厄米特对称算法根据所述数据和旋转因子进行蝶形计算,所得计算结果在所述读写地址产生模块的控制下写入所述双口RAM和外部的双口RAM C中。The butterfly calculation module: used to perform butterfly calculations based on the data and twiddle factors using the Hermitian symmetric algorithm, and the obtained calculation results are written into the dual-port RAM and external memory under the control of the read-write address generation module In the dual-port RAM C.
本发明所述离散傅里叶变换装置,采用串行处理的方式,只需用较少的硬件便可实现,比现有的DFT装置节省511个复数乘法器和多个加法器,从而解决了硬件资源紧张的问题;另外利用系统的共轭对称性,采用厄米特算法使512点离散傅里叶变换的计算进一步简化,减小近50%的运算量,节省了运算时间,降低了功耗。The discrete Fourier transform device of the present invention adopts the mode of serial processing, only needs to use less hardware to realize, saves 511 complex number multipliers and a plurality of adders compared with existing DFT device, thus solves the problem of In addition, using the conjugate symmetry of the system, the calculation of the 512-point discrete Fourier transform is further simplified by using the Hermitian algorithm, which reduces the calculation amount by nearly 50%, saves the calculation time, and reduces the power consumption. consumption.
附图说明 Description of drawings
图1是ADSL系统中DMT系统的结构框图。Fig. 1 is a structural block diagram of the DMT system in the ADSL system.
图2是美国专利6,157,938的FFT(I-FFT、F-FFT)在DMT系统中的示意图。Fig. 2 is a schematic diagram of FFT (I-FFT, F-FFT) of US Patent 6,157,938 in a DMT system.
图3是图2中FFT的电路结构图。FIG. 3 is a circuit structure diagram of the FFT in FIG. 2 .
图4是本发明离散傅里叶变换装置在DMT系统中的示意图。Fig. 4 is a schematic diagram of the discrete Fourier transform device of the present invention in a DMT system.
图5是本发明离散傅里叶变换装置的结构示意图。Fig. 5 is a schematic structural diagram of the discrete Fourier transform device of the present invention.
图6是图4中离散傅里叶逆变换(I-DFT)装置的处理流程图。FIG. 6 is a processing flowchart of the inverse discrete Fourier transform (I-DFT) device in FIG. 4 .
图7是图4中离散傅里叶正变换(F-DFT)装置的处理流程图。FIG. 7 is a processing flowchart of the forward discrete Fourier transform (F-DFT) device in FIG. 4 .
图8是预处理过程中所用蝶形运算规律的示意图。Fig. 8 is a schematic diagram of the butterfly operation rule used in the preprocessing process.
图9是快速傅里叶逆变换各级的蝶形运算规律示意图。Fig. 9 is a schematic diagram of the butterfly operation rules of each stage of the inverse fast Fourier transform.
图10是图5中蝶形运算模块13的电路图。FIG. 10 is a circuit diagram of the
图11是图10中蝶形运算单元300的内部结构图。FIG. 11 is an internal structure diagram of the
具体实施方式 Detailed ways
下面结合附图和实施例,对本发明做进一步的详细介绍。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
ADSL系统中的DMT系统包括调制和解调两个方向,如图1所示。在调制方向,将需要发送的数据先进行比特分配,按信道的传输性能不同将不同比特的数据分配到256个信道上,在对经比特分配后的数据进行星座编码,然后对其进行增益调整,再将信号经过I-DFT调制到256个信道上,再经过加循环前缀、削波等处理后发送出去;在解调方向,将接收到的信号经过时域均衡后去循环前缀,将256个信道的信号经F-DFT处理解调出来,再对其进行频域均衡、星座解码、比特解配等处理完成DMT的解调。从上述过程可以看出,解调是调制的逆过程。The DMT system in the ADSL system includes two directions of modulation and demodulation, as shown in Figure 1. In the modulation direction, the data to be sent is first allocated to bits, and the data of different bits is allocated to 256 channels according to the transmission performance of the channel. After the bit allocation, the data is constellation coded, and then its gain is adjusted. , and then modulate the signal to 256 channels through I-DFT, and then send it out after processing such as adding cyclic prefix and clipping; The signals of each channel are processed and demodulated by F-DFT, and then frequency-domain equalization, constellation decoding, bit de-allocation and other processing are performed on it to complete the DMT demodulation. It can be seen from the above process that demodulation is the reverse process of modulation.
图2和图3是美国专利的结构示意图,已经在前面详细介绍过,可以看出,该专利采用了并行处理的方式来完成IFFT(FFT)的处理过程,需要较多的硬件资源。Figure 2 and Figure 3 are structural diagrams of the US patent, which have been introduced in detail above, and it can be seen that this patent uses parallel processing to complete the IFFT (FFT) process, which requires more hardware resources.
图4是本发明在DMT系统中的示意图,经过增益调整后的频域数据X(k)依次存入增益调整RAM中,当256个信道的数据都完成增益调整后,依次读出X(k)、X(N-k)进行512点I-DFT运算,其中N=512/2=256,表示信道数。计算所得到的时域信号输出至加循环前缀RAM中缓存,完成256个信道的数据调制。调制信号经过传输通道进行传输。在接收侧,去循环前缀后的一帧时域数据准备好后,依次读出去循环前缀RAM中的时域数据进行F-DFT运算,最后所得到的频域信号输出至频域均衡RAM中,完成256个信道的数据解调。Fig. 4 is the schematic diagram of the present invention in the DMT system, the frequency domain data X(k) after the gain adjustment is stored in the gain adjustment RAM successively, after the data of 256 channels all finish the gain adjustment, read out X(k) successively ), X(N-k) perform 512-point I-DFT calculations, where N=512/2=256, indicating the number of channels. The calculated time-domain signal is output to the cyclic prefix RAM and buffered to complete the data modulation of 256 channels. The modulated signal is transmitted through the transmission channel. On the receiving side, after the time-domain data of one frame after removing the cyclic prefix is ready, read the time-domain data in the RAM of the de-cyclic prefix in sequence to perform F-DFT operation, and finally output the obtained frequency-domain signal to the frequency-domain equalization RAM. Complete the data demodulation of 256 channels.
图5是本发明离散傅里叶变换装置的结构图,包括双口RAM 12、旋转因子模块14、时序控制模块10、读写地址产生模块11和蝶形运算模块13。由于每一级的每个蝶形运算都适用于同址运算这一规律,所以只需采用1个双口RAM 12就可以完成对蝶形运算中间数据的读写。旋转因子模块14是存储蝶形运算中所需旋转因子W2N ±k的,在读写地址产生模块11的控制下向蝶形运算模块13输出。时序控制模块10在前级输入双口RAM A的数据准备好后,启动读写地址产生模块11开始进行数据读写,同时还控制每个模块的工作时序。读写地址产生模块11受到时序控制模块10的控制,在不同时刻读出不同RAM中不同地址的数据和旋转因子模块14中相应的旋转因子,并将蝶形运算结果写入相应的RAM中。蝶形运算模块13根据数据和旋转因子进行蝶形运算。读写地址产生模块11和蝶形运算模块13还与外部的双口RAM A和双口RAM C相连。5 is a structural diagram of the discrete Fourier transform device of the present invention, including a dual-
双口RAM A是前级输入数据的缓存,在调制方向双口RAM A是图4中的增益调整RAM,在解调方向双口RAM A是图4中的去循环前缀RAM。双口RAMC是存储DFT运算到最后一级的运算结果,在调制方向双口RAM C是图4中的加循环前缀RAM,在解调方向双口RAM C是图4中的频域均衡RAM。The dual-port RAM A is the cache of the input data of the previous stage. In the modulation direction, the dual-port RAM A is the gain adjustment RAM in Figure 4. In the demodulation direction, the dual-port RAM A is the decyclic prefix RAM in Figure 4. The dual-port RAMC is to store the operation result of the DFT operation to the last stage. The dual-port RAM C in the modulation direction is the cyclic prefix RAM in Figure 4, and the dual-port RAM C in the demodulation direction is the frequency domain equalization RAM in Figure 4.
由于解调是调制的逆过程,所以调制用的I-DFT和解调用的F-DFT可以采用上述图5所示的相同的结构,只是在处理的流程上有所不同。下面将具体介绍I-DFT和F-DFT的处理过程。Since demodulation is the inverse process of modulation, the I-DFT for modulation and the F-DFT for demodulation can adopt the same structure as shown in FIG. 5 above, but the processing flow is different. The processing procedures of I-DFT and F-DFT will be introduced in detail below.
根据ADSL系统中对2N点DFT的处理时序要求:ADSL系统中DFT可用频率为35.328MHZ,最大512点DFT应在68/69*250us内完成。如果采用2N点DIF或DIT的FFT方式,则需要经过NIog2 2N次碟形运算,那么512点FFT运算就需要2304次的蝶形运算。According to the processing timing requirements for 2N-point DFT in ADSL system: the available frequency of DFT in ADSL system is 35.328MHZ, and the maximum 512-point DFT should be completed within 68/69*250us. If the FFT method of 2N-point DIF or DIT is adopted, NIOg 2 2N times of disk operations are required, so 512-point FFT operations require 2304 times of butterfly operations.
本发明根据系统的时频域数据特点采用厄米特对称算法,可使运算量减少一倍。厄米特对称算法的公式见式(1)。According to the characteristics of the time-frequency domain data of the system, the invention adopts the Hermitian symmetric algorithm, which can reduce the calculation amount by one time. The formula of the Hermitian symmetric algorithm is shown in formula (1).
其中,xc(n)是时域数据序列,其实部为连续输入的时域数据的偶序列x(2n),虚部为连续输入的时域数据的奇序列x(2n+1),其中n=0、1、2、3...N-1;X(k)是频域数据序列,其中k=0、1、2、3...N-1;N表示所调制的总信道数,等于256;X*表示共轭数据;W2N -k和WN -nk是旋转因子。Among them, x c (n) is the time-domain data sequence, its real part is the even sequence x(2n) of the continuously input time-domain data, and the imaginary part is the odd sequence x(2n+1) of the continuously input time-domain data, where n=0, 1, 2, 3...N-1; X(k) is the frequency domain data sequence, where k=0, 1, 2, 3...N-1; N represents the total channel modulated number, equal to 256; X * indicates conjugate data; W 2N -k and W N -nk are twiddle factors.
由式(1)可得在调制方向进行I-DFT处理时,X(k)转换成X′(k)的运算公式(2)和(3):From formula (1), we can get the formulas (2) and (3) for converting X(k) into X′(k) when performing I-DFT processing in the modulation direction:
在调制方向,I-DFT处理包括两个步骤,预处理和IFFT蝶形运算,即先将频域数据进行预处理,用X(k)、X(N-k)进行128次蝶形运算得到X′(k)、X′(N-k),再对其进行256点IFFT的8级(128*8次)蝶形运算,即可得到时域信号,这样完成512点I-DFT只需要进行1152次蝶形运算,完成512点I-DFT只需要65us,远远低于ADSL系统的时序要求。In the modulation direction, I-DFT processing includes two steps, preprocessing and IFFT butterfly operation, that is, the frequency domain data is preprocessed first, and X(k) and X(N-k) are used to perform 128 butterfly operations to obtain X' (k), X′(N-k), and then perform 8-level (128*8 times) butterfly operation of 256-point IFFT on it to obtain the time-domain signal, so that the completion of 512-point I-DFT only requires 1152 butterfly operations It only needs 65us to complete the 512-point I-DFT, which is far lower than the timing requirements of the ADSL system.
图6即是图4中I-DFT装置的处理流程图,总共需要经过9级运算,即stage=1、2、3、4、5、6、7、8、9。第1级(stage=1)运算是将频域的256个数据X(k)经过预处理完成X(k)到X′(k)的转换,即依次完成式(2)和式(3)的128次蝶形运算;从第2级至第9级(stage=2~9)是256点IFFT的八级运算,在完成X(k)到X′(k)转换的预处理后得到数据X1(m),进入IFFT运算的第一级,经过128次蝶形运算后得到X2(m),进入IFFT的第二级,依次进入第三级、第四级直至第八级,得到时域数据X(n),这样就完成了256个信道的调制。FIG. 6 is the processing flowchart of the I-DFT device in FIG. 4 , which needs to go through 9 stages of operations in total, ie stage=1, 2, 3, 4, 5, 6, 7, 8, 9. The first level (stage=1) operation is to preprocess the 256 data X(k) in the frequency domain to complete the conversion from X(k) to X'(k), that is, to complete formula (2) and formula (3) in
同样,由式(1)可得到解调方向进行F-DFT处理时,X′(k)转换成X(k)的运算公式见式(4)和式(5):Similarly, when the demodulation direction is subjected to F-DFT processing, the formulas for converting X′(k) into X(k) can be obtained from formula (1) as shown in formulas (4) and (5):
这样,在解调方向,F-DFT处理也包括两个步骤,FFT蝶形运算和后处理,即先对时域数据进行256点FFT的8级(128*8次)蝶形运算得到X′(k)、X′(N-k),再根据式(4)和式(5)对其进行后处理得到X(k)、X(N-k),这样完成512点F-DFT只需要1152次碟形运算,完成512点F-DFT同样只需要65us,满足ADSL系统的时序要求。In this way, in the direction of demodulation, F-DFT processing also includes two steps, FFT butterfly operation and post-processing, that is, first perform 8-level (128*8 times) butterfly operation of 256-point FFT on the time domain data to obtain X' (k), X'(N-k), and then post-process them according to formula (4) and formula (5) to get X(k), X(N-k), so that only 1152 discs are needed to complete 512-point F-DFT It only takes 65us to complete the 512-point F-DFT, which meets the timing requirements of the ADSL system.
图7是图4中F-DFT装置的处理流程图,总共也需要经过9级运算,即stage=1、2、3、4、5、6、7、8、9,首先经过256点FFT的八级运算(stage=1~8)将时域数据X(n)转换成X′(k),即图中的x8(m),然后进行后处理完成式(4)和式(5)的128次蝶形运算,将256个数据X′(k)转换成频域数据X(k),从而完成了256个信道的信号解调。Fig. 7 is the processing flow diagram of the F-DFT device in Fig. 4, which also needs to go through 9 stages of operations in total, that is, stage=1, 2, 3, 4, 5, 6, 7, 8, 9, firstly through the 256-point FFT Eight-level operation (stage=1~8) converts time domain data X(n) into X′(k), that is, x 8 (m) in the figure, and then performs post-processing to complete formula (4) and formula (5) The 128 butterfly operations convert 256 data X'(k) into frequency domain data X(k), thus completing the signal demodulation of 256 channels.
图8是说明预处理过程中蝶形运算规律的示意图。预处理过程是完成式(2)和式(3)的运算,由于X′(k)和X′(N-k)的值是取X(k)和X(N-k)组成一个蝶形运算单元运算所得,故N=256时,有X(0)和X(256)、X(1)和X(255)、X(2)和X(254)、……、X(128)和X(128)共129个蝶形运算,其中X(0)和x(256)是零频子信道和奈奎斯特频率子信道,其数据及结果均是0,不进行蝶形运算,因此只需128个蝶形运算即可得到X′(1)~X′(255)的值。Fig. 8 is a schematic diagram illustrating the law of butterfly operation in the preprocessing process. The preprocessing process is to complete the operation of formula (2) and formula (3), because the values of X'(k) and X'(N-k) are calculated by taking X(k) and X(N-k) to form a butterfly operation unit , so when N=256, there are X(0) and X(256), X(1) and X(255), X(2) and X(254), ..., X(128) and X(128) A total of 129 butterfly operations, where X(0) and x(256) are zero-frequency sub-channels and Nyquist frequency sub-channels, their data and results are all 0, no butterfly operations are performed, so only 128 are required The values of X'(1)~X'(255) can be obtained by the butterfly operation.
后处理过程中的蝶形运算规律与预处理过程中的相同,只是方向相反,即图8中的箭头反向。而后处理是完成式(4)和式(5)的运算,从X′(k)获得X(k),同理每次取X′(k)和X′(N-k)组成蝶形运算单元,得到X(k)和X(N-k)的值,X′(0)和X (256)、X′(1)和X (255)、X′(2)和X (254)、……、直到X′(128)和X′(128)共129个蝶形运算,其中X′(0)和X′(256)的结果作0处理,因此也只需128个蝶形运算即可得到X(0)~X(255)的值。The butterfly operation law in the post-processing process is the same as that in the pre-processing process, but the direction is opposite, that is, the arrow in Figure 8 is reversed. Then the post-processing is to complete the operation of formula (4) and formula (5), obtain X(k) from X'(k), and take X'(k) and X'(N-k) each time in the same way to form a butterfly operation unit, Get the values of X(k) and X(N-k), X'(0) and X(256), X'(1) and X(255), X'(2) and X(254),..., until X'(128) and X'(128) have a total of 129 butterfly operations, and the results of X'(0) and X'(256) are treated as 0, so only 128 butterfly operations are required to obtain X( 0) to X(255) values.
图9是以16点IFFT为例说明256点IFFT各级的蝶形运算规律。对于N=2M点IFFT(FFT)来说,共需要经过M级蝶形运算,而每一级又有N/2个蝶形运算单元,各级的蝶形运算单元的组成规律是:反序读出数据进行第一级蝶形运算,其中反序是指对数据序列号k=[a:b]转换成k反=[b:a],k=0、1、2、……、127,将预处理的每一次蝶形运算结果反序写入双口RAM12的相应地址中,每个X′(2k)反)和X′((2k+1))反)即组成一个蝶形运算单元,所得的运算结果为xl(2k)和xl(2k+1)的值,即经过X(0)和X(128)、X(64)和X(192)、……、X(127)和X(255)共128次蝶形运算,且每次蝶形运算的结果分别按顺序存入双口RAM12的相应地址中;第二级也有128个蝶形运算单元,分成64组,每组有两个蝶形运算单元:x1(4k)和x1(4k+2)与x1(4k+1)和x1(4k+3),其中k=0、1、2、……、63,分别得到蝶形运算的结果x2(4k)和x2(4k+2)与x2(4k+1)和x2(4k+3),每次蝶形运算的结果分别按顺序存入双口RAM12的相应地址中;第三级也有128个蝶形运算单元,将其分成32组,每组有4个蝶形运算单元:x2(16k)和x2(16k+4)、x2(16k+1)和x2(16k+5)、x2(16k+2)和x2(16k+6)、x2(16k+3)和x2(16k+7),其中k=0、1、2、……、31,分别得到蝶形运算的结果x3(16k)和x3(16k+4)、x3(16+1)和x3(16k+5)、x3(16k+2)和x3(16k+6)、x3(16k+3)和x3(16k+7),每次蝶形运算的结果分别按顺序存入双口RAM12的相应地址中;依次类推,直到第八级128个蝶形运算单元只有1组128个蝶形运算单元,即x8(k)和x8(k+128),其中k=0、1、2、……、127,分别得到蝶形运算后的时域数据xc(n)和xc(n+128),其中n=k,将蝶形运算的结果分别按顺序存入加循环前缀RAM的相应地址中。Fig. 9 takes 16-point IFFT as an example to illustrate the butterfly operation rule of each level of 256-point IFFT. For N=2 M points IFFT (FFT), needs to go through M stage butterfly operations altogether, and each stage has N/2 butterfly operation units again, the composition law of the butterfly operation units of each level is: inverse Read out the data in order to perform the first-level butterfly operation, wherein the reverse order refers to converting the data serial number k=[a:b] into k reverse =[b:a], k=0, 1, 2, ..., 127. Write the result of each butterfly operation of the preprocessing into the corresponding address of the dual-port RAM 12 in reverse order, and each X'(2k) inversion ) and X'((2k+1)) inversion ) form a butterfly Operation unit, the obtained operation result is the value of x l (2k) and x l (2k+1), that is, after X(0) and X(128), X(64) and X(192),...,X (127) and X(255) have a total of 128 butterfly operations, and the results of each butterfly operation are stored in the corresponding addresses of the dual-port RAM12 in sequence; the second stage also has 128 butterfly operation units, which are divided into 64 groups , each group has two butterfly units: x 1 (4k) and x 1 (4k+2) and x 1 (4k+1) and x 1 (4k+3), where k=0, 1, 2, ..., 63, get the results x 2 (4k) and x 2 (4k+2) and x 2 (4k+1) and x 2 (4k+3) of the butterfly operation respectively, the results of each butterfly operation are respectively Stored in the corresponding address of the dual-port RAM12 in order; the third stage also has 128 butterfly operation units, which are divided into 32 groups, and each group has 4 butterfly operation units: x 2 (16k) and x 2 (16k+ 4), x 2 (16k+1) and x 2 (16k+5), x 2 (16k+2) and x 2 (16k+6), x 2 (16k+3) and x 2 (16k+7) , where k=0, 1, 2, ..., 31, the results of butterfly operation x 3 (16k) and x 3 (16k+4), x 3 (16+1) and x 3 (16k+5 ), x 3 (16k+2) and x 3 (16k+6), x 3 (16k+3) and x 3 (16k+7), the results of each butterfly operation are stored in the dual-port RAM12 in sequence In the corresponding address; and so on, until the 128 butterfly operation units of the eighth stage have only one group of 128 butterfly operation units, i.e. x 8 (k) and x 8 (k+128), wherein k=0, 1, 2 , ..., 127, obtain the time-domain data x c (n) and x c (n+128) after the butterfly operation respectively, wherein n=k, store the result of the butterfly operation into the cyclic prefix RAM respectively in order in the corresponding address.
256点FFT各级的蝶形运算规律与256点IFFT各级的蝶形运算规律相同,只是由于F-DFT与I-DFT的处理流程不同,而造成FFT的第一级读数据和最后第八级写数据有所不同。FFT的第一级运算是从去循环前缀RAM中反序读出数据,每个xc((2n)反)和xc((2n+1)反)组成一个蝶形运算单元,所得运算结果为x1(2k)和x1(2k+1)的值,即经过xc(0)和xc(128)、xc(64)和xc(192)、……、xc(127)和xc(255)共128次蝶形运算;FFT的第八级运算是将结果存入双口RAM12中,蝶形运算结果x8(k)和x8(k+128)(其中k=0、1、2、……、127)即是数据X′(k)和X′(k+128),将每次蝶形运算的结果分别存入双口RAM12的相应地址中,待下一级的后处理。其它各级运算都与IFFT运算相同。The butterfly operation law of each level of 256-point FFT is the same as the butterfly operation law of each level of 256-point IFFT, but because the processing flow of F-DFT and I-DFT is different, the first-level read data of FFT and the final eighth-level Level write data is different. The first stage operation of FFT is to read data in reverse order from the decyclic prefix RAM, and each x c ((2n) inversion ) and x c ((2n+1) inverse ) form a butterfly operation unit, and the obtained operation result is the value of x 1 (2k) and x 1 (2k+1), that is, after x c (0) and x c (128), x c (64) and x c (192), ..., x c (127 ) and x c (255) a total of 128 butterfly operations; the eighth stage operation of FFT is to store the results in dual-port RAM12, the butterfly operation results x 8 (k) and x 8 (k+128) (where k =0, 1, 2, ..., 127) are data X' (k) and X' (k+128), and the result of each butterfly operation is stored in the corresponding address of dual-port RAM12 respectively, to be Level one post-processing. Operations at other levels are the same as IFFT operations.
图10给出了蝶形运算模块13的结构图,包括选择器301、选择器302和蝶形运算单元300,选择器301接收来自双口RAM A或双口RAM 12的数据,并输出给蝶形运算单元300,旋转因子模块14中的旋转因子也送至蝶形运算单元300进行计算,计算结果经选择器302输出给双口RAM C或双口RAM 12。当开始I-DFT或F-DFT的第一级(stage=1)运算时,从双口RAM A(增益调整RAM或去循环前缀RAM)中读取数据,而其它各级(stage=2~9)运算则从双口RAM12中读取数据,经过二选一选择器301输出Xl(m1)和Xl(m2),其中Xl(m1)和Xl(m2)是代表第l级的数据,经蝶形运算单元300的运算得到第l+1级运算结果Xl+1(m1)和Xl+1(m2),其结果再经过一个二选一选择器302将数据存入双口RAM12或双口RAM C中,其中级数stage<9时的各级运算结果存入双口RAM12中,级数stage=9的运算结果存入双口RAM C(加循环前缀RAM或频域均衡RAM)中,其中m1和m2是指每一级的蝶形运算单元的两输入数据的序列号。Fig. 10 has provided the structural diagram of
图11是图10中蝶形运算单元300的结构图,蝶形运算单元300包括1个共轭器3001,3个选择器3003、3004、3005,2个加法器3007、3008,2个减法器3006、3009和1个复数乘法器3002。选择器301输出两个数据Xl(m1)和Xl(m2),其中Xl(m1)分别进入加法器3007和减法器3009;Xl(m2)经过共轭器3001后输出的数据与Xl(m2)进入选择器3003,当stage=1时,选择器3003输出X1(m2)的共轭数据,当stage>1时,选择器3003输出Xl(m2)。数据Xl(m1)和选择器3003的输出数据同时在加法器3007和减法器3009中进行复数加减运算,减法器3009输出的差与对应的旋转因子在复数乘法器3002中进行相乘,所得的复数乘积再与加法器3007的输出分别在加法器3008和减法器3006中进行复数加减运算,所得的和再与加法器3007的结果送到选择器3004中,所得的差与复数乘法器3002的结果送到选择器3005中,当stage=1时,选择器3005输出Xl+1(ml)等于加法器3008的结果,选择器3005输出Xl+1(m2)等于减法器3006的结果;当stage>1时,选择器3004输出Xl+1(m1)等于加法器3007的结果,选择器3005输出Xl+1(m2)等于复数乘法器3002的结果。Fig. 11 is a structural diagram of the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021121885A CN100388699C (en) | 2002-06-19 | 2002-06-19 | Discrete Fourier Transform Device in Asymmetric Digital Subscriber Loop System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021121885A CN100388699C (en) | 2002-06-19 | 2002-06-19 | Discrete Fourier Transform Device in Asymmetric Digital Subscriber Loop System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1464690A CN1464690A (en) | 2003-12-31 |
CN100388699C true CN100388699C (en) | 2008-05-14 |
Family
ID=29742078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021121885A Expired - Fee Related CN100388699C (en) | 2002-06-19 | 2002-06-19 | Discrete Fourier Transform Device in Asymmetric Digital Subscriber Loop System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100388699C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8117250B2 (en) | 2005-12-29 | 2012-02-14 | Triductor Technology (Suzhou) Inc. | VDSL2 transmitter/receiver architecture |
CN101930426B (en) | 2009-06-24 | 2015-08-05 | 华为技术有限公司 | Signal processing method, data processing method and device |
CN102768654A (en) | 2011-05-05 | 2012-11-07 | 中兴通讯股份有限公司 | Device with FFT-base (fourier transform) 2-butterfly operation handling ability and method for achieving operation |
CN109948112B (en) * | 2019-03-04 | 2023-07-21 | 南京杰思微电子技术有限公司 | An FFT operation device and method for power line carrier communication chip |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6195675B1 (en) * | 1997-12-19 | 2001-02-27 | Nortel Networks Limited | Tone detection using discrete fourier transform techniques |
CN1290369A (en) * | 1998-01-21 | 2001-04-04 | 艾利森电话股份有限公司 | Pipelined fast fourier transform processor |
WO2001069424A2 (en) * | 2000-03-10 | 2001-09-20 | Jaber Associates, L.L.C. | Parallel multiprocessing for the fast fourier transform with pipeline architecture |
KR20020034746A (en) * | 2000-11-03 | 2002-05-09 | 윤종용 | Fast fourier transform processor using fast and area efficient algorithm |
-
2002
- 2002-06-19 CN CNB021121885A patent/CN100388699C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6195675B1 (en) * | 1997-12-19 | 2001-02-27 | Nortel Networks Limited | Tone detection using discrete fourier transform techniques |
CN1290369A (en) * | 1998-01-21 | 2001-04-04 | 艾利森电话股份有限公司 | Pipelined fast fourier transform processor |
WO2001069424A2 (en) * | 2000-03-10 | 2001-09-20 | Jaber Associates, L.L.C. | Parallel multiprocessing for the fast fourier transform with pipeline architecture |
KR20020034746A (en) * | 2000-11-03 | 2002-05-09 | 윤종용 | Fast fourier transform processor using fast and area efficient algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN1464690A (en) | 2003-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100563226C (en) | Modulation Device Using Mixed Radix Fast Fourier Transform | |
Jo et al. | New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place strategy | |
CN103970718B (en) | Device and method is realized in a kind of fast Fourier transform | |
US20080071848A1 (en) | In-Place Radix-2 Butterfly Processor and Method | |
CN105635022A (en) | Offset orthogonal multicarrier baseband system | |
Radhouane et al. | Minimizing the memory requirement for continuous flow FFT implementation: continuous flow mixed mode FFT (CFMM-FFT) | |
CN102111366A (en) | Peak-to-average power ratio (PAR) cut based on active set tone reservation | |
Son et al. | A high-speed FFT processor for OFDM systems | |
CN108449301B (en) | Data transmission method | |
CN105095152A (en) | Configurable 128 point fast Fourier transform (FFT) device | |
Vaigandla et al. | A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems | |
CN100388699C (en) | Discrete Fourier Transform Device in Asymmetric Digital Subscriber Loop System | |
CN114465860B (en) | Peak-average-power-ratio reducing method and device for OFDM (orthogonal frequency division multiplexing) signals and storage medium | |
Ikni et al. | PAPR reduction in FBMC-OQAM systems based on discrete sliding norm transform technique | |
CN103458485B (en) | Peak power optimization method and emission system thereof in ofdm system | |
CN114201725A (en) | Narrowband communication signal processing method based on multimode reconfigurable FFT | |
CN115801528B (en) | OTFS waveform peak-to-average ratio suppression method based on time delay grid grouping | |
CN101764778B (en) | Base band processor and base band processing method | |
CN108737315B (en) | Additive scrambling method and transmitting system for reducing peak-to-average power ratio of OFDM system | |
CN102811195B (en) | A kind of method reducing peak-to-average force ratio for LTE base band | |
Yan et al. | Implementation of an OFDM underwater acoustic communication system on an underwater vehicle with multiprocessor structure | |
Gao et al. | A new novel improved technique for PAPR reduction in OFDM system | |
Deepa et al. | Performance evaluation of a low complexity row-column transform approach for SLM based OFDM transmission system | |
Heo et al. | New in-place strategy for a mixed-radix FFT processor | |
Zhao et al. | Judgement-based joint SLM and PTS algorithm for PAPR suppression of radar communication integrated system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: HAIMEN TECHNOLOGY DEVELOPMENT CORP. Free format text: FORMER OWNER: ZTE CORPORATION Effective date: 20130507 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 518057 SHENZHEN, GUANGDONG PROVINCE TO: 226144 NANTONG, JIANGSU PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20130507 Address after: 226144, No. 600, Beijing Road, Haimen, Jiangsu, Nantong province (room 0212 of administrative center) Patentee after: Haimen science and Technology Development General Corporation Address before: 518057 Department of law, Zhongxing building, South Science and technology road, Nanshan District hi tech Industrial Park, Shenzhen Patentee before: ZTE Corporation |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080514 Termination date: 20160619 |