CN100388038C - Diaphragm actuator and magnetic position sensing structure and setting method thereof - Google Patents
Diaphragm actuator and magnetic position sensing structure and setting method thereof Download PDFInfo
- Publication number
- CN100388038C CN100388038C CNB2005100897658A CN200510089765A CN100388038C CN 100388038 C CN100388038 C CN 100388038C CN B2005100897658 A CNB2005100897658 A CN B2005100897658A CN 200510089765 A CN200510089765 A CN 200510089765A CN 100388038 C CN100388038 C CN 100388038C
- Authority
- CN
- China
- Prior art keywords
- magnetic
- component
- sensing
- magnetic flux
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
技术领域 technical field
本发明关于一种磁性位置感测结构及其设置方法,特别关于一种应用在光圈致动器的磁性位置感测结构及其设置方法。The present invention relates to a magnetic position sensing structure and its setting method, in particular to a magnetic position sensing structure applied to an aperture actuator and its setting method.
背景技术 Background technique
随着科技进步,影像撷取与影像处理的需求日益提高,传统采用磁铁与磁性位置传感器的镜头光圈(iris diaphragm)将磁性位置传感器所感应的磁通量(magnetic flux)转换为电压输出讯号,由于结构设置不当,使得磁通量(或电压)与磁铁位置之间无法呈一线性关系,故需搭配非线性驱动装置与方法,此将造成结构复杂与成本提高;若设置多磁铁,使其相互补偿而将磁性位置传感器所感应的磁通量尽可能调整为线性关系,则因使用组件数量增加,亦会造成结构复杂与成本提高。With the advancement of technology, the demand for image capture and image processing is increasing. Traditionally, the lens aperture (iris diaphragm) using magnets and magnetic position sensors converts the magnetic flux induced by the magnetic position sensor into a voltage output signal. Due to the structure Improper setting makes it impossible to have a linear relationship between the magnetic flux (or voltage) and the position of the magnet, so a non-linear drive device and method are required, which will result in a complex structure and increased cost; if multiple magnets are installed, they will compensate each other. The magnetic flux induced by the magnetic position sensor is adjusted to a linear relationship as much as possible. However, due to the increase in the number of components used, the structure will be complicated and the cost will be increased.
如图1A与图1B所示,其为传统使用一个磁铁11与一霍尔传感器(Hallsensor)12的磁性位置感测结构,当磁铁11沿运动方向前进时,间距d减小,磁通密度(magnetic flux density)增加,磁通密度与间距d的关系为非线性。As shown in FIG. 1A and FIG. 1B, it is a conventional magnetic position sensing structure using a
如图2A与图2B所示,其为传统另一种使用一个磁铁11与一霍尔传感器(Hall sensor)12的磁性位置感测结构,当磁铁11沿运动方向前进时,间距d减小,磁通密度(magnetic flux density)增加,磁通密度与间距d的关系为非线性。As shown in FIG. 2A and FIG. 2B, it is another conventional magnetic position sensing structure using a
如图3A与图3B所示,其为传统使用二个磁铁11与一霍尔传感器(Hallsensor)12的磁性位置感测结构,当霍尔传感器12沿运动方向前进时,磁通密度与间距d的关系较前述实施方式为线性,但需增加设置磁铁,故结构复杂与成本提高。As shown in FIG. 3A and FIG. 3B , it is a traditional magnetic position sensing structure using two
如图4A与图4B所示,其为传统使用四个磁铁11与一霍尔传感器(Hallsensor)12的磁性位置感测结构,当霍尔传感器12沿运动方向前进时,磁通密度与间距d的关系较前述实施方式为线性,但仍需增加设置磁铁,故结构复杂与成本提高。As shown in FIG. 4A and FIG. 4B, it is a magnetic position sensing structure using four
因此,本发明提供一种结构简单、制作工艺简易、生产快速、节省成本与减少产品变易的「光圈致动器、磁性位置感测结构及其设置方法」,几经研究实验终至完成此项发明。Therefore, the present invention provides an "aperture actuator, magnetic position sensing structure and its setting method" with simple structure, simple manufacturing process, fast production, cost saving and reduced product variation. After several researches and experiments, the invention is finally completed .
发明内容 Contents of the invention
有鉴于上述课题,本发明的目的提供一种光圈致动器、磁性位置感测结构及其设置方法,仅使用一个磁性组件,即可使磁性位置感测结构的讯号输出与位置,与传统技术相较呈一实质线性关系,以达到结构简单、制作工艺简易、生产快速、节省成本与减少产品变易的功效。In view of the above-mentioned problems, the object of the present invention is to provide an aperture actuator, a magnetic position sensing structure and a setting method thereof. Only one magnetic component can be used to make the signal output and position of the magnetic position sensing structure different from the conventional technology. The comparison shows a substantially linear relationship, so as to achieve the effects of simple structure, simple manufacturing process, fast production, cost saving and reduced product variation.
于是,为达到上述目的,根据本发明的一种光圈致动器包括一磁性位置感测结构、至少一驱动组件以及一遮光组件。其中,磁性位置感测结构包括一磁性组件与一磁性感测组件,该磁性组件和该磁性感测组件彼此相对设置;驱动组件连结并驱动磁性组件或磁性感测组件以一旋转中心为圆心进行旋转运动,使得磁性组件与磁性感测组件间的间距与夹角同时改变,相互补偿达到磁性感测组件所感应的一磁通量与磁性组件和该磁性感测组件间的间距呈一线性关系;遮光组件与驱动组件连结。Therefore, to achieve the above object, an aperture actuator according to the present invention includes a magnetic position sensing structure, at least one driving component and a light shielding component. Wherein, the magnetic position sensing structure includes a magnetic component and a magnetic sensing component, and the magnetic component and the magnetic sensing component are arranged opposite to each other; Rotational movement makes the distance and angle between the magnetic component and the magnetic sensing component change simultaneously, and mutual compensation achieves a linear relationship between the magnetic flux induced by the magnetic sensing component and the distance between the magnetic component and the magnetic sensing component; shading The component is linked with the drive component.
为达到上述目的,根据本发明的一种磁性位置感测结构包括一磁性组件以及一磁性感测组件彼此相对设置。其中,磁性组件或磁性感测组件以一旋转中心为圆心进行旋转运动,使得磁性组件与磁性感测组件间的间距与夹角同时改变,相互补偿达到磁性感测组件所感应的一磁通量与磁性组件和该磁性感测组件间的间距呈一线性关系。To achieve the above object, a magnetic position sensing structure according to the present invention includes a magnetic component and a magnetic sensing component disposed opposite to each other. Wherein, the magnetic component or the magnetic sensing component rotates around a rotation center, so that the distance and angle between the magnetic component and the magnetic sensing component change at the same time, and the mutual compensation achieves a magnetic flux induced by the magnetic sensing component and a magnetic field. The distance between the component and the magnetic sensing component has a linear relationship.
为达到上述目的,根据本发明的一种磁性位置感测结构的设置方法,包括下列步骤:首先,提供彼此相对设置的一磁性组件与一磁性感测组件;接着,以一旋转中心,相对运动磁性组件或磁性感测组件,使得磁性组件与磁性感测组件间的间距与夹角同时改变;接着,调整磁性组件或磁性感测组件的位置,使其相互补偿达到磁性感测组件所感应的一磁通量系与磁性组件和该磁性感测组件间的间距呈一线性关系;最后,固定磁性组件与磁性感测组件的位置。In order to achieve the above object, a method for arranging a magnetic position sensing structure according to the present invention includes the following steps: firstly, providing a magnetic component and a magnetic sensing component that are arranged opposite to each other; then, using a rotation center, relatively moving Magnetic components or magnetic sensing components, so that the distance and angle between the magnetic components and the magnetic sensing components are changed at the same time; then, adjust the position of the magnetic components or magnetic sensing components so that they can compensate each other to achieve the magnetic sensing components induced A magnetic flux system has a linear relationship with the distance between the magnetic component and the magnetic sensing component; finally, the positions of the magnetic component and the magnetic sensing component are fixed.
承上所述,因根据本发明的一种光圈致动器、磁性位置感测结构及其设置方法,借由单一磁性组件或磁性感测组件以一旋转中心相对运动的结构设置,利用磁性组件与磁性感测组件间的磁通量与间距平方成反比,与夹角成余弦(cos)关系(如式1);Based on the above, because according to an aperture actuator, a magnetic position sensing structure and its setting method of the present invention, a single magnetic component or a magnetic sensing component is set in a structure with a relative movement of a rotation center, the magnetic component The magnetic flux between the magnetic sensing components is inversely proportional to the square of the distance, and has a cosine (cos) relationship with the included angle (such as formula 1);
ψ=∫B·dA=BAcosθ (式1)ψ=∫B·dA=BAcosθ (Formula 1)
其中,ψ为磁通量,B为磁通密度向量,dA为磁性感测组件的磁通密度感应区的单位面积向量,θ为磁通密度感应区和磁通密度向量间的夹角。Wherein, ψ is the magnetic flux, B is the magnetic flux density vector, dA is the unit area vector of the magnetic flux density sensing area of the magnetic sensing component, and θ is the angle between the magnetic flux density sensing area and the magnetic flux density vector.
同时改变磁性组件与磁性感测组件间的间距与夹角,使其相互补偿达到磁性位置感测结构的讯号输出与位置,相较于传统技术呈一趋近线性的实质线性关系,即可运用传统线性驱动装置与方法,达到结构简单、制作工艺简易、生产快速、节省成本与减少产品变易的功效。At the same time, change the distance and angle between the magnetic component and the magnetic sensing component to make them compensate each other to achieve the signal output and position of the magnetic position sensing structure. The traditional linear drive device and method achieve the effects of simple structure, simple manufacturing process, fast production, cost saving and reduced product variation.
附图说明 Description of drawings
图1A与图1B分别显示传统使用一个磁铁与一霍尔传感器的一种磁性位置感测结构及其磁通密度与间距的关系的示意图;FIG. 1A and FIG. 1B respectively show a schematic diagram of a traditional magnetic position sensing structure using a magnet and a Hall sensor and the relationship between the magnetic flux density and the distance;
图2A与图2B分别显示传统使用一个磁铁与一霍尔传感器的另一种磁性位置感测结构及其磁通密度与间距的关系的示意图;FIG. 2A and FIG. 2B respectively show a schematic view of another conventional magnetic position sensing structure using a magnet and a Hall sensor and the relationship between the magnetic flux density and the distance;
图3A与图3B分别显示传统使用二个磁铁与一霍尔传感器的一种磁性位置感测结构及其磁通密度与间距的关系的示意图;3A and FIG. 3B respectively show a schematic diagram of a traditional magnetic position sensing structure using two magnets and a Hall sensor and the relationship between the magnetic flux density and the distance;
图4A与图4B分别显示传统使用四个磁铁与一霍尔传感器的一种磁性位置感测结构及其磁通密度与间距的关系的示意图;FIG. 4A and FIG. 4B respectively show a schematic diagram of a conventional magnetic position sensing structure using four magnets and a Hall sensor and the relationship between the magnetic flux density and the distance;
图5至图7显示本发明优选实施例的一种光圈致动器及其磁性位置感测结构的磁性组件与磁性感测组件相对运动的示意图;5 to 7 show a schematic diagram of the relative movement of the magnetic assembly and the magnetic sensing assembly of an aperture actuator and its magnetic position sensing structure according to a preferred embodiment of the present invention;
图8显示本发明优选实施例的一种磁性位置感测方法的流程图;以及Fig. 8 shows a flow chart of a magnetic position sensing method according to a preferred embodiment of the present invention; and
图9显示本发明优选实施例的一种光圈致动器、磁性位置感测结构及其设置方法的磁性感测组件所感应的磁通量与磁性组件的夹角呈一实质线性关系的示意图。9 is a schematic diagram showing a substantially linear relationship between the magnetic flux induced by the magnetic sensing component and the included angle of the magnetic component of an aperture actuator, a magnetic position sensing structure and an arrangement method thereof according to a preferred embodiment of the present invention.
主要组件符号说明Explanation of main component symbols
11 磁铁11 magnets
12 霍尔传感器12 Hall sensor
2 光圈致动器2 aperture actuator
21 遮光组件21 shading components
211 遮光部211 Shading Department
22 磁性位置感测结构22 Magnetic position sensing structure
221 磁性组件221 Magnetic Assembly
222 磁性感测组件222 Magnetic sensing components
23 驱动组件23 drive components
24 连接部24 connection part
25 电路板25 circuit boards
26 固定组件26 Fixed components
27 调整组件27 Adjustment components
C 旋转中心C center of rotation
d 间距d spacing
具体实施方式 Detailed ways
以下将参照相关附图,说明根据本发明优选实施例的一种光圈致动器、磁性位置感测结构及其设置方法,其中相同的组件将以相同的参照符号加以说明。An aperture actuator, a magnetic position sensing structure and an arrangement method thereof according to preferred embodiments of the present invention will be described below with reference to related drawings, wherein the same components will be described with the same reference symbols.
请参照图5所示,根据本发明优选实施例的一种光圈致动器2包括一遮光组件21、一磁性位置感测结构22以及一驱动组件23。其中,遮光组件21具有至少一遮光部211,遮光组件21可借由一连接部24与驱动组件23连接。Referring to FIG. 5 , an
磁性位置感测结构22包括一磁性组件221与一磁性感测组件222;驱动组件23根据控制系统(图未示)的一作动讯号,驱动磁性组件221或磁性感测组件222以旋转中心C相对运动,并带动遮光组件21位移以控制光圈大小。The magnetic
在本实施例中,磁性感测组件222可固定设置在一电路板25上,驱动组件23驱动磁性组件221以旋转中心C为圆心进行旋转运动,使与磁性感测组件222产生一相对运动;或者,驱动组件23亦可驱动磁性感测组件222以旋转中心C为圆心进行旋转运动,使与磁性组件221产生相对运动。In this embodiment, the
磁性感测组件222可为非接触式磁性感测组件,亦即是一种不需要磁性组件221触碰即可感应到其磁场的磁性感测组件,例如但不限于霍尔传感器或磁阻式传感器(magnetoresistive sensor)。The
本发明的光圈致动器2还包括至少一调整机构27,其位于磁性组件221与磁性感测组件222之间,请参照图5所示,用以调整磁性组件221与磁性感测组件222的相对初始位置,如此可以避免由于磁性组件221与磁性感测组件222的累进误差,造成所制成的光圈致动器2的品质不一;其中,调整机构27包括一弹性组件,例如但不限于弹簧。The
本发明的光圈致动器2还包括至少一固定组件26,用以固定磁性感测组件222与磁性组件221的相对位置;固定组件26的固定方式例如但不限于螺锁、黏合、套合或卡固。The
再请参照图6与图7所示,当驱动组件23根据控制系统的一作动讯号,驱动磁性组件221以旋转中心C为圆心进行旋转运动,使与磁性感测组件222产生相对运动时,会带动遮光组件21位移以控制光圈大小。Please refer to FIG. 6 and FIG. 7 again, when the driving
借由磁性组件221与磁性感测组件222间的磁通量与间距平方成反比,与夹角成余弦(cos)关系(如式1);The magnetic flux between the
φ=∫B·dA=BAcos θ (式1)φ=∫B·dA=BAcos θ (Formula 1)
其中,φ为磁通量,B为磁通密度向量,dA为磁性感测组件222的磁通密度感应区的单位面积向量,θ为磁通密度感应区和磁通密度向量间的夹角。此时,随着磁性组件221的二维运动,其相对于磁性感测组件222会同时具有间距与夹角的双重变化,经由本发明的结构设置,而使间距与夹角变化相互补偿达到磁性位置感测结构22的讯号输出与位置呈一实质线性关系,亦即磁性感测组件222所感应的一磁通量系与磁性组件221的位置呈一趋近线性的实质线性关系(如图9所示),故驱动组件23可运用一线性驱动方法,达到结构简单、制作工艺简易、生产快速、节省成本与减少产品变易的功效。其中,磁通量亦可为磁通密度,亦即磁性感测组件222所感应的一磁通密度系与磁性组件221的位置呈一实质线性关系。除式1之外,本发明磁性组件221与磁性感测组件222间的夹角,亦可为其它关系。Wherein, φ is the magnetic flux, B is the magnetic flux density vector, dA is the unit area vector of the magnetic flux density sensing area of the
本发明的光圈致动器2系可应用于电子装置,例如但不限于照相手机、数字相机、数字摄影机、数字光源处理器(Digital Light Processor,DLP)、投影机或扫描仪。The
再请参照图5所示,根据本发明优选实施例的一种磁性位置感测结构22包括一磁性组件221与一磁性感测组件222,该磁性组件和该磁性感测组件彼此相对设置。其中,磁性组件221或磁性感测组件222以一旋转中心C为圆心进行旋转运动,使得磁性组件221与磁性感测组件222间的间距与夹角同时改变,相互补偿达到且磁性感测组件222所感应的一磁通量系与磁性组件221的位置呈一实质线性关系。Referring again to FIG. 5 , a magnetic
请参照图8所示,根据本发明优选实施例的一种磁性位置感测结构的设置方法,包括下列步骤:在步骤S1提供彼此相对设置的一磁性组件与一磁性感测组件;接着在步骤S2以一旋转中心,相对运动磁性组件或磁性感测组件,使得磁性组件与磁性感测组件间的间距与夹角同时改变;接着在步骤S3调整磁性组件或磁性感测组件的位置,使其相互补偿达到磁性感测组件所感应的一磁通量与磁性组件的位置呈一实质线性关系;最后在步骤S4固定磁性组件与磁性感测组件的相对初始位置。Please refer to FIG. 8 , a method for setting a magnetic position sensing structure according to a preferred embodiment of the present invention includes the following steps: providing a magnetic component and a magnetic sensing component opposite to each other in step S1; and then in step S1 S2 uses a rotation center to relatively move the magnetic assembly or the magnetic sensing assembly, so that the distance and angle between the magnetic assembly and the magnetic sensing assembly change simultaneously; then adjust the position of the magnetic assembly or the magnetic sensing assembly in step S3 to make it Mutual compensation achieves a substantially linear relationship between the magnetic flux induced by the magnetic sensing component and the position of the magnetic component; finally, in step S4 , the relative initial positions of the magnetic component and the magnetic sensing component are fixed.
调整步骤S3与固定步骤S4可分别以前述的调整机构与固定组件达成,在此不再赘述。The adjusting step S3 and the fixing step S4 can be achieved by the aforementioned adjusting mechanism and fixing component respectively, and will not be repeated here.
综上所述,因根据本发明的一种光圈致动器、磁性位置感测结构及其设置方法,借由单一磁性组件或磁性感测组件以一旋转中心相对运动的结构设置,利用磁性组件与磁性感测组件间的磁通量与间距平方成反比,与夹角成余弦(cos)关系(如式1),同时改变磁性组件与磁性感测组件间的间距与夹角,使其相互补偿达到磁性位置感测结构的讯号输出与位置,相较于传统技术呈一趋近线性的实质线性关系,即可运用传统线性驱动装置与方法,达到结构简单、制作工艺简易、生产快速、节省成本与减少产品变易的功效。In summary, according to an aperture actuator, a magnetic position sensing structure and its setting method according to the present invention, a single magnetic component or a magnetic sensing component is set in a structure that moves relative to a center of rotation, and the magnetic component is utilized The magnetic flux between the magnetic sensing components is inversely proportional to the square of the distance, and has a cosine (cos) relationship with the included angle (such as formula 1). Compared with the traditional technology, the signal output and position of the magnetic position sensing structure have a substantially linear relationship that is close to linear. The traditional linear drive device and method can be used to achieve simple structure, simple manufacturing process, fast production, cost saving and Efficacy to reduce product variability.
以上所述仅为举例性,而非为限制性者。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包括在本发明的范围中。The above descriptions are illustrative only, not restrictive. Any equivalent modification or change without departing from the spirit and scope of the present invention shall be included in the scope of the present invention.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100897658A CN100388038C (en) | 2005-08-09 | 2005-08-09 | Diaphragm actuator and magnetic position sensing structure and setting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100897658A CN100388038C (en) | 2005-08-09 | 2005-08-09 | Diaphragm actuator and magnetic position sensing structure and setting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1912671A CN1912671A (en) | 2007-02-14 |
CN100388038C true CN100388038C (en) | 2008-05-14 |
Family
ID=37721651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100897658A Expired - Fee Related CN100388038C (en) | 2005-08-09 | 2005-08-09 | Diaphragm actuator and magnetic position sensing structure and setting method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100388038C (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08136972A (en) * | 1994-11-11 | 1996-05-31 | Canon Inc | Light quantity adjustment device |
US5915141A (en) * | 1996-12-27 | 1999-06-22 | Canon Kabushiki Kaisha | Shutter device having eccentric pin for adjusting urging force |
JP2001100269A (en) * | 1999-09-28 | 2001-04-13 | Canon Inc | Light quantity adjusting device and optical equipment equipped therewith |
JP2001142110A (en) * | 1999-11-16 | 2001-05-25 | Nidec Copal Corp | Electromagnetic actuator, shutter device and diaphragm device |
CN1469105A (en) * | 2002-06-26 | 2004-01-21 | ��ʽ�����װ | Magnetic sensing unit with smaller sensitivity to leakage magnetic flux |
-
2005
- 2005-08-09 CN CNB2005100897658A patent/CN100388038C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08136972A (en) * | 1994-11-11 | 1996-05-31 | Canon Inc | Light quantity adjustment device |
US5915141A (en) * | 1996-12-27 | 1999-06-22 | Canon Kabushiki Kaisha | Shutter device having eccentric pin for adjusting urging force |
JP2001100269A (en) * | 1999-09-28 | 2001-04-13 | Canon Inc | Light quantity adjusting device and optical equipment equipped therewith |
JP2001142110A (en) * | 1999-11-16 | 2001-05-25 | Nidec Copal Corp | Electromagnetic actuator, shutter device and diaphragm device |
CN1469105A (en) * | 2002-06-26 | 2004-01-21 | ��ʽ�����װ | Magnetic sensing unit with smaller sensitivity to leakage magnetic flux |
Also Published As
Publication number | Publication date |
---|---|
CN1912671A (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11681203B2 (en) | Optical system | |
US20240361561A1 (en) | Optical system | |
US11809013B2 (en) | Optical system | |
US11048307B2 (en) | Dual camera module and portable electronic device | |
CN104849941B (en) | Lens driving device with closed loop shockproof structure | |
JP5923558B2 (en) | Optical vibration prevention mechanism that can switch optical paths | |
US8213783B2 (en) | Anti-shake device and optical system having the same | |
US10495897B2 (en) | Lens driving mechanism having leaf spring | |
CN107800929A (en) | Fold the optical image stabilization of optical camera module | |
CN110475050A (en) | The camera model of stabilization function and the electronic equipment including the camera model are provided | |
CN219957996U (en) | Optical element drive mechanism | |
US10812724B2 (en) | Photosensitive element driving mechanism | |
CN108072957B (en) | Optical drive mechanism | |
US10852458B2 (en) | Camera device | |
US10761291B2 (en) | Lens driving mechanism | |
CN207424353U (en) | optical mechanism | |
CN207337033U (en) | Driving mechanism | |
CN109343293A (en) | Electrostatic drive device and optical device | |
US20230213730A1 (en) | Photosensitive element driving mechanism | |
US20200192063A1 (en) | Optical mechanism | |
US7665914B2 (en) | Iris diaphragm actuator, magnetic position sensing structure and arrangement method thereof | |
WO2018180682A1 (en) | Lens drive device | |
CN100388038C (en) | Diaphragm actuator and magnetic position sensing structure and setting method thereof | |
CN102466947A (en) | Tilt-shift photography device and photography method applied to digital camera or video camera | |
CN109143722B (en) | Image pickup apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080514 Termination date: 20210809 |
|
CF01 | Termination of patent right due to non-payment of annual fee |