CN100387762C - A kind of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and preparation method thereof - Google Patents
A kind of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and preparation method thereof Download PDFInfo
- Publication number
- CN100387762C CN100387762C CNB2006100523813A CN200610052381A CN100387762C CN 100387762 C CN100387762 C CN 100387762C CN B2006100523813 A CNB2006100523813 A CN B2006100523813A CN 200610052381 A CN200610052381 A CN 200610052381A CN 100387762 C CN100387762 C CN 100387762C
- Authority
- CN
- China
- Prior art keywords
- polyacrylonitrile
- carbon fiber
- macropore
- mesopore
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 44
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 43
- 229920002239 polyacrylonitrile Polymers 0.000 title claims abstract description 42
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 45
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 239000007787 solid Substances 0.000 claims abstract description 3
- 238000009987 spinning Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical group CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 16
- 239000000178 monomer Substances 0.000 claims description 15
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 229920001519 homopolymer Polymers 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- -1 acrylic ester Chemical class 0.000 claims 2
- 229920002521 macromolecule Polymers 0.000 claims 2
- 229940117958 vinyl acetate Drugs 0.000 claims 2
- 238000010041 electrostatic spinning Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 claims 1
- 239000007921 spray Substances 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 238000001523 electrospinning Methods 0.000 abstract description 13
- 239000011148 porous material Substances 0.000 abstract description 13
- 238000001179 sorption measurement Methods 0.000 abstract description 13
- 241000894006 Bacteria Species 0.000 abstract description 3
- 241000700605 Viruses Species 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 239000006184 cosolvent Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000003763 carbonization Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VFLGIUJNNLIYBO-UHFFFAOYSA-N C(C(=C)C)(=O)OCCCC.C(C(=C)C)(=O)OC.C(C=C)#N Chemical compound C(C(=C)C)(=O)OCCCC.C(C(=C)C)(=O)OC.C(C=C)#N VFLGIUJNNLIYBO-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Landscapes
- Nonwoven Fabrics (AREA)
- Carbon And Carbon Compounds (AREA)
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明公开的聚丙烯腈基介孔-大孔超细碳纤维是直径为10纳米~5微米的实心碳纤维或者中空碳纤维,碳纤维上具有孔径在20~100纳米的介孔或大孔。其制备方法:将一种在非氧化气氛下可充分热分解的聚合物与聚丙烯腈或聚丙烯腈共聚物溶解于共溶剂中,通过高压静电纺丝的方法制备成超细纤维;再将该纤维经过干燥、100~300℃下预氧化,然后在氮气或其它惰性气体氛围中,温度为300~1800℃之间进行碳化。其中可热解的聚合物完全分解,在纤维中留下孔径在20~100纳米的孔。本发明的超细碳纤维纤维直径小、比表面积大,孔径和孔形态容易调节,由于孔径处于介孔和大孔范围,纤维特别适合于某些大粒径颗粒(如细菌和病毒)的吸附和分离。The polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber disclosed by the invention is a solid carbon fiber or hollow carbon fiber with a diameter of 10 nanometers to 5 microns, and the carbon fiber has mesopores or macropores with a diameter of 20 to 100 nanometers. Its preparation method: dissolve a polymer that can be fully thermally decomposed under a non-oxidizing atmosphere and polyacrylonitrile or polyacrylonitrile copolymer in a co-solvent, and prepare superfine fibers by high-voltage electrospinning; then The fiber is dried, pre-oxidized at 100-300°C, and then carbonized at a temperature of 300-1800°C in nitrogen or other inert gas atmosphere. The pyrolyzable polymer decomposes completely, leaving pores with a diameter of 20-100 nanometers in the fiber. The ultra-fine carbon fiber fiber of the present invention has small diameter, large specific surface area, and easy adjustment of pore size and pore shape. Because the pore size is in the range of mesopore and macropore, the fiber is particularly suitable for the adsorption and absorption of certain large particle size particles (such as bacteria and viruses). separate.
Description
技术领域 technical field
本发明涉及具有介孔或大孔结构的超细碳纤维及其制备方法,具体涉及一种聚丙烯腈基介孔或大孔超细碳纤维及其制备方法,The invention relates to ultrafine carbon fibers with mesoporous or macroporous structures and a preparation method thereof, in particular to a polyacrylonitrile-based mesoporous or macroporous ultrafine carbon fiber and a preparation method thereof,
背景技术 Background technique
多孔碳纤维在物质吸附、分离、催化剂载体、储氢材料、超级电容器专用活性炭等方面具有重要的应用价值。孔径大小和分布对多孔碳纤维的性质具有决定性影响。目前制备多孔碳纤维的方法主要是将由溶液纺丝或熔融纺丝等方法得到的有机高分子纤维经过高温碳化后,在高温下以水蒸气、一氧化碳、二氧化碳等气氛对进行活化,各种小分子添加剂如金属离子、磷酸(CN00117577.7)、硼酸(CN99116239.0)等等有助于提高碳纤维的空隙率、比表面积。另一种方法是将天然纤维,如椰壳纤维等经过高温碳化、活化等工艺制成。但是,通常以上述方法得到的多孔活性碳纤维及中空纤维膜中孔的直径小于2纳米、属于微孔范围。对于细菌、病毒等微生物的吸附、过滤等问题而言,微孔的作用很不明显。同时,对于超级电容器专用的活性炭而言,当孔径小于2纳米时,电解质溶液已经无法浸润,不利于提高其电容量。因此,具有介孔(2纳米-50纳米)和大孔结构(>50纳米)的碳纤维将在某些特定领域具有非常重要的作用。中国专利CN02103749.3公开的一种由70-80%聚丙烯腈、5-15%聚甲基丙烯酸甲酯和5-15%聚乙烯吡咯烷酮的混合溶液制备中空碳纤维膜的方法。该膜截留分子量为5-15万,属于超滤膜范围。但其纺丝方法采用溶液纺丝法,而溶液纺丝方法得到的纤维直径一般为10微米左右,不属于超细纤维的范围。Porous carbon fiber has important application value in material adsorption, separation, catalyst carrier, hydrogen storage material, special activated carbon for supercapacitor, etc. Pore size and distribution have a decisive influence on the properties of porous carbon fibers. At present, the method of preparing porous carbon fiber is mainly to carbonize the organic polymer fiber obtained by solution spinning or melt spinning at high temperature, then activate it with water vapor, carbon monoxide, carbon dioxide and other atmospheres at high temperature, and various small molecule additives Such as metal ions, phosphoric acid (CN00117577.7), boric acid (CN99116239.0), etc. help to increase the porosity and specific surface area of carbon fibers. Another method is to make natural fibers, such as coconut fiber, etc. through high-temperature carbonization, activation and other processes. However, the diameter of the pores in the porous activated carbon fibers and hollow fiber membranes usually obtained by the above method is less than 2 nanometers, which belongs to the range of micropores. For the adsorption and filtration of microorganisms such as bacteria and viruses, the role of micropores is not obvious. At the same time, for activated carbon dedicated to supercapacitors, when the pore size is less than 2 nanometers, the electrolyte solution can no longer infiltrate, which is not conducive to improving its capacitance. Therefore, carbon fibers with mesoporous (2nm-50nm) and macroporous structures (>50nm) will play a very important role in some specific fields. Chinese patent CN02103749.3 discloses a method for preparing a hollow carbon fiber membrane from a mixed solution of 70-80% polyacrylonitrile, 5-15% polymethylmethacrylate and 5-15% polyvinylpyrrolidone. The molecular weight cut-off of the membrane is 50,000-150,000, which belongs to the range of ultrafiltration membranes. However, its spinning method adopts a solution spinning method, and the fiber diameter obtained by the solution spinning method is generally about 10 microns, which does not belong to the scope of superfine fibers.
另一方面,高压静电纺丝是一种制备高分子超细纤维、纤维毡和无纺布的有效手段。用该方法制备的纤维无纺布具有纤维直径小、均一性好、孔隙率高、比表面积大等优点。不同于传统的溶液纺丝和熔体纺丝,高压静电纺丝所得到的纤维直径一般为几十纳米至数微米,比传统纺丝方法得到的纤维直径小得多,因此具有广阔的应用前景。韩国专利KR2002008227给出一种用高压静电纺丝制造超级电容器专用碳纳米纤维的方法,但是其纤维不具有多孔结构。迄今为止,未见有用高压静电纺丝方法制备介孔-大孔碳纤维的专利和报道。On the other hand, high-voltage electrospinning is an effective means to prepare polymer ultrafine fibers, fiber mats and non-woven fabrics. The fiber non-woven fabric prepared by this method has the advantages of small fiber diameter, good uniformity, high porosity, large specific surface area and the like. Different from traditional solution spinning and melt spinning, the diameter of fibers obtained by high-voltage electrospinning is generally tens of nanometers to several microns, which is much smaller than that obtained by traditional spinning methods, so it has broad application prospects . Korean patent KR2002008227 provides a method for manufacturing carbon nanofibers for supercapacitors by high-voltage electrospinning, but the fibers do not have a porous structure. So far, there are no patents and reports on the preparation of mesoporous-macroporous carbon fibers by high-voltage electrospinning.
发明内容 Contents of the invention
本发明的目的在于提供一种聚丙烯腈基介孔-大孔超细碳纤维及其制备方法。The object of the present invention is to provide a polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and a preparation method thereof.
本发明的聚丙烯腈基介孔-大孔超细碳纤维是直径为10纳米~5微米的实心碳纤维或者中空碳纤维,碳纤维上具有孔径在20~100纳米的介孔或大孔。The polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber of the present invention is a solid carbon fiber or hollow carbon fiber with a diameter of 10 nanometers to 5 microns, and the carbon fiber has mesopores or macropores with a diameter of 20 to 100 nanometers.
碳纤维横截面的形状可以是圆形、环形、椭圆形、多边形或其它一切非圆的形状。The shape of the carbon fiber cross section can be circular, circular, elliptical, polygonal or any other non-circular shape.
本发明的聚丙烯腈基介孔-大孔超细碳纤维的制备方法,包括以下步骤:The preparation method of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber of the present invention comprises the following steps:
1)将高分子均聚物或共聚物与聚丙烯腈或聚丙烯腈共聚物按重量比1∶10~10∶1溶解在有机溶剂中,配成均匀的溶液,其中,丙烯腈在全部聚合物中的重量含量为1%至99%,溶液中聚合物的重量浓度为0.5%至60%;1) Dissolve the polymer homopolymer or copolymer and polyacrylonitrile or polyacrylonitrile copolymer in an organic solvent in a weight ratio of 1:10 to 10:1 to form a uniform solution, wherein acrylonitrile is fully polymerized The weight content in the product is 1% to 99%, and the weight concentration of the polymer in the solution is 0.5% to 60%;
2)将上述溶液采用高压静电纺丝方法制备成超细纤维,纺丝电压在1000-200,000伏特,喷丝速度在0.01至100毫升/小时,喷丝头与接收器的距离在5至50厘米之间;2) The above solution is prepared into superfine fibers by high-voltage electrospinning method, the spinning voltage is 1000-200,000 volts, the spinning speed is 0.01-100 ml/hour, and the distance between the spinneret and the receiver is 5-50 cm between;
3)将制得的超细纤维在50-150℃下进行干燥,然后在200-300℃下预氧化,随后在氮气或氩气惰性气体保护下缓慢升温至600-1800℃,并保温0.1-10小时,其中惰性气体的流速在0.1毫升/分钟至100毫升/分钟之间,得到聚丙烯腈基介孔-大孔超细碳纤维。3) Dry the prepared ultrafine fibers at 50-150°C, then pre-oxidize at 200-300°C, then slowly raise the temperature to 600-1800°C under the protection of nitrogen or argon inert gas, and keep warm for 0.1- For 10 hours, wherein the flow rate of the inert gas was between 0.1 ml/min and 100 ml/min, polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fibers were obtained.
为了进一步提高碳纤维的比表面积,可以将得到的聚丙烯腈基介孔-大孔超细碳纤维在700~900℃用水蒸气、一氧化碳或二氧化碳进一步进行活化。In order to further increase the specific surface area of the carbon fiber, the obtained polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber can be further activated with water vapor, carbon monoxide or carbon dioxide at 700-900°C.
本发明中,高分子均聚物或共聚物的选择,需要满足三个条件:一、能够与聚丙烯腈或者聚丙烯腈共聚物共同溶解在某种溶剂中;二、在溶剂挥发之后,该聚合物与聚丙烯腈或者聚丙烯腈共聚物发生相分离;三、在非氧化气氛下可充分热分解。上述高分子均聚物或共聚物可以选用由含活性不饱和双键的单体形成的均聚物或者以两种或者两种以上的含活性不饱和双键的单体以各种比例形成的共聚物。上述含活性不饱和双键的单体可以是丙烯酸酯类单体、丙烯腈、苯乙烯及其衍生物、α-甲基苯乙烯及其衍生物、醋酸乙烯酯及其衍生物、丁二烯、异戊二烯、氯乙烯、乙烯基吡咯烷酮、丙烯酰胺类单体或乙烯基吡啶等等。其中优选的是丙烯酸酯类单体,包括甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸己酯、甲基丙烯酸羟乙酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸己酯、丙烯酸羟乙酯或甲基丙烯酸缩水甘油酯等。In the present invention, the selection of polymer homopolymers or copolymers needs to meet three conditions: one, be able to dissolve together with polyacrylonitrile or polyacrylonitrile copolymers in a certain solvent; two, after the solvent volatilizes, the Phase separation occurs between the polymer and polyacrylonitrile or polyacrylonitrile copolymer; third, it can be fully thermally decomposed in a non-oxidizing atmosphere. The above-mentioned polymer homopolymer or copolymer can be selected from a homopolymer formed by a monomer containing an active unsaturated double bond or a monomer formed by two or more monomers containing an active unsaturated double bond in various ratios. copolymer. The above monomers containing active unsaturated double bonds can be acrylate monomers, acrylonitrile, styrene and its derivatives, α-methylstyrene and its derivatives, vinyl acetate and its derivatives, butadiene , isoprene, vinyl chloride, vinylpyrrolidone, acrylamide monomer or vinylpyridine, etc. Among them, preferred are acrylate monomers, including methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, hydroxyethyl methacrylate, methyl acrylate, ethyl acrylate, Butyl acrylate, hexyl acrylate, hydroxyethyl acrylate or glycidyl methacrylate, etc.
本发明中,所说的聚丙烯腈共聚物是聚丙烯腈与含活性不饱和双键的丙烯酸酯类单体、苯乙烯及其衍生物、α-甲基苯乙烯及其衍生物、醋酸乙烯酯及其衍生物、丁二烯、异戊二烯、氯乙烯、乙烯基吡咯烷酮、丙烯酰胺类单体或乙烯基吡啶形成的共聚物。In the present invention, said polyacrylonitrile copolymer is polyacrylonitrile and acrylate monomer containing active unsaturated double bonds, styrene and its derivatives, α-methylstyrene and its derivatives, vinyl acetate Copolymers formed from esters and their derivatives, butadiene, isoprene, vinyl chloride, vinylpyrrolidone, acrylamide monomers or vinylpyridine.
本发明中,所说的有机溶剂是二甲基甲酰胺,二甲基乙酰胺或二甲基亚砜。In the present invention, said organic solvent is dimethylformamide, dimethylacetamide or dimethylsulfoxide.
本发明的有益效果在于:纤维直径小、比表面积大,孔径和孔形态容易调节,由于孔径处于介孔和大孔范围,纤维特别适合于某些大粒径颗粒(如细菌和病毒)的吸附和分离。The beneficial effects of the present invention are: the fiber diameter is small, the specific surface area is large, and the pore size and pore shape are easy to adjust. Since the pore size is in the range of mesopores and macropores, the fibers are especially suitable for the adsorption of certain large-diameter particles (such as bacteria and viruses) and separation.
附图说明 Description of drawings
图1是由组成比为40∶60的聚丙烯腈/丙烯腈-甲基丙烯酸甲酯共混物得到的电纺丝纤维的扫描电子显微镜照片;Fig. 1 is the scanning electron micrograph of the electrospun fiber that is obtained by the polyacrylonitrile/acrylonitrile-methyl methacrylate blend of 40:60 by composition ratio;
图2是由组成比为40∶60的聚丙烯腈/丙烯腈-甲基丙烯酸甲酯共混物得到的介孔-大孔超细碳纤维的扫描电子显微镜照片;Fig. 2 is the scanning electron micrograph of the mesoporous-macroporous ultrafine carbon fiber that the polyacrylonitrile/acrylonitrile-methyl methacrylate blend that composition ratio obtains of 40:60;
图3是聚丙烯腈基介孔-大孔超细碳纤维的扫描电子显微镜照片。Figure 3 is a scanning electron micrograph of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fibers.
介孔-大孔碳纤维的结构用扫描电子显微镜和透射电子显微镜观察。纤维的比表面积用氮气吸附法测量。The structure of mesoporous-macroporous carbon fibers was observed by scanning electron microscopy and transmission electron microscopy. The specific surface area of the fibers was measured by a nitrogen gas adsorption method.
具体实施方式 Detailed ways
实施例1Example 1
聚丙烯腈4克和组成比为1∶9的丙烯腈-甲基丙烯酸甲酯共聚物6克溶解在250克二甲基甲酰胺溶液中采用高压静电纺丝获得超细纤维、纤维毡或无纺布。纺丝电压在30,000伏,喷丝速度在0.5毫升/小时。喷丝头与接收器的距离为15厘米。得到的电纺丝纤维见图1,纤维的直径大约是100至500纳米。将电纺所得到的纤维毡在80℃真空干燥,然后在280℃预氧化2小时,随后在氮气的保护之下缓慢升温至800℃,并保温1小时,氮气的流速为10毫升/分钟。其中可热解的聚合物完全分解,得到介孔-大孔超细碳纤维,如图2所示,碳纤维的直径在500纳米以下。纤维内部和表面均分布有大量的微孔,孔的直径为20纳米左右。其比表面积经氮气吸附法测量为50平方米/克。4 grams of polyacrylonitrile and 6 grams of acrylonitrile-methyl methacrylate copolymer with a composition ratio of 1:9 were dissolved in 250 grams of dimethylformamide solution and obtained by high-voltage electrospinning to obtain superfine fibers, fiber mats or non-woven fabrics. spinning. The spinning voltage was 30,000 volts and the spinning speed was 0.5 ml/hour. The distance between the spinneret and receiver was 15 cm. The obtained electrospun fibers are shown in Fig. 1, and the diameter of the fibers is about 100 to 500 nm. The fiber mat obtained by electrospinning was vacuum-dried at 80°C, then pre-oxidized at 280°C for 2 hours, then slowly heated to 800°C under the protection of nitrogen, and kept for 1 hour, and the flow rate of nitrogen was 10 ml/min. Wherein the pyrolyzable polymer is completely decomposed to obtain mesoporous-macroporous ultrafine carbon fibers, as shown in Figure 2, the diameter of the carbon fibers is below 500 nanometers. A large number of micropores are distributed inside and on the surface of the fiber, and the diameter of the pores is about 20 nanometers. Its specific surface area was measured by the nitrogen adsorption method to be 50 m2/g.
实施例2Example 2
聚丙烯腈2克和组成比为1∶8.5∶0.5的丙烯腈-甲基丙烯酸甲酯-聚苯乙烯共聚物8克溶解在250克二甲基亚砜溶液中,采用高压静电纺丝获得纤维毡。纺丝电压在30,000伏,喷丝速度在2毫升/小时。喷丝头与接收器的距离为15厘米。干燥、预氧化与实施例1相同,炭化温度为700℃,时间为2小时。碳化后,纤维明显呈多孔状,相互之间有所粘连(见图3所示)。其比表面积经氮气吸附法测量为92平方米/克。将得到的介孔-大孔超细碳纤维在800℃用二氧化碳进行活化,比表面积经氮气吸附法测量为245平方米/克。2 grams of polyacrylonitrile and 8 grams of acrylonitrile-methyl methacrylate-polystyrene copolymer with a composition ratio of 1:8.5:0.5 were dissolved in 250 grams of dimethyl sulfoxide solution, and high-voltage electrospinning was used to obtain fibers felt. The spinning voltage was 30,000 volts and the spinning speed was 2 ml/hour. The distance between the spinneret and receiver was 15 cm. Drying and pre-oxidation are the same as in Example 1, the carbonization temperature is 700° C., and the time is 2 hours. After carbonization, the fibers are obviously porous and adhere to each other (see Figure 3). Its specific surface area was 92 m2/g as measured by the nitrogen adsorption method. The obtained mesoporous-macroporous ultrafine carbon fiber was activated with carbon dioxide at 800° C., and the specific surface area was measured as 245 square meters per gram by nitrogen adsorption method.
实施例3Example 3
聚丙烯腈5克和组成比为1∶8∶1的丙烯腈-甲基丙烯酸甲酯-甲基丙烯酸丁酯三元共聚物5克溶解在250克二甲基乙酰胺溶液中,用高压静电纺丝获得纤维毡。纺丝电压在20,000伏,喷丝速度为5毫升/小时。喷丝头与接收器的距离为15厘米。干燥、预氧化与实施例1相同,炭化温度为1000℃,时间为2小时。纤维的直径为5微米。纤维中含有大量的微孔,孔的直径为100纳米左右。其比表面积经氮气吸附法测量为54平方米/克。5 grams of polyacrylonitrile and 5 grams of acrylonitrile-methyl methacrylate-butyl methacrylate terpolymer with a composition ratio of 1:8:1 were dissolved in 250 grams of dimethylacetamide solution, Fiber mats are obtained by spinning. The spinning voltage was 20,000 volts and the spinning speed was 5 ml/hour. The distance between the spinneret and receiver was 15 cm. Drying and pre-oxidation are the same as in Example 1, the carbonization temperature is 1000° C., and the time is 2 hours. The diameter of the fibers is 5 microns. The fiber contains a large number of micropores, and the diameter of the pores is about 100 nanometers. Its specific surface area was measured by the nitrogen adsorption method to be 54 m2/g.
实施例4Example 4
聚丙烯腈5克和组成比为1∶9的丙烯腈-丙烯酸乙酯共聚物5克溶解在250克二甲基乙酰胺溶液中,用高压静电纺丝获得纤维毡。纺丝电压30,000伏,喷丝速度为0.5毫升/小时。喷丝头与接收器的距离为15厘米。干燥、预氧化与实施例1相同,炭化温度为1800℃,时间为0.5小时。纤维的直径为0.4微米。纤维中含有大量的微孔,孔的直径为20纳米左右。其比表面积经氮气吸附法测量为356平方米/克。5 grams of polyacrylonitrile and 5 grams of acrylonitrile-ethyl acrylate copolymer with a composition ratio of 1:9 were dissolved in 250 grams of dimethylacetamide solution, and high-voltage electrospinning was used to obtain a fiber mat. The spinning voltage was 30,000 volts and the spinning speed was 0.5 ml/hour. The distance between the spinneret and receiver was 15 cm. Drying and pre-oxidation are the same as in Example 1, the carbonization temperature is 1800° C., and the time is 0.5 hour. The diameter of the fibers is 0.4 microns. The fiber contains a large number of micropores, and the diameter of the pores is about 20 nanometers. Its specific surface area was 356 m2/g as measured by the nitrogen gas adsorption method.
实施例5Example 5
组成比为0.5∶9.5的聚丙烯酸-聚丙烯腈二元共聚物7克和组成比为1∶7∶2的丙烯腈-甲基丙烯酸甲酯-甲基丙烯酸丁酯三元共聚物3克溶解在250克二甲基甲酰胺溶液中,采用高压静电纺丝获得纤维毡。纺丝电压在20000伏,喷丝速度在1毫升/小时。喷丝头与接收器的距离为15厘米。干燥、预氧化与实施例1相同,炭化温度为800℃,时间为9小时。纤维的直径为2微米。纤维中微孔的直径为20纳米左右。其比表面积经氮气吸附法测量为132平方米/克。7 grams of polyacrylic acid-polyacrylonitrile binary copolymer with a composition ratio of 0.5:9.5 and 3 grams of acrylonitrile-methyl methacrylate-butyl methacrylate terpolymer with a composition ratio of 1:7:2 were dissolved Fiber mats were obtained by high-voltage electrospinning in 250 g of dimethylformamide solution. The spinning voltage was 20,000 volts, and the spinning speed was 1 ml/hour. The distance between the spinneret and receiver was 15 cm. Drying and pre-oxidation are the same as in Example 1, the carbonization temperature is 800° C., and the time is 9 hours. The diameter of the fibers is 2 microns. The diameter of the micropores in the fiber is about 20 nanometers. Its specific surface area was 132 m2/g as measured by the nitrogen gas adsorption method.
实施例6Example 6
组成比为9∶1的聚乙烯基吡咯烷酮-聚丙烯腈二元共聚物5克和组成比为9∶1的丙烯腈-甲基丙烯酸乙酯共聚物5克溶解在200克二甲基甲酰胺溶液中,采用高压静电纺丝获得纤维毡。纺丝电压微30000伏,喷丝速度在0.5毫升/小时。喷丝头与接收器的距离为12厘米。干燥、预氧化炭化条件与实施例1相同。纤维的平均直径为1.5微米。纤维中微孔的直径为30纳米左右。其比表面积经氮气吸附法测量为254平方米/克。5 grams of polyvinylpyrrolidone-polyacrylonitrile binary copolymer with a composition ratio of 9:1 and 5 grams of acrylonitrile-ethyl methacrylate copolymer with a composition ratio of 9:1 were dissolved in 200 grams of dimethylformamide In the solution, a fiber mat is obtained by high-voltage electrospinning. The spinning voltage is slightly 30000 volts, and the spinning speed is 0.5 ml/hour. The distance between the spinneret and receiver was 12 cm. Drying, pre-oxidation carbonization conditions are the same as in Example 1. The average diameter of the fibers is 1.5 microns. The diameter of the micropores in the fiber is about 30 nanometers. Its specific surface area was 254 m2/g as measured by the nitrogen adsorption method.
实施例7Example 7
组成比为9∶1的聚丙烯酰胺-聚丙烯腈二元共聚物5克和组成比为9∶1的丙烯腈-甲基丙烯酸甲酯共聚物5克溶解在200克二甲基甲酰胺溶液中,采用高压静电纺丝获得纤维毡。纺丝电压微30000伏,喷丝速度0.8毫升/小时。喷丝头与接收器的距离为12厘米。干燥、预氧化炭化条件与实施例1相同。纤维的平均直径为2微米。纤维中微孔的直径为30纳米左右。其比表面积经氮气吸附法测量为203平方米/克。5 grams of polyacrylamide-polyacrylonitrile binary copolymer with a composition ratio of 9:1 and 5 grams of acrylonitrile-methyl methacrylate copolymer with a composition ratio of 9:1 are dissolved in 200 grams of dimethylformamide solution In this process, high-voltage electrospinning was used to obtain fiber mats. The spinning voltage is micro 30000 volts, and the spinning speed is 0.8 ml/hour. The distance between the spinneret and receiver was 12 cm. Drying, pre-oxidation carbonization conditions are the same as in Example 1. The average diameter of the fibers is 2 microns. The diameter of the micropores in the fiber is about 30 nanometers. Its specific surface area was 203 m2/g as measured by the nitrogen gas adsorption method.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100523813A CN100387762C (en) | 2006-07-10 | 2006-07-10 | A kind of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100523813A CN100387762C (en) | 2006-07-10 | 2006-07-10 | A kind of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1884643A CN1884643A (en) | 2006-12-27 |
CN100387762C true CN100387762C (en) | 2008-05-14 |
Family
ID=37582946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100523813A Expired - Fee Related CN100387762C (en) | 2006-07-10 | 2006-07-10 | A kind of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100387762C (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101817517B (en) * | 2009-02-27 | 2013-01-02 | 财团法人工业技术研究院 | Method for forming carbon nanofibers |
CN102557008B (en) * | 2009-02-27 | 2014-01-22 | 财团法人工业技术研究院 | Method for forming electrode of super capacitor |
CA2820810C (en) * | 2009-06-10 | 2014-01-28 | Mitsubishi Rayon Co., Ltd. | Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof |
CN102127828B (en) * | 2011-01-25 | 2012-11-21 | 华南师范大学 | Porous nano carbon fiber material, lithium battery cathode material and cathode plate |
CN103031771B (en) * | 2011-09-29 | 2015-04-01 | 苏州捷迪纳米科技有限公司 | Carbon nanotube/active carbon core-shell structure carbon paper and preparation method |
CN102505403B (en) * | 2011-09-29 | 2014-04-02 | 大连理工大学 | A preparation method of activated carbon fiber membrane with hierarchical pore structure |
CN102856611B (en) * | 2012-04-09 | 2015-02-04 | 中南大学 | Micro/nano structured cathode material for lithium air batteries |
CN102637879A (en) * | 2012-04-09 | 2012-08-15 | 中南大学 | Micro-nano-structure anode material for Li-air battery and preparation method of micro-nano-structure anode material |
CN102936764A (en) * | 2012-11-27 | 2013-02-20 | 天津工业大学 | Preparation method of polyacrylonitrile-based carbon nanofibers |
CN103603115B (en) * | 2013-10-30 | 2016-03-02 | 中国第一汽车股份有限公司 | The preparation method of the ultrafine carbon fiber bundle of air aldehyde resin strengthening |
CN103876859A (en) * | 2014-03-25 | 2014-06-25 | 南开大学 | Artificial blood vessel composed of micrometer fiber and provided with large-hole structure and preparation method and application thereof |
CN103855361B (en) * | 2014-03-28 | 2016-08-17 | 清华大学 | The preparation method of nitrating porous carbon nanofiber cloth |
CN103878027B (en) * | 2014-04-16 | 2015-09-16 | 扬州大学 | 4-vinylpridine-co-acrylonitrile and platinum composite nano-line preparation method |
CN104060348B (en) * | 2014-06-16 | 2016-04-20 | 东华大学 | The preparation method of the polyacrylonitrile-radical nanoporous carbon fiber being pore-foaming agent with caged silsesquioxane and goods thereof |
CN105322193B (en) * | 2014-07-30 | 2018-06-12 | 中国科学院大连化学物理研究所 | A kind of carbon nano-fiber film and its preparation and the application in lithium air battery positive electrode |
CN105603584B (en) * | 2016-01-28 | 2017-12-22 | 东华大学 | Mesoporous activated carbon fiber of electrode of super capacitor polyacrylonitrile and preparation method thereof |
CN105869927B (en) * | 2016-06-28 | 2018-05-08 | 扬州大学 | A kind of method that random copolymer prepares high-specific surface area and high specific capacitance carbon fiber |
CN105926085B (en) * | 2016-07-06 | 2019-05-03 | 天津工业大学 | A kind of preparation method of carbon nanofiber/nanoparticle composite material |
CN106757539B (en) * | 2016-12-13 | 2018-11-23 | 东北大学秦皇岛分校 | A kind of preparation method of Fe-Mn cycle and transference porous carbon |
US11180870B2 (en) * | 2018-08-17 | 2021-11-23 | Cence Inc. | Carbon nanofiber and method of manufacture |
CN111501135A (en) * | 2019-01-30 | 2020-08-07 | 宁波方太厨具有限公司 | Preparation method of ozone catalytic nanofiber |
CN110158237A (en) * | 2019-04-30 | 2019-08-23 | 苏州大学 | A kind of preparation method and application of the porous carbon nanofiber film of rapid heavy metal ion adsorption |
ES3025806T3 (en) * | 2019-06-13 | 2025-06-09 | Forschungszentrum Juelich Gmbh | Production method for carbon fibre material for separating nh3 from gas mixtures, and the use of this carbon fibre material |
CN110284215A (en) * | 2019-06-21 | 2019-09-27 | 扬州大学 | High nitrogen doped carbon nano-fiber of multi-stage porous with high capacitance and preparation method thereof |
CN111092204A (en) * | 2019-12-12 | 2020-05-01 | 银隆新能源股份有限公司 | Hollow carbon fiber modified silicon-carbon material, preparation method and application thereof |
CN111584886B (en) * | 2020-05-21 | 2022-06-21 | 上海电气集团股份有限公司 | Carbon nanofiber, diffusion layer, membrane electrode, fuel cell and preparation method and application thereof |
CN114438620A (en) * | 2022-01-06 | 2022-05-06 | 苏州科技大学 | Hierarchical porous molybdenum carbide nanofiber and preparation method and application thereof |
CN117531298A (en) * | 2023-10-24 | 2024-02-09 | 珠海醋酸纤维有限公司 | Preparation method of hollow activated carbon fiber and filter material containing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1225695A (en) * | 1996-05-15 | 1999-08-11 | 海珀里昂催化国际有限公司 | High surface area nanofibers |
KR20050014033A (en) * | 2005-01-18 | 2005-02-05 | (주) 아모센스 | Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers |
JP2005060849A (en) * | 2003-08-11 | 2005-03-10 | Toray Ind Inc | Porous carbon fiber and method for producing the same |
CN1632199A (en) * | 2004-11-29 | 2005-06-29 | 东华大学 | Preparation method of large-pore activated carbon fiber |
-
2006
- 2006-07-10 CN CNB2006100523813A patent/CN100387762C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1225695A (en) * | 1996-05-15 | 1999-08-11 | 海珀里昂催化国际有限公司 | High surface area nanofibers |
JP2005060849A (en) * | 2003-08-11 | 2005-03-10 | Toray Ind Inc | Porous carbon fiber and method for producing the same |
CN1632199A (en) * | 2004-11-29 | 2005-06-29 | 东华大学 | Preparation method of large-pore activated carbon fiber |
KR20050014033A (en) * | 2005-01-18 | 2005-02-05 | (주) 아모센스 | Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers |
Also Published As
Publication number | Publication date |
---|---|
CN1884643A (en) | 2006-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100387762C (en) | A kind of polyacrylonitrile-based mesoporous-macroporous ultrafine carbon fiber and preparation method thereof | |
CN103422194B (en) | A kind of strong-hydrophobicity porous carbon nanofiber and preparation method thereof | |
CN103882559B (en) | High-ratio surface porous carbon fiber and preparation method thereof and application | |
CN107137979B (en) | Micron fiber three-dimensional framework/polymer nanofiber composite filter material and preparation method thereof | |
CN103014921B (en) | Multi-hole carbon fiber and preparation method thereof | |
CN102517673B (en) | A method for preparing polymer porous nanofibers by mixed phase separation | |
CN103215693B (en) | Graphene-oxide-modified phenolic-resin-based ultrafine porous carbon fiber and preparation method thereof | |
CN101586256B (en) | Preparation of porosity electrospun fiber | |
US20180313002A1 (en) | Porous carbon nanofibers and manufacturing thereof | |
CN105780198B (en) | A kind of preparation method of order mesoporous carbon nano-fiber | |
CN104014196B (en) | A kind of high absorption nanofiber composite filter material and preparation method thereof | |
CN104805535A (en) | Preparation method of porous carbon nanofiber | |
CN105603584B (en) | Mesoporous activated carbon fiber of electrode of super capacitor polyacrylonitrile and preparation method thereof | |
CN111074380B (en) | A kind of stretching fluid of graphene oxide/sodium polyacrylate and its application in the preparation of graphene | |
CN106120027A (en) | A kind of preparation method of high porosity mesopore nano-graphene fiber | |
CN102560889B (en) | Method for producing bead-stringed PAN (polyacrylonitrile)-based carbon fiber electrode materials by electrostatic spinning | |
CN105696114A (en) | Preparation method of carbon fiber material with adjustable pore diameter and porosity and carbon fiber material | |
CN105926156A (en) | Porous trans-rubber superfine fiber non-woven fabric as well as preparation method and application thereof | |
CN106087453B (en) | A kind of thermoplastic block copolymers micro/nano fibrous membrane material and preparation method thereof | |
CN1328425C (en) | Active carbon fiber in hollow morphological structure, and preparation method | |
CN109082731B (en) | Crosslinked porous carbon nanofiber and preparation method thereof | |
CN105088869B (en) | A kind of organic-inorganic nano fibre composite paper and its preparation method and application | |
CN110592700B (en) | Method for preparing porous cellulose diacetate fibers by normal-temperature dry spinning, and product and application thereof | |
Li et al. | Nano-porous ultra-high specific surface ultrafine fibers | |
CN113373552B (en) | Carbon fiber and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080514 Termination date: 20120710 |