[go: up one dir, main page]

CN100385451C - Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set - Google Patents

Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set Download PDF

Info

Publication number
CN100385451C
CN100385451C CNB2005100901761A CN200510090176A CN100385451C CN 100385451 C CN100385451 C CN 100385451C CN B2005100901761 A CNB2005100901761 A CN B2005100901761A CN 200510090176 A CN200510090176 A CN 200510090176A CN 100385451 C CN100385451 C CN 100385451C
Authority
CN
China
Prior art keywords
msub
mrow
msup
mover
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005100901761A
Other languages
Chinese (zh)
Other versions
CN1912889A (en
Inventor
田捷
陈新建
张阳阳
杨鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chipone Technology Beijing Co Ltd
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CNB2005100901761A priority Critical patent/CN100385451C/en
Publication of CN1912889A publication Critical patent/CN1912889A/en
Application granted granted Critical
Publication of CN100385451C publication Critical patent/CN100385451C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Collating Specific Patterns (AREA)
  • Image Analysis (AREA)

Abstract

This invention relates to an identifying method for deformed fingerprints based on local triangle structure character set, on the basis of the character that relative deformation of fingerprint image is limit in local regions, which expresses fingerprints with a fuzzy character-local triangle structure character sets to convert the computation to integral similarity among fingerprints to similarity balance among character sets, first of all, which puts forward a fuzzy measurement method of similarity between two triangle structures then further makes up of a character vector composed of local similarities of all triangle structures then to map the pair of similarity vectors to a normalized number in the region of [0, 1] to quantize the integral similarity among fingerprint images to further get the matched result.

Description

基于局部三角结构特征集的形变指纹识别方法 Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set

技术领域 technical field

本发明属于生物特征识别领域,涉及图像处理、模式识别、计算机技术等前沿知识,特别涉及到利用局部特征信息和模糊相似度测量方法来实现非线性形变指纹图像的识别。The invention belongs to the field of biometric feature recognition, relates to frontier knowledge such as image processing, pattern recognition, and computer technology, and particularly relates to realizing the recognition of non-linearly deformed fingerprint images by using local feature information and a fuzzy similarity measurement method.

背景技术 Background technique

目前,生物特征识别技术的发展使得指纹识别技术越来越成熟,目前已经完全达到实用化。由于自动指纹识别系统价格的大幅度下降,自动指纹识别的应用不再仅局限于法律、公安领域。它可作为计算机确认用户的手段,可作为访问网络资源的信息安全技术,还可用于银行ATM卡和信用卡使用的确认、各类智能IC卡的双重确认、雇员证明和家用电子门锁等许多方面。At present, the development of biometric identification technology has made fingerprint identification technology more and more mature, and it has been fully practical at present. Due to the sharp drop in the price of automatic fingerprint identification systems, the application of automatic fingerprint identification is no longer limited to the fields of law and public security. It can be used as a means for computers to confirm users, as an information security technology for accessing network resources, and can also be used for confirmation of bank ATM cards and credit cards, double confirmation of various smart IC cards, employee certification and household electronic door locks, etc. .

由于指纹具有唯一性和稳定性的优点,而且采集方便,成本低廉,所以非常适合取代传统的口令作为身份认证的手段。将待匹配的指纹图像输入计算机,通过可靠有效的指纹识别算法,可以在短时间内完成任何人的身份识别。随着指纹识别系统在需要身份鉴定的领域的广泛应用,我们对识别算法准确度、适应性的要求也不断提高。指纹识别技术主要包括指纹图像采集、指纹图像增强、指纹图像特征提取、数据储存、指纹特征的比对与匹配等步骤。其中指纹图像特征提取和匹配是识别领域中的两个关键问题。Due to the advantages of uniqueness and stability, convenient collection and low cost, fingerprints are very suitable to replace traditional passwords as a means of identity authentication. Input the fingerprint image to be matched into the computer, and through the reliable and effective fingerprint recognition algorithm, the identity recognition of anyone can be completed in a short time. With the wide application of fingerprint recognition systems in fields that require identification, our requirements for the accuracy and adaptability of recognition algorithms are also increasing. Fingerprint identification technology mainly includes fingerprint image acquisition, fingerprint image enhancement, fingerprint image feature extraction, data storage, comparison and matching of fingerprint features and other steps. Among them, fingerprint image feature extraction and matching are two key issues in the field of recognition.

识别过程中,指纹特征的提取精度和准确度直接决定了指纹匹配性能的好坏,由于噪声的存在和图像质量增强算法的不完备等方面的原因,脊线骨架中必然存在的脊线断裂和毛刺等现象,都造成提取出来的特征中存在一定数量的伪特征信息,必须采取有效、快速、鲁棒的去伪算法将其从特征集中检测出来。During the identification process, the extraction precision and accuracy of fingerprint features directly determine the performance of fingerprint matching. Due to the existence of noise and the incompleteness of image quality enhancement algorithms, the ridge line breaks and Phenomena such as burrs all cause a certain amount of pseudo-feature information in the extracted features, which must be detected from the feature set by an effective, fast, and robust de-pseudo algorithm.

现有的指纹采集仪大都是按压式的,采集过程中弹性形变不可避免。造成指纹形变有两个主要的原因。其一,指纹的获取是一个从三维到二维的变形转换过程。指纹采集时不同的接触中心会产生不同的形变模型。由于不同的手指尖形状和柔韧程度区别很大,无法建立一个统一的三维模型对这一个过程作复原。其二,人在采集仪上施加的剪切力会引起形变。垂直于采集面的压力大小不同会造成采集的指纹图像的脊线粗细的变化;平行于采集面的力则会导致图像的压缩和拉伸;而沿着接触中心的扭力,则会引起图像的扭曲。非线性形变指纹图像的普遍存在,严重影响了指纹匹配算法的精确度,导致指纹识别系统整体性能的下降Most of the existing fingerprint collectors are push-type, and elastic deformation is inevitable during the collection process. There are two main reasons for fingerprint deformation. First, the acquisition of fingerprints is a transformation process from three-dimensional to two-dimensional. Different contact centers will produce different deformation models during fingerprint collection. Due to the great difference in the shape and flexibility of different fingertips, it is impossible to establish a unified three-dimensional model to restore this process. Second, the shear force exerted by a person on the collector will cause deformation. Different pressures perpendicular to the collection surface will cause changes in the thickness of the ridge lines of the collected fingerprint images; forces parallel to the collection surface will cause compression and stretching of the image; and torque along the contact center will cause image distortion. distortion. The ubiquity of non-linear deformed fingerprint images seriously affects the accuracy of the fingerprint matching algorithm, resulting in a decline in the overall performance of the fingerprint recognition system

由于传统的指纹匹配一般都建立在刚性的坐标体系下,没有或很少找到合适的方法描述指纹的弹性变化。原有的刚性变换仅通过弹性限界盒或可调参数阈值的方法弥补指纹拉伸造成两幅图中同一细节点不对应的损失。由于传统匹配方法无法容忍大量的脊线结构信息变形干扰,匹配准则依赖于脊线提取及其连接信息,匹配性能随输入指纹图像质量的下降而恶化。因此非线性形变指纹图像的匹配问题一直以来是该领域研究的亟待解决的热点问题和难点问题。Since the traditional fingerprint matching is generally based on a rigid coordinate system, no or few suitable methods have been found to describe the elastic changes of fingerprints. The original rigid transformation only uses elastic bounding boxes or adjustable parameter thresholds to compensate for the loss of fingerprint stretching that does not correspond to the same detail point in the two images. Because the traditional matching method cannot tolerate a large amount of deformation interference of ridge structure information, the matching criterion depends on the ridge extraction and its connection information, and the matching performance deteriorates with the decline of the quality of the input fingerprint image. Therefore, the matching problem of nonlinear deformed fingerprint images has always been a hot and difficult problem to be solved in this field.

近年来逐渐有更多的学者研究指纹特征由压力造成的非线性形变以及随时间序列的动态行为变化,对非线性形变指纹进行匹配。Ratha等提出直接检测加在扫描仪上的压力和力矩,并在用力过剩时拒绝采集,来减少和控制形变。Dorai等提出的方法对指纹影像中的形变进行检测并估计。但这两种方法都不能作用于已采集的指纹图像。Maio和Maltoni等提出了一个弹性形变模型来描述指纹在线采集过程中发生的非线性形变,对于理解指纹的形变过程很有帮助。但是由于单独的指纹图像提供的信息有限再加上噪声等因素的影响,要确定该模型中定义的各参数值是很困难的。Senior等在匹配前调整弹性形变图像,使脊线等间距分布来提高算法的准确率。但是,现实情况中指纹脊线等间距分布的可能性是很小的,而且该方法无法解决由于不同的采集区域引起的不同映射模式导致的形变问题。等提出一种三角匹配的算法来处理指纹图像大幅度形变的情况。较小的指纹的局部形变累积下来,导致了整个图像较大的形变量。但是局部小三角形形变可以组合成各种各样的形变模式,这些形变模式可能完全无法在真实的指纹匹配中实现,却可以符合某些来自不同手指的指纹的匹配情况,造成误识。Bazen等采用薄板样条模型来描述两个可能匹配的细节点列间的非线性形变。Ross等基于薄板样条模型计算出同一手指生成的指纹图像的平均形变量来解决弹性形变问题。但应用这个模型对待匹配的指纹进行“纠正”会导致不论两枚指纹是否来自同一个手指,两个指纹都会变得更相似。In recent years, more and more scholars have gradually studied the nonlinear deformation of fingerprint features caused by pressure and the dynamic behavior changes with time series, and matched the nonlinear deformation fingerprints. Ratha et al. proposed to directly detect the pressure and torque applied to the scanner, and refuse to collect when the force is excessive, so as to reduce and control the deformation. The method proposed by Dorai et al. detects and estimates the deformation in the fingerprint image. But neither of these two methods can act on the collected fingerprint images. Maio and Maltoni proposed an elastic deformation model to describe the nonlinear deformation that occurs during the online collection of fingerprints, which is very helpful for understanding the deformation process of fingerprints. However, due to the limited information provided by a single fingerprint image and the influence of noise and other factors, it is very difficult to determine the values of the parameters defined in the model. Senior et al adjusted the elastic deformation image before matching to make the ridges equally spaced to improve the accuracy of the algorithm. However, the possibility of equidistant distribution of fingerprint ridges in reality is very small, and this method cannot solve the deformation problem caused by different mapping modes caused by different acquisition areas. proposed a triangle matching algorithm to deal with the large deformation of the fingerprint image. The local deformations of the smaller fingerprints accumulate, resulting in larger deformations of the entire image. However, local small triangular deformations can be combined into a variety of deformation modes. These deformation modes may not be realized in real fingerprint matching at all, but they can match some fingerprints from different fingers, causing misrecognition. Bazen et al. used a thin-plate spline model to describe the nonlinear deformation between two possible matching detail point columns. Ross et al calculated the average deformation of fingerprint images generated by the same finger based on the thin-plate spline model to solve the problem of elastic deformation. But applying the model to "correct" the fingerprints to be matched resulted in two prints becoming more similar regardless of whether they came from the same finger or not.

综合以上分析研究我们发现,目前关于非线性形变指纹的匹配问题的研究只侧重于寻找和描述局部的配准,但是对于这些局部匹配构成的全局“配准模式”的合理性没有考虑。当应用这些方法对“局部形变”进行“纠正”时,既可以将来自同一个手指的两幅指纹图像作合理的形变恢复,也可能将一部分来自不同手指的相似指纹图像变得更加相似。Based on the above analysis and research, we found that the current research on the matching of nonlinear deformation fingerprints only focuses on finding and describing local registrations, but does not consider the rationality of the global "registration mode" formed by these local matchings. When these methods are used to "correct" the "local deformation", it is possible to recover two fingerprint images from the same finger reasonably, and it is also possible to make some similar fingerprint images from different fingers more similar.

发明内容 Contents of the invention

本发明的目的是针对指纹采集中得到的形变量较大的指纹图像,提出并实现一种自动指纹识别算法,能够对其进行准确、高效、鲁棒的识别,减少由于形变中细节点和脊线的不规则偏移导致的误识和拒识现象。The purpose of the present invention is to propose and implement an automatic fingerprint recognition algorithm for fingerprint images with large deformations obtained in fingerprint collection, which can accurately, efficiently and robustly recognize them, and reduce the number of points and ridges caused by deformation. The phenomenon of misrecognition and refusal of recognition caused by the irregular deviation of the line.

为达到上述目的,本发明的技术解决方案是提供一种基于局部三角结构特征集的形变指纹识别方法,其选取一种模糊特征量——局部细节点三角结构来表示指纹;计算模糊特征量间的相似度来刻画指纹间的整体相似度;选择细节点相对距离、连线角度差及其周围脊线的方向来定义局部三角结构;对两个三角结构引进模糊相似度测量方法,并构造一个包含两幅指纹图像间所有三角结构相似度的矢量;最后,算法把每对相似度矢量映射为一个归一化数值,即将指纹图像的整体相似度量化为一个[0,1]区间内的标量。In order to achieve the above object, the technical solution of the present invention is to provide a deformation fingerprint recognition method based on local triangular structure feature set, which selects a kind of fuzzy feature quantity—local minutiae point triangle structure to represent fingerprint; The similarity between fingerprints is used to describe the overall similarity between fingerprints; the relative distance between the minutiae points, the angle difference between the connection line and the direction of the surrounding ridges are selected to define the local triangular structure; the fuzzy similarity measurement method is introduced for the two triangular structures, and a Contains the vectors of all triangular structure similarities between two fingerprint images; finally, the algorithm maps each pair of similarity vectors to a normalized value, that is, the overall similarity of the fingerprint images is quantified as a scalar in the interval [0, 1] .

所述的基于局部三角结构特征集的形变指纹识别方法,包括步骤:The described deformation fingerprint identification method based on the local triangular structure feature set comprises steps:

(1)对指纹图像预处理:对指纹图像进行增强、细化及二值化处理,去除图像中各种噪声的干扰,恢复指纹的脊线结构,使纹理准确清晰,从而使后续操作能够正确有效的进行;(1) Preprocessing of the fingerprint image: Enhance, refine and binarize the fingerprint image, remove the interference of various noises in the image, restore the ridge structure of the fingerprint, and make the texture accurate and clear, so that the subsequent operations can be correct carry out effectively;

(2)细节点提取及去伪处理:从预处理后的图像中提取出细节特征点的信息模板,根据伪细节点出现的位置规律,从提取出的细节点集中剔除伪细节点;(2) minutiae extraction and false removal processing: extract the information template of the minutiae feature points from the preprocessed image, and remove the false minutiae points from the extracted minutiae points according to the position law of the false minutiae points;

(3)模糊特征表示:基于细节点的分布,定义其局部三角结构特征向量,包括图像中所有三角特征结构的信息模板,每幅指纹图像都可用对应的特征向量集表示;(3) Fuzzy feature representation: based on the distribution of minutiae points, define its local triangular structure feature vector, including information templates of all triangular feature structures in the image, and each fingerprint image can be represented by a corresponding feature vector set;

(4)在真匹配指纹图像库上,计算对应的形变参数,得到真匹配空间中的形变参数分布;(4) On the real matching fingerprint image database, calculate the corresponding deformation parameters, and obtain the deformation parameter distribution in the true matching space;

(5)模糊特征匹配:利用真匹配空间中的形变参数,计算其与待匹配图像的特征向量集之间的差异,得到能够准确衡量待匹配的指纹间的相关性的特征向量,应用模糊原理,将相似度向量映射成一个[0,1]区间内的标量,表示图像间的整体相似度的量化值。(5) Fuzzy feature matching: use the deformation parameters in the true matching space to calculate the difference between it and the feature vector set of the image to be matched, and obtain the feature vector that can accurately measure the correlation between the fingerprints to be matched, and apply the fuzzy principle , which maps the similarity vector into a scalar in the interval [0, 1], representing the quantized value of the overall similarity between images.

所述的基于局部三角结构特征集的形变指纹识别方法,其所述(2)中,根据伪细节点出现的位置规律,是一种简单高效地判断细节点真伪的规则,具体步骤包括:The described deformation fingerprint identification method based on the local triangular structure feature set, in its (2), according to the position rule that the false minutiae point appears, is a kind of rule that judges the authenticity of the minutiae point simply and efficiently, and the specific steps include:

(1)判断细节点是否接近指纹图像的边缘:提取出指纹模板,计算细节点到指纹图像边缘的距离d,如果d<阈值T1,判定该点为伪细节点;(1) Determine whether the minutiae is close to the edge of the fingerprint image: extract the fingerprint template, calculate the distance d from the minutiae to the edge of the fingerprint image, if d<threshold T1, determine that the point is a false minutiae;

(2)以细节点i为圆心,阈值r为半径的圆的范围内查找细节点,得到细节点的数量值n;(2) Take the minutiae i as the center of the circle, and the threshold r is the radius of the circle to search for the minutiae, and obtain the quantity value n of the minutiae;

(3)如果n≥阈值T2,判定该点i为伪细节点,否则,认为是真细节点。(3) If n≥threshold T2, it is judged that the point i is a false minutiae, otherwise, it is considered as a true minutiae.

所述的基于局部三角结构特征集的形变指纹识别方法,其所述(3)中,每幅指纹图像用对应的特征集T={T1,T2,…,TN}表示,其中Tk(k=1,2...N)为所有从指纹图像上检测出来的局部三角结构的特征量。In the described deformation fingerprint recognition method based on local triangular structure feature set, in (3), each fingerprint image is represented by a corresponding feature set T={T 1 , T 2 ,..., T N }, where T k (k=1, 2...N) is the feature quantity of all local triangular structures detected from the fingerprint image.

所述的基于局部三角结构特征集的形变指纹识别方法,其所述三角结构的特征量,若细节点构成的三角形各边长度都小于预先设定的阈值Thrd,则定义局部三角结构的特征量为Tk={dij,dik,djk,θi,θj,θk,Mi,Mj,Mk,αi,αj,αk},dij表示两个细节点i和j之间的距离,θi表示从细节点i到j的方向与从细节点i到k方向的夹角;Mi表示以细节点i为中心,边长为2r的正方形区域中的各像素与点i的方向差均值,αi表示细节点i的方向和角i的内角平分线间的夹角;In the deformation fingerprint recognition method based on the local triangular structure feature set, the feature quantity of the triangular structure, if the length of each side of the triangle formed by the minutiae points is less than the preset threshold Thr d , then define the feature of the local triangular structure The quantity is T k = {d ij , d ik , d jk , θ i , θ j , θ k , M i , M j , M k , α i , α j , α k }, and d ij represents two minutiae points The distance between i and j, θ i represents the angle between the direction from minutiae i to j and the direction from minutiae i to k; The mean value of the direction difference between each pixel and point i, α i represents the angle between the direction of detail point i and the bisector of the interior angle of angle i;

Mi由下式计算,其中,O(i,j)是像素(i,j)的方向场: Mi is calculated by the following formula, where O(i, j) is the direction field of pixel (i, j):

Mm ii == &Sigma;&Sigma; ii == xx 00 -- rr ii == xx 00 ++ rr &Sigma;&Sigma; jj == xx 00 -- rr jj == xx 00 ++ rr || Oo (( ii ,, jj )) -- Oo (( xx 00 ,, ythe y 00 )) || 22 rr ** 22 rr

所述的基于局部三角结构特征集的形变指纹识别方法,其所述(4)中真匹配,指的是来自同一手指的指纹图像间的匹配,在真匹配模式下的形变指纹图像集上进行参数训练,四个形变参数向量

Figure C20051009017600092
组成参数空间,由下式计算:The described deformation fingerprint identification method based on the local triangular structure feature set, true matching in (4) refers to the matching between fingerprint images from the same finger, which is carried out on the deformation fingerprint image set under the true matching mode Parameter training, four deformation parameter vectors
Figure C20051009017600092
Composing the parameter space, calculated by the following formula:

ll &RightArrow;&Right Arrow; enen diffdiff == {{ || dd ijij -- dd ijij &prime;&prime; || ,, || dd ikik -- dd ikik &prime;&prime; || ,, || dd jkjk -- dd jkjk &prime;&prime; || }}

&theta;&theta; &RightArrow;&Right Arrow; diffdiff == {{ || &theta;&theta; ijij -- &theta;&theta; ijij &prime;&prime; || ,, || &theta;&theta; ikik -- &theta;&theta; ikik &prime;&prime; || ,, || &theta;&theta; jkjk -- &theta;&theta; jkjk &prime;&prime; || }}

Mm &RightArrow;&Right Arrow; diffdiff == {{ || Mm ii -- Mm ii &prime;&prime; || ,, || Mm jj -- Mm jj &prime;&prime; || ,, || Mm kk -- Mm kk &prime;&prime; || }}

&alpha;&alpha; &RightArrow;&Right Arrow; diffdiff == {{ || &alpha;&alpha; ii -- &alpha;&alpha; ii &prime;&prime; || ,, || &alpha;&alpha; jj -- &alpha;&alpha; jj &prime;&prime; || ,, || &alpha;&alpha; kk -- &alpha;&alpha; kk &prime;&prime; || }}

这些形变模式参数构成了形变特征向量得到一个真匹配的形变模式参数空间。These deformation mode parameters constitute the deformation feature vector A true matching deformation pattern parameter space is obtained.

所述的基于局部三角结构特征集的形变指纹识别方法,其所述(5)中,在指纹图像匹配中,定义一个相似度矢量来描述指纹图像间的特征差异:令T={Tt:1≤t≤a}表示模板指纹图像,I={Ti:1≤i≤b}表示输入指纹图像,The described deformable fingerprint recognition method based on the local triangular structure feature set, in (5), in the fingerprint image matching, a similarity vector is defined to describe the feature difference between the fingerprint images: make T={T t : 1≤t≤a} represents the template fingerprint image, I={T i : 1≤i≤b} represents the input fingerprint image,

对于每个Tt∈T, l t I = max { C ( T t - T i ) | i = 1 . . b } , l &RightArrow; I = [ l 1 I , l 2 I , &CenterDot; &CenterDot; &CenterDot; , l a I ] T For every T t ∈ T, l t I = max { C ( T t - T i ) | i = 1 . . b } , l &Right Arrow; I = [ l 1 I , l 2 I , &Center Dot; &CenterDot; &CenterDot; , l a I ] T

对于每个Ti∈I, l i T = max { C ( T i - T t ) | t = 1 . . a } , l &RightArrow; T = [ l 1 T , l 2 T , &CenterDot; &CenterDot; &CenterDot; , l b T ] T For each T i ∈ I, l i T = max { C ( T i - T t ) | t = 1 . . a } , l &Right Arrow; T = [ l 1 T , l 2 T , &Center Dot; &Center Dot; &Center Dot; , l b T ] T

为T和I定义了一个(a+b)维的相似度矢量 L &RightArrow; ( T , I ) = [ L 1 , L 2 , &CenterDot; &CenterDot; &CenterDot; , L a + b ] T , 其中, L i = l i I i < = a l i - a T a < i < a + b ,

Figure C200510090176000914
是局部三角特征结构的相似度测量函数。A (a+b)-dimensional similarity vector is defined for T and I L &Right Arrow; ( T , I ) = [ L 1 , L 2 , &CenterDot; &Center Dot; &CenterDot; , L a + b ] T , in, L i = l i I i < = a l i - a T a < i < a + b ,
Figure C200510090176000914
is the similarity measurement function of the local triangular feature structure.

所述的基于局部三角结构特征集的形变指纹识别方法,其所述指纹图像相似度矢量的计算方法,是引进了模糊特征测量方法,定义局部三角特征结构的相似度测量函数,具体步骤包括:The described deformation fingerprint identification method based on the local triangular structure feature set, the calculation method of the fingerprint image similarity vector is to introduce the fuzzy feature measurement method, and define the similarity measurement function of the local triangular feature structure. The specific steps include:

(1)真匹配的形变模式参数空间中的全部元素组成了模糊特征集

Figure C20051009017600101
定义模糊特征集
Figure C20051009017600102
的中心为集合中各元素的均值;(1) All the elements in the true matching deformation pattern parameter space constitute the fuzzy feature set
Figure C20051009017600101
Define fuzzy feature set
Figure C20051009017600102
center of is the mean value of each element in the set;

(2)测量矢量

Figure C20051009017600104
相对于模糊特征序列
Figure C20051009017600105
的隶属程度,采用Cauchy函数的改进形式,定义隶属度函数C: D ~ &RightArrow; [ 0,1 ] 如下:(2) Measurement vector
Figure C20051009017600104
Relative to the sequence of fuzzy features
Figure C20051009017600105
The membership degree of , using the improved form of the Cauchy function, defines the membership degree function C: D. ~ &Right Arrow; [ 0,1 ] as follows:

Figure C20051009017600107
中的每个元素小于
Figure C20051009017600108
中相应的元素时, C ( f &RightArrow; ) = 1 ; when
Figure C20051009017600107
Each element in is less than
Figure C20051009017600108
When the corresponding elements in C ( f &Right Arrow; ) = 1 ;

否则, C ( f &RightArrow; ) = [ 1 + ( &alpha; * | | f &RightArrow; - d &RightArrow; | | ) &beta; ] - 1 ; 其中, f &RightArrow; &Element; D ~ , β和α∈R,β>0,α>0,α与函数的宽度成反比。otherwise, C ( f &Right Arrow; ) = [ 1 + ( &alpha; * | | f &Right Arrow; - d &Right Arrow; | | ) &beta; ] - 1 ; in, f &Right Arrow; &Element; D. ~ , β and α∈R, β>0, α>0, α is inversely proportional to the width of the function.

所述的基于局部三角结构特征集的形变指纹识别方法,其所述(5)中,在指纹图像匹配中,把相似度向量

Figure C200510090176001012
中的各元素加权向量w累积,来量化指纹图像间的整体相似度;结合应用了区域最优、中心最优及角度均匀性最优配置,将权向量
Figure C200510090176001013
定义为:The described deformable fingerprint recognition method based on the local triangular structure feature set, in (5), in the fingerprint image matching, the similarity vector
Figure C200510090176001012
The weighted vector w of each element in is accumulated to quantify the overall similarity between fingerprint images; combined with the application of the optimal configuration of the region, the center, and the uniformity of the angle, the weight vector
Figure C200510090176001013
defined as:

ww &RightArrow;&Right Arrow; == pp AA ww &RightArrow;&Right Arrow; AA ++ pp BB ww &RightArrow;&Right Arrow; BB ++ pp CC ww &RightArrow;&Right Arrow; CC

其中,

Figure C200510090176001015
为输入指纹图像和模板指纹图像的正常区域百分比,
Figure C200510090176001016
与三角结构到邻近的指纹图像中心点的距离正比,
Figure C200510090176001017
与三角结构中角度间的均匀性成正比;pA、pB、pC(pA+pB+pC=1)调整了
Figure C200510090176001018
Figure C200510090176001019
的比重,将模板和输入指纹图像的整体相似度量化为:in,
Figure C200510090176001015
is the normal area percentage of input fingerprint image and template fingerprint image,
Figure C200510090176001016
Proportional to the distance from the triangle structure to the center point of the adjacent fingerprint image,
Figure C200510090176001017
It is proportional to the uniformity between the angles in the triangular structure; p A , p B , p C (p A +p B +p C =1) adjusted
Figure C200510090176001018
and
Figure C200510090176001019
The proportion of the overall similarity between the template and the input fingerprint image is quantified as:

SimSim == ww &RightArrow;&Right Arrow; ** LL &RightArrow;&Right Arrow; (( TT ,, II ))

本发明的核心思想是基于指纹图像中的局部三角特征结构实现指纹识别。算法选取一种模糊特征量——局部细节点三角结构来表示指纹。计算模糊特征量间的相似度来刻画指纹间的整体相似度。选择细节点相对距离、连线角度差及其周围脊线的方向来定义局部三角结构。对两个三角结构引进模糊相似度测量方法,并构造一个包含两幅指纹图像间所有三角结构相似度的矢量。最后,算法把每对相似度矢量映射为一个归一化数值,即将指纹图像的整体相似度量化为一个[0,1]区间内的标量。The core idea of the present invention is to realize fingerprint identification based on the local triangular feature structure in the fingerprint image. The algorithm chooses a kind of fuzzy feature quantity—local minutiae triangular structure to represent the fingerprint. Calculate the similarity between fuzzy feature quantities to describe the overall similarity between fingerprints. The local triangular structure is defined by selecting the relative distances of the minutiae points, the angle difference of connecting lines and the directions of the surrounding ridges. A fuzzy similarity measurement method is introduced for two triangular structures, and a vector containing the similarity of all triangular structures between two fingerprint images is constructed. Finally, the algorithm maps each pair of similarity vectors into a normalized value, that is, the overall similarity of the fingerprint image is quantified into a scalar in the interval [0, 1].

基于上述的思路和目的,将指纹图像的识别处理过程划分为若干个步骤,简要介绍执行每个步骤时需要注意的关键问题,来设计和改进我们的系统,建立最终的弹性形变指纹图像的识别理论框架及系统原型。将研究成果融入现有的算法后得到的该发明的实现流程如下:Based on the above ideas and purposes, the identification process of fingerprint images is divided into several steps, and the key issues that need to be paid attention to when performing each step are briefly introduced to design and improve our system and establish the final identification of elastic deformation fingerprint images Theoretical framework and system prototype. The implementation process of the invention obtained after integrating the research results into the existing algorithm is as follows:

指纹图像预处理:对指纹图像进行增强、细化及二值化处理,去除图像中各种噪声的干扰,恢复指纹的脊线结构,使纹理准确清晰从而使下面的细节点提取、匹配等操作能够正确有效的进行。Fingerprint image preprocessing: enhance, refine and binarize the fingerprint image, remove the interference of various noises in the image, restore the ridge structure of the fingerprint, make the texture accurate and clear, and make the following details point extraction, matching and other operations be carried out correctly and effectively.

细节点提取及去伪处理:从预处理后的图像中提取出细节特征点的信息模板,根据伪细节点出现的位置规律,提出一种简单有效的算法对细节点集进行去伪处理。Minutiae extraction and de-false processing: Extract the information template of the minutiae feature points from the preprocessed image, and propose a simple and effective algorithm to de-falseize the minutiae set according to the position law of the pseudo-details.

模糊特征表示:由于指纹图像局部区域内形变量有限,选择局部三角特征结构集来表示指纹图像,得到每幅指纹对应的特征向量集,包括图像中所有三角特征结构的信息模板。Fuzzy feature representation: Due to the limited deformation in the local area of the fingerprint image, the local triangular feature structure set is selected to represent the fingerprint image, and the feature vector set corresponding to each fingerprint is obtained, including information templates of all triangular feature structures in the image.

模糊特征匹配:计算任意三角特征结构同另一幅指纹的最大隶属度,得到能够准确衡量待匹配的指纹间的相关性的特征向量。应用模糊原理,将相似度向量映射成一个[0,1]区间内的标量,表示图像间的整体相似度量化数值(1代表完全匹配,0代表完全不匹配)。Fuzzy feature matching: Calculate the maximum degree of membership between any triangular feature structure and another fingerprint, and obtain a feature vector that can accurately measure the correlation between the fingerprints to be matched. Applying the fuzzy principle, the similarity vector is mapped to a scalar in the interval [0, 1], which represents the overall similarity quantification value between images (1 represents a complete match, and 0 represents a complete mismatch).

我们的指纹图像识别方法能够去除原始指纹图像因噪声影响而得到的伪细节点,尽可能准确地记录指纹的特征信息,对于质量较差的指纹图像也能够进行识别。很明显,在对过度形变指纹图像进行匹配时,仅仅依靠指纹的整体结构来衡量待匹配图像间的相似度是不可行的,因为对应细节点及脊线的不规则偏移可能很大,超出了传统算法的容忍范围。根据指纹图像局部区域形变量较小,累积导致较大形变的特点,选择细节点的局部三角结构作为形变前后近似不变的模糊特征进行指纹配准和识别,保证了算法的准确率。考虑到不同的指纹图像提取的细节点数目不同以及匹配过程的模糊性,可考虑将模糊理论运用到相似度计算中,对应的特征量不可以用单一的阈值来划分,待匹配的图像也不能简单的判定为匹配或不匹配两种情况。Our fingerprint image recognition method can remove the false minutiae of the original fingerprint image due to the influence of noise, record the feature information of the fingerprint as accurately as possible, and can also identify fingerprint images with poor quality. Obviously, when matching excessively deformed fingerprint images, it is not feasible to measure the similarity between the images to be matched only by the overall structure of the fingerprint, because the irregular offset of the corresponding minutiae points and ridge lines may be large, beyond beyond the tolerance range of traditional algorithms. According to the characteristic that the deformation of the local area of the fingerprint image is small and the accumulation leads to large deformation, the local triangular structure of the minutiae is selected as the fuzzy feature that is approximately unchanged before and after deformation for fingerprint registration and recognition, which ensures the accuracy of the algorithm. Considering the different numbers of minutiae points extracted from different fingerprint images and the ambiguity of the matching process, the fuzzy theory can be applied to the similarity calculation. The corresponding feature quantity cannot be divided by a single threshold, nor can the image to be matched The simple judgment is two cases of matching or not matching.

通过对算法性能的评估,我们发现选取的特征量能够很好的区分假匹配和过度形变两种情况下造成的特征点和脊线的不规则偏移,具有很强的鲁棒性。由于局部特征三角结构信息独立于指纹图像的旋转、平移等整体变换,因此我们的识别算法不需要对原始图像进行校准,简化了算法的步骤,提高了算法的效率。Through the evaluation of the performance of the algorithm, we found that the selected feature quantity can well distinguish the irregular offset of feature points and ridges caused by false matching and excessive deformation, and has strong robustness. Since the triangular structure information of local features is independent of the overall transformation such as rotation and translation of the fingerprint image, our recognition algorithm does not need to calibrate the original image, which simplifies the steps of the algorithm and improves the efficiency of the algorithm.

附图说明 Description of drawings

图1本发明指纹识别处理流程图;Fig. 1 fingerprint identification processing flowchart of the present invention;

图2低质量图像的伪细节点示意图:(a)是原始图像;(b)是(a)图像增强后的细化图像;(c)和(d)是原始图像;(d)是(c)的增强后的细化图像;伪细节点附近经常有其它的伪细节点出现,如椭圆区域所示,伪细节点还经常出现在图像边缘,如长方形区域所示;Figure 2 Schematic diagram of pseudo-detail points of low-quality images: (a) is the original image; (b) is the thinned image after (a) image enhancement; (c) and (d) are the original images; (d) is (c ) of the enhanced thinning image; there are often other pseudo-detail points appearing near the pseudo-detail points, as shown in the ellipse area, and the pseudo-detail points often appear on the edge of the image, as shown in the rectangular area;

图3形变很大的一对指纹图像:(a)是原始图像a;(b)是原始图像b;(c)是图像(a)和(b)中的细节点对应关系;(d)是将图像(a)进行人工最优校准后叠加到图像(b)上,在上部的椭圆区域内对应细节点基本吻合,可在下部的椭圆区域内对应的细节点偏移超过了100象素;Figure 3 A pair of fingerprint images with large deformation: (a) is the original image a; (b) is the original image b; (c) is the correspondence between the minutiae points in the images (a) and (b); (d) is The image (a) is artificially optimally calibrated and superimposed on the image (b), the corresponding detail points in the upper ellipse area are basically consistent, but the corresponding detail points in the lower ellipse area are offset by more than 100 pixels;

图4指纹图像的局部三角结构示意图;The partial triangular structure schematic diagram of Fig. 4 fingerprint image;

图5真匹配模式参数训练示意图:(a)模板指纹图像;(b)输入指纹图像;(c)真匹配模式;Figure 5 is a schematic diagram of true matching mode parameter training: (a) template fingerprint image; (b) input fingerprint image; (c) true matching mode;

图6本发明方法在NIST24指纹数据库上的实验结果;Fig. 6 the experimental result of the inventive method on the NIST24 fingerprint database;

图7本发明方法在FVC2004 DB1指纹数据库上的实验结果。Fig. 7 is the experimental result of the inventive method on the FVC2004 DB1 fingerprint database.

具体实施方式 Detailed ways

下面对本发明提出的基于局部三角特征结构的形变指纹识别算法包含的各个步骤,尤其是图像特征提取和局部特征匹配两部分进行介绍。首先我们引进一些假定,在此基础上进行识别算法的研究和分析:不区分末梢点和分叉点,把他们都看作点的特征;点特征在指纹中均匀分布,但是,不同细节点的未定区域可能重叠;细节点对的相关性是独立,各个相关是同等重要的;指纹图像质量在模型中没有明确考虑。详细步骤如下:The steps included in the deformed fingerprint recognition algorithm based on the local triangular feature structure proposed by the present invention are introduced below, especially the two parts of image feature extraction and local feature matching. First of all, we introduce some assumptions, based on which the research and analysis of the recognition algorithm are carried out: do not distinguish the terminal point and the bifurcation point, they are all regarded as point features; point features are evenly distributed in the fingerprint, but the different detail points Undetermined regions may overlap; correlations of minutiae pairs are independent and each correlation is equally important; fingerprint image quality is not explicitly considered in the model. The detailed steps are as follows:

1)指纹图像预处理1) Fingerprint image preprocessing

具体的处理操作有:1.灰度的均衡化,这可以消除不同图像之间对比度的差异。2.使用简单的低通滤波算法消除斑点噪声和高斯噪声。3.计算出图像的边界,进行图像的裁剪。这样可以减少下一步的计算工作量,提高系统的速度。4.方向场的估计,计算出指纹图像每个像素的方向。5.二值化,根据每个像素点的方向来对指纹图像处理为只有黑白二种像素的图像。6.细化,根据二值化的图像,把指纹的脊线宽度细化至只有一个像素,生成指纹细化图。7.细化后处理,清除细化图像中一些明显的断线,脊线间明显的桥、脊线上的毛刺、过短的脊线和单个斑点等不良脊线结构。The specific processing operations include: 1. Equalization of gray scale, which can eliminate the contrast difference between different images. 2. Use a simple low-pass filter algorithm to remove speckle noise and Gaussian noise. 3. Calculate the boundary of the image and crop the image. This reduces the computational workload in the next step and increases the speed of the system. 4. Estimation of the direction field, calculate the direction of each pixel of the fingerprint image. 5. Binarization, according to the direction of each pixel, the fingerprint image is processed into an image with only black and white pixels. 6. Thinning, according to the binarized image, the ridge line width of the fingerprint is thinned to only one pixel, and a fingerprint thinning map is generated. 7. Post-thinning processing, remove some obvious broken lines in the thinned image, obvious bridges between ridges, burrs on ridges, too short ridges and single spots and other bad ridge structures.

2)细节特征点提取及去伪处理2) Extraction of detail feature points and de-fake processing

从预处理后的指纹骨架中,跟踪提取细节点,依照我们的经验,两个真细节点间的距离一般大于某个阈值,而伪细节点附近一般存在另外的伪细节点。并且在指纹图像的边缘地区经常能提取到伪细节点。图2显示了在低质量的指纹图像中进行伪细节点提取的例子。From the preprocessed fingerprint skeleton, track and extract the minutiae points. According to our experience, the distance between two true minutiae points is generally greater than a certain threshold, and there are generally other false minutiae points near the false minutiae points. And false minutiae points can often be extracted in the edge area of the fingerprint image. Figure 2 shows an example of pseudo minutiae point extraction in a low-quality fingerprint image.

下述的算法用来提取伪细节点。在这个过程中,少数几个真细节点会被认为是伪细节点,但是这并不影响以后的匹配过程。The following algorithm is used to extract pseudo minutiae points. In this process, a few true minutiae points will be considered as false minutiae points, but this does not affect the subsequent matching process.

1.判断细节点是否接近指纹图像的边缘。提取出指纹模板,计算细节点到指纹图像边缘的距离d。如果d小于阈值T1,则该点为伪细节点。1. Determine whether the minutiae point is close to the edge of the fingerprint image. Extract the fingerprint template and calculate the distance d from the minutiae point to the edge of the fingerprint image. If d is less than the threshold T1, the point is a pseudo minutiae point.

2.在以细节点i为圆心,阈值r为半径的圆的范围内查找,得到细节点的数量为n.2. Search within the range of the circle with the minutiae i as the center and the threshold r as the radius, and the number of minutiae points obtained is n.

3.如果n大于阈值T2,则该点为伪细节点,否则,该点为真细节点。3. If n is greater than the threshold T2, the point is a false minutiae, otherwise, the point is a true minutiae.

其中T1、T2、r是经验值,可依据指纹图像的情况进行选取。这是一个简单高效的检测伪细节点的方法,所有的被检测出来的伪细节点都不会参与后来的匹配过程。Among them, T1, T2, and r are empirical values, which can be selected according to the situation of the fingerprint image. This is a simple and efficient method for detecting false minutiae points, and all detected pseudo minutiae points will not participate in the subsequent matching process.

3)指纹的模糊特征表示3) Fuzzy feature representation of fingerprints

选择一种模糊特征量一细节点局部三角结构来刻画指纹的特征,首先选取能反映指纹局部特征的参数对三角结构进行定义。在提出的算法中,指纹局部三角结构特征是匹配的基元。将局部三角点结构的特征量Tk定义为Tk={dij,dik,djk,θi,θj,θk,Mi,Mj,Mk,αi,αj,αk},dij表示两个细节点i和j之间的距离,θi表示从细节点i到j的方向与从细节点i到k方向的夹角;Mi表示细节点i区域内的方向差,αi表示细节点i的方向和角i的内角平分线间的夹角。以细节点i为中心,半径为r的区域中的象素构成了细节点i的区域。Mi由下式计算:A fuzzy feature quantity-minutiae local triangular structure is selected to characterize the features of the fingerprint. Firstly, the parameters that can reflect the local features of the fingerprint are selected to define the triangular structure. In the proposed algorithm, fingerprint local triangular structure features are the matching primitives. Define the feature quantity T k of the local triangular point structure as T k = {d ij , d ik , d jk , θ i , θ j , θ k , M i , M j , M k , α i , α j , α k }, d ij represents the distance between two detail points i and j, θ i represents the angle between the direction from detail point i to j and the direction from detail point i to k; Direction difference, α i represents the angle between the direction of minutia point i and the bisector of the interior angle of angle i. With minutiae i as the center, the pixels in the area with radius r constitute the area of minutiae i. M i is calculated by the following formula:

Mm ii == &Sigma;&Sigma; ii == xx 00 -- rr ii == xx 00 ++ rr &Sigma;&Sigma; jj == xx 00 -- rr jj == xx 00 ++ rr || Oo (( ii ,, jj )) -- Oo (( xx 00 ,, ythe y 00 )) || 22 rr ** 22 rr

式中r为区域的半径,O(i,j)是点(i,j)处的方向场。where r is the radius of the region, O(i, j) is the direction field at point (i, j).

参数{dik,djk,θj,θk,Mj,Mk,αj,αk}的含义与{dij,θi,Mi,αi}相似。显然,局部三角点特征量Tk相对于指纹的旋转和平移具有独立性。图4显示了指纹局部三角点结构。The meaning of the parameters {d ik , d jk , θ j , θ k , M j , M k , α j , α k } is similar to that of {d ij , θ i , M i , α i }. Obviously, the feature quantity T k of the local triangular point is independent of the rotation and translation of the fingerprint. Figure 4 shows the local triangular point structure of the fingerprint.

在构建局部三角点的过程当中有一个约束条件:三角形中细节点之间的距离最大长度小于Thrd。形变较大的指纹图像由于细节点间的各区域的形变量积累,导致图像整体较大的形变。There is a constraint condition in the process of constructing local triangle points: the maximum length of the distance between minutiae points in the triangle is less than Thr d . For a fingerprint image with a large deformation, due to the accumulation of deformation in each area between the minutiae points, the overall deformation of the image is relatively large.

由此得到每幅指纹图像对应的特征集T={T1,T2,…,TN},其中Tk(k=1,2...N)为所有在指纹图像上检测出来的局部三角结构的特征量。将模板和输入指纹图像间的整体相似度衡量问题转化为它们对应的两个特征量集间的相似度计算问题。Thus, the feature set T={T 1 , T 2 ,...,T N } corresponding to each fingerprint image is obtained, where T k (k=1, 2...N) is all the local parts detected on the fingerprint image The characteristic quantity of the triangular structure. The overall similarity measurement problem between the template and the input fingerprint image is transformed into the similarity calculation problem between the two corresponding feature sets.

然后,通过一系列的真匹配(真匹配指的是来自同一手指的指纹图像间的匹配)训练得到真形变模式的参数空间,用于下面指纹特征匹配时选取合适的阈值进行判别。Then, through a series of true matching (true matching refers to the matching between fingerprint images from the same finger) training to obtain the parameter space of the true deformation mode, which is used to select an appropriate threshold for discrimination in the following fingerprint feature matching.

假设Ik={d′ij,d′ik,d′jk,θ′i,θ′j,θ′k,M′i,M′j,M′k,α′i,α′j,α′k}是输入指纹的局部三角点特征,Tk={dij,dik,djk,θi,θj,θk,Mi,Mj,Mk,αi,αj,αk}为指纹模板中的局部三角点特征。四个形变形式参数向量

Figure C20051009017600141
由下式计算:Suppose I k = {d′ ij , d′ ik , d′ jk , θ′ i , θ′ j , θ′ k , M′ i , M′ j , M′ k , α′ i , α′ j , α ′ k } is the local triangle point feature of the input fingerprint, T k = {d ij , d ik , d jk , θ i , θ j , θ k , M i , M j , M k , α i , α j , α k } is the local triangle point feature in the fingerprint template. Four deformation formal parameter vectors
Figure C20051009017600141
Calculated by the following formula:

ll &RightArrow;&Right Arrow; enen diffdiff == {{ || dd ijij -- dd ijij &prime;&prime; || ,, || dd ikik -- dd ikik &prime;&prime; || ,, || dd jkjk -- dd jkjk &prime;&prime; || }}

&theta;&theta; &RightArrow;&Right Arrow; diffdiff == {{ || &theta;&theta; ijij -- &theta;&theta; ijij &prime;&prime; || ,, || &theta;&theta; ikik -- &theta;&theta; ikik &prime;&prime; || ,, || &theta;&theta; jkjk -- &theta;&theta; jkjk &prime;&prime; || }}

Mm &RightArrow;&Right Arrow; diffdiff == {{ || Mm ii -- Mm ii &prime;&prime; || ,, || Mm jj -- Mm jj &prime;&prime; || ,, || Mm kk -- Mm kk &prime;&prime; || }}

&alpha;&alpha; &RightArrow;&Right Arrow; diffdiff == {{ || &alpha;&alpha; ii -- &alpha;&alpha; ii &prime;&prime; || ,, || &alpha;&alpha; jj -- &alpha;&alpha; jj &prime;&prime; || ,, || &alpha;&alpha; kk -- &alpha;&alpha; kk &prime;&prime; || }}

这些形变形式参数组成了形式特征量

Figure C20051009017600146
为了研究真匹配模式参数,我们在形变指纹图像集上训练得到一个真形变模式的参数空间。这个图像集从FVC2004DB1的B库中提取。指纹图像通过“CrossMatchV300”光学采集仪获得。图像的大小为640×480象素,在500DPI的条件下。指纹库B含有从10个不同手指捕获的80个指纹图像,每个手指8幅图像。在这个指纹库中,从同一个手指得到的指纹图像间的形变是很大的。图3显示了FVC2004 DB1中的一对形变较大的指纹图像。对来自相同手指的形变指纹图像进行匹配,计算出真形变模式对应的参数空间中的形变参数。图5显示了在FVC2004 DB1中的两幅指纹图像的一个真形变模式。These deformation formal parameters constitute the formal feature quantity
Figure C20051009017600146
In order to study the true matching pattern parameters, we train on the deformable fingerprint image set to obtain a parameter space of true deformable patterns. This image set is extracted from the B library of FVC2004DB1. The fingerprint image is obtained by the "CrossMatchV300" optical acquisition device. The size of the image is 640×480 pixels, under the condition of 500DPI. Fingerprint library B contains 80 fingerprint images captured from 10 different fingers, 8 images per finger. In this fingerprint library, the deformation between fingerprint images obtained from the same finger is very large. Figure 3 shows a pair of deformed fingerprint images from FVC2004 DB1. The deformed fingerprint images from the same finger are matched, and the deformation parameters in the parameter space corresponding to the true deformation mode are calculated. Figure 5 shows a true deformation pattern of two fingerprint images in FVC2004 DB1.

4)模糊特征匹配4) Fuzzy feature matching

对于两个三角特征结构引进了模糊相似度测量方法,并构建一个包括两个指纹间的所有三角结构相似度的矢量。真形变模式的参数空间中的全部元素组成了模糊特征集

Figure C20051009017600151
定义模糊特征集
Figure C20051009017600152
的中心
Figure C20051009017600153
为集合中各元素的均值。A fuzzy similarity measurement method is introduced for two triangular feature structures, and a vector including the similarity of all triangular structures between two fingerprints is constructed. All elements in the parameter space of the true deformation model constitute the fuzzy feature set
Figure C20051009017600151
Define fuzzy feature set
Figure C20051009017600152
center of
Figure C20051009017600153
is the mean of each element in the set.

实际上就是特征集中全部元素的平均值,有可能不是特征集之中的元素。特征集中的全部元素的平均能增加模糊特征的鲁棒性,与此同时,有用信息的丢失也被隐藏在连续的过程当中,因为一个特征向量集被绘制成单一的特征向量。 In fact, it is the average value of all elements in the feature set, which may not be the elements in the feature set. The averaging of all elements in the feature set can increase the robustness of fuzzy features, and at the same time, the loss of useful information is also hidden in the continuous process, because a set of feature vectors is drawn into a single feature vector.

假设Tk={dij,dik,djk,θi,θj,θk,Mi,Mj,Mk,αi,αj,αk,}表示模板指纹的局部三角结构,Ik={d′ij,d′ik,d′jk,θ′i,θ′j,θ′k,M′i,M′j,M′k,α′i,α′j,α′k}表示输入指纹的局部三角结构,用下述方法来衡量Tk和Ik间的相似度。首先,计算形变模式的特征矢量然后,测量矢量

Figure C20051009017600156
相对于模糊特征序列
Figure C20051009017600157
的隶属程度。Suppose T k = {d ij , d ik , d jk , θ i , θ j , θ k , M i , M j , M k , α i , α j , α k ,} represent the local triangular structure of the template fingerprint, I k = {d′ ij , d′ ik , d′ jk , θ′ i , θ′ j , θ′ k , M′ i , M′ j , M′ k , α′ i , α′ j , α′ k } represents the local triangular structure of the input fingerprint, and the similarity between T k and I k is measured by the following method. First, the eigenvectors of the deformation modes are computed Then, measure the vector
Figure C20051009017600156
Relative to the sequence of fuzzy features
Figure C20051009017600157
degree of membership.

构造或选择一个合适的隶属函数取决于其应用的领域。最常用的隶属函数的类型有锥型,指数型和Cauchy型。在本算法中,我们采用了Cauchy函数的改进形式,它具有很好的表达形式且计算效率较高。Constructing or selecting an appropriate membership function depends on its application field. The most commonly used types of membership functions are cone, exponential and Cauchy. In this algorithm, we adopt the improved form of Cauchy function, which has a good expression form and high calculation efficiency.

定义隶属度函数C: D ~ &RightArrow; [ 0,1 ] 如下:Define the membership function C: D. ~ &Right Arrow; [ 0,1 ] as follows:

Figure C20051009017600159
中的每个元素小于
Figure C200510090176001510
中相应的元素时, C ( f &RightArrow; ) = 1 ; 否则, C ( f &RightArrow; ) = [ 1 + ( &alpha; * | | f &RightArrow; - d &RightArrow; | | ) &beta; ] - 1 . 其中, f &RightArrow; &Element; D ~ , β和α∈R,β>0,α>0,α与函数的宽度成反比。β决定函数的平滑程度。对于确定的α,模糊度随β值的减少而增加。对固定的β,模糊度随α值的增大而下降。很明显,特征矢量距离矢量串的中心越远,模糊特征的相关程度就越低。when
Figure C20051009017600159
Each element in is less than
Figure C200510090176001510
When the corresponding elements in C ( f &Right Arrow; ) = 1 ; otherwise, C ( f &Right Arrow; ) = [ 1 + ( &alpha; * | | f &Right Arrow; - d &Right Arrow; | | ) &beta; ] - 1 . in, f &Right Arrow; &Element; D. ~ , β and α∈R, β>0, α>0, α is inversely proportional to the width of the function. β determines how smooth the function is. For a certain α, the ambiguity increases as the value of β decreases. For a fixed β, the ambiguity decreases as the value of α increases. Obviously, the farther the feature vector is from the center of the vector string, the less correlated the fuzzy features are.

接着将相似度矢量映射成一个[0,1]区间内的标量,表示图像间的整体相似度量化数值。Then, the similarity vector is mapped to a scalar in the interval [0, 1], which represents the overall similarity quantization value between images.

指纹图像整体相似度由局部三角结构的相似度构成。令T={Tt:1≤t≤a,a表示从模板指纹图像中检测出来的所有的三角点的数量}表示模板指纹图像,I={Ti:1≤i≤b,b表示从输入指纹图像上检测到的所有三角点的数量}表示输入指纹图像。对于每个Tt∈T,,我们定义相似度方法,I作为The overall similarity of the fingerprint image is composed of the similarity of the local triangular structure. Let T={T t : 1≤t≤a, a represents the number of all triangle points detected from the template fingerprint image} represents the template fingerprint image, I={T i : 1≤i≤b, b represents the The number of all triangle points detected on the input fingerprint image} denotes the input fingerprint image. For each T t ∈ T, we define the similarity method, I as

ll tt II == maxmax {{ CC (( TT tt -- TT ii )) || ii == 11 .. .. bb }}

将lt I结合在一起,得到一个向量Combine l t I together to get a vector

ll &RightArrow;&Right Arrow; II == [[ ll 11 II ,, ll 22 II ,, &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ,, ll bb II ]] TT

同样的,对于每个 F &RightArrow; T i &Element; I , , 我们定义相似度方法,T作为Similarly, for each f &Right Arrow; T i &Element; I , , We define the similarity method, T as

ll ii TT == maxmax {{ CC (( TT ii -- TT tt )) || tt == 11 .. .. aa }}

将li T结合在一起,得到一个向量Combine l i T together to get a vector

ll &RightArrow;&Right Arrow; TT == [[ ll 11 TT ,, ll 22 TT ,, &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&Center Dot; ,, ll bb TT ]] TT

显然,

Figure C20051009017600166
描述了冲的个体模糊特征与I中全部模糊特征间的相似度,
Figure C20051009017600167
显示了I中个体模糊特征与冲全部模糊特征间的相似度。因此,我们为T和I定义了一个(a+b)维的相似度矢量 L &RightArrow; ( T , I ) = [ L 1 , L 2 , &CenterDot; &CenterDot; &CenterDot; , L a + b ] T , 其中 L i = l i I i < = a l i - a T a < i < a + b , 所有元素都取值为[0,1]区间内的实数。Obviously,
Figure C20051009017600166
Describes the similarity between the individual fuzzy features of Chong and all the fuzzy features in I,
Figure C20051009017600167
Shows the similarity between individual fuzzy features in I and all fuzzy features. Therefore, we define a (a+b)-dimensional similarity vector for T and I L &Right Arrow; ( T , I ) = [ L 1 , L 2 , &Center Dot; &Center Dot; &CenterDot; , L a + b ] T , in L i = l i I i < = a l i - a T a < i < a + b , All elements take values as real numbers in the interval [0, 1].

算法把相似度向量

Figure C200510090176001610
中的各元素加权累积来衡量指纹图像间的整体相似度。FFM算法计算权向量w和相似度向量
Figure C200510090176001611
的内积。有很多种选择来挑选权向量w。我们可以考虑三角结构的位置并给临近指纹图像中心(中心最优配置,假设邻近图像中心的三角结构更可信)的三角结构分配较高的权值。另一个选择是区域配置,利用三角结构覆盖的区域面积来确定权值,理论依据是所占区域面积合适的三角结构更可信。我们还采用了三角结构中角度间的均匀性作为加权依据。权向量
Figure C200510090176001612
定义为:similarity vector
Figure C200510090176001610
Each element in is weighted and accumulated to measure the overall similarity between fingerprint images. The FFM algorithm calculates the weight vector w and the similarity vector
Figure C200510090176001611
inner product. There are many options for picking the weight vector w. We can consider the location of the triangular structures and assign higher weights to the triangular structures near the center of the fingerprint image (the center is optimally configured, assuming that the triangular structures near the center of the image are more credible). Another option is regional configuration, which uses the area covered by the triangular structure to determine the weight. The theoretical basis is that a triangular structure with an appropriate area is more credible. We also use the uniformity between angles in the triangular structure as a weighting basis. weight vector
Figure C200510090176001612
defined as:

ww &RightArrow;&Right Arrow; == pp AA ww &RightArrow;&Right Arrow; AA ++ pp BB ww &RightArrow;&Right Arrow; BB ++ pp CC ww &RightArrow;&Right Arrow; CC

其中,

Figure C200510090176001614
包括输入指纹图像和模板图像的正常区域百分比,
Figure C200510090176001615
包括正常的权值(邻近图像中心的感兴趣的三角点),
Figure C200510090176001616
与三角结构中角度间的均匀性成正比。pA、pB、pC(pA+pB+pC=1)调整了
Figure C200510090176001617
的比重。in,
Figure C200510090176001614
includes the normal area percentage of the input fingerprint image and the template image,
Figure C200510090176001615
Include normal weights (triangle points of interest adjacent to the center of the image),
Figure C200510090176001616
Proportional to the uniformity between the angles in the triangular structure. p A , p B , p C (p A +p B +p C =1) adjusted
Figure C200510090176001617
proportion.

最后,算法将模板和输入指纹图像的整体相似度量化为:Finally, the algorithm quantifies the overall similarity between the template and the input fingerprint image as:

SimSim == ww &RightArrow;&Right Arrow; ** LL &RightArrow;&Right Arrow; (( TT ,, II ))

在真匹配模式库上训练参数,观察参数空间内的样本点,找到其集中分布区域对应的取值作为阈值,进行判别。Train the parameters on the true matching pattern library, observe the sample points in the parameter space, and find the value corresponding to the concentrated distribution area as the threshold for discrimination.

在指纹库上的试验结果显示,本算法很好的解决了非线性形变问题。即使来自于同一个手指的指纹图像发生了过度形变,算法也能较好的将其和假匹配区分开,具有很好的准确率和鲁棒性。The test results on the fingerprint database show that the algorithm solves the problem of nonlinear deformation very well. Even if the fingerprint image from the same finger is excessively deformed, the algorithm can better distinguish it from false matches, with good accuracy and robustness.

实施例Example

我们将此方法应用到我们自行设计实现的指纹图像处理系统中。我们研制开发的指纹图像处理系统是基于Window98/95,采用面向对象的设计方法和软件工程规范,用C++语言实现的、面向指纹识别领域的图像处理与分析系统。本发明指纹识别处理流程如图1,本系统具有丰富的图形图像处理与分析功能,不仅具有完善的二维图像处理分析功能,而且可以动态加载各种指纹识别算法。系统提供了图像输入、图像存储、图像处理、算法加载、文件转换、FVC测试工具等一系列功能。We apply this method to the fingerprint image processing system designed and implemented by ourselves. The fingerprint image processing system developed by us is based on Window98/95, adopts object-oriented design method and software engineering specification, realizes with C++ language, and is an image processing and analysis system oriented to the field of fingerprint identification. The fingerprint identification processing flow of the present invention is shown in Figure 1. This system has rich graphic image processing and analysis functions, not only has perfect two-dimensional image processing and analysis functions, but also can dynamically load various fingerprint identification algorithms. The system provides a series of functions such as image input, image storage, image processing, algorithm loading, file conversion, and FVC testing tools.

将算法在NIST24和FVC2004的指纹库中进行测试,并采用国际指纹识别竞赛的识别算法标准进行评估。由于库中的指纹存在显著的弹性形变,可以用来判定系统对于显著弹性形变的适应程度。实验结果如图6、7所示。The algorithm is tested in the fingerprint library of NIST24 and FVC2004, and the recognition algorithm standard of the international fingerprint recognition competition is used for evaluation. Since the fingerprints in the library have significant elastic deformation, it can be used to determine the adaptability of the system to significant elastic deformation. The experimental results are shown in Figures 6 and 7.

大量的实验证明,本算法很好的解决了非线性形变问题。针对形变指纹,相对于传统的匹配方法,该算法给出了相当准确的判别结果,具有高可靠性、实用性和可采纳性。A large number of experiments prove that this algorithm solves the problem of nonlinear deformation very well. For deformed fingerprints, compared with traditional matching methods, this algorithm gives quite accurate discrimination results, and has high reliability, practicability and admissibility.

Claims (9)

1. A deformation fingerprint identification method based on a local triangle structure characteristic set is characterized in that a local minutiae triangle structure is selected to represent a fingerprint; calculating the similarity among the fuzzy characteristic quantities to depict the overall similarity among the fingerprints; selecting the relative distance of the detail points, the angle difference of the connecting lines and the directions of the peripheral ridge lines to define a local triangular structure; introducing a fuzzy similarity measurement method into the two triangular structures, and constructing a vector containing all the triangular structure similarities between the two fingerprint images; finally, the algorithm maps each pair of similarity vectors into a normalized value, i.e., the overall similarity of the fingerprint image is quantized into a scalar quantity within a [0, 1] interval.
2. The method for identifying deformed fingerprints based on the local triangular structure feature set according to claim 1, comprising the steps of:
(1) preprocessing a fingerprint image: the fingerprint image is enhanced, refined and binarized, the interference of various noises in the image is removed, the ridge line structure of the fingerprint is recovered, the texture is accurate and clear, and the subsequent operation can be correctly and effectively carried out;
(2) detail point extraction and false removal processing: extracting an information template of detail characteristic points from the preprocessed image, and removing pseudo-fine nodes from the extracted detail point set according to the position rule of the pseudo-fine nodes;
(3) fuzzy feature representation: based on the distribution of the minutiae, defining the feature vectors of the local triangular structure of the minutiae, including information templates of all triangular feature structures in the image, wherein each fingerprint image can be represented by a corresponding feature vector set;
(4) calculating corresponding deformation parameters on a true matching fingerprint image library to obtain deformation parameter distribution in a true matching space;
(5) fuzzy feature matching: and calculating the difference between the true matching space and the feature vector set of the image to be matched by using the deformation parameters in the true matching space to obtain a feature vector capable of accurately measuring the correlation between the fingerprints to be matched, and mapping the similarity vector into a scalar in a [0, 1] interval by applying a fuzzy principle to represent the quantization value of the overall similarity between the images.
3. The method for identifying deformed fingerprints based on the local triangular structure feature set according to claim 2, wherein in the step (2), the rule for simply and efficiently judging the authenticity of the minutiae according to the position rule of the pseudo minutiae is a specific step comprising:
(1) judging whether the minutiae are close to the edge of the fingerprint image: extracting a fingerprint template, calculating the distance d from the minutiae to the edge of the fingerprint image, and if d is less than T1, judging the minutiae as pseudo minutiae;
(2) searching minutiae in the range of a circle with the minutiae i as the center of the circle and the threshold r as the radius to obtain the number value n of the minutiae;
(3) if n is larger than or equal to T2, judging the point i as a pseudo minutia, otherwise, considering the point i as a true minutia;
wherein: wherein T1, T2 and r are empirical values and are selected according to the condition of the fingerprint image.
4. The method for fingerprint identification based on local triangle feature set as claimed in claim 2, wherein in the step (3), each fingerprint image is identified by the corresponding feature set T ═ T1,T2,…,TNDenotes wherein Tk(k ═ 1, 2 … N) is a feature quantity of all local triangular structures detected from the fingerprint image.
5. The method for fingerprint identification based on the deformation of the feature set of the local triangle structure as claimed in claim 4, wherein the feature quantity of the triangle structure is determined if the length of each side of the triangle formed by the minutiae is smaller than the threshold ThrdThen, the feature quantity defining the local triangle structure is Tk={dij,dik,djk,θi,θj,θk,Mi,Mj,Mk,αi,αj,αk},dijDenotes the distance, θ, between two minutiae points i and jiRepresenting the included angle between the direction from the detail point i to j and the direction from the detail point i to k; miThe mean value of the direction differences, alpha, between each pixel in a square region with a side length of 2r and the point i, centered on the minutiae point i, is showniRepresenting the included angle between the direction of the minutiae point i and the inner angle bisector of the angle i;
Miis calculated by the following equation, where O (i, j) is the directional field of pixel (i, j):
<math><mrow> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>x</mi> <mn>0</mn> <mo>-</mo> <mi>r</mi> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mi>x</mi> <mn>0</mn> <mo>+</mo> <mi>r</mi> </mrow> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>x</mi> <mn>0</mn> <mo>-</mo> <mi>r</mi> </mrow> <mrow> <mi>j</mi> <mo>=</mo> <mi>x</mi> <mn>0</mn> <mo>+</mo> <mi>r</mi> </mrow> </munderover> <mo>|</mo> <mi>O</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>O</mi> <mrow> <mo>(</mo> <mi>x</mi> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mn>0</mn> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <mi>r</mi> <mo>*</mo> <mn>2</mn> <mi>r</mi> </mrow> </mfrac> </mrow></math>
wherein Thr isdIs an empirical value and is set according to the condition of the fingerprint image.
6. The method for identifying deformed fingerprints based on the local triangle structure feature set as claimed in claim 2, wherein the true matching in (4) refers to matching between fingerprint images from the same finger, the parameter training is performed on the deformed fingerprint image set in the true matching mode, and four deformed parameter vectors are used
Figure C2005100901760003C2
Figure C2005100901760003C3
Figure C2005100901760003C5
A composition parameter space, calculated by:
<math><mrow> <mover> <mi>l</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>en</mi> <mi>diff</mi> </msub> <mo>=</mo> <mo>{</mo> <mo>|</mo> <msub> <mi>d</mi> <mi>ij</mi> </msub> <mo>-</mo> <msup> <msub> <mi>d</mi> <mi>ij</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>d</mi> <mi>ik</mi> </msub> <mo>-</mo> <msup> <msub> <mi>d</mi> <mi>ik</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>d</mi> <mi>jk</mi> </msub> <mo>-</mo> <msup> <msub> <mi>d</mi> <mi>jk</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>}</mo> </mrow></math>
<math><mrow> <msub> <mover> <mi>&theta;</mi> <mo>&RightArrow;</mo> </mover> <mi>diff</mi> </msub> <mo>=</mo> <mo>{</mo> <mo>|</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msup> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>-</mo> <msup> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>&theta;</mi> <mi>jk</mi> </msub> <mo>-</mo> <msup> <msub> <mi>&theta;</mi> <mi>jk</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>}</mo> </mrow></math>
<math><mrow> <msub> <mover> <mi>M</mi> <mo>&RightArrow;</mo> </mover> <mi>diff</mi> </msub> <mo>=</mo> <mo>{</mo> <mo>|</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>-</mo> <msup> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>M</mi> <mi>j</mi> </msub> <mo>-</mo> <msup> <msub> <mi>M</mi> <mi>j</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>-</mo> <msup> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>}</mo> </mrow></math>
<math><mrow> <msub> <mover> <mi>&alpha;</mi> <mo>&RightArrow;</mo> </mover> <mi>diff</mi> </msub> <mo>=</mo> <mo>{</mo> <mo>|</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <msup> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>-</mo> <msup> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <msup> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>}</mo> </mrow></math>
these deformation mode parameters constitute the deformation eigenvectors <math><mrow> <mover> <mi>f</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>l</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>en</mi> <mi>diff</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&theta;</mi> <mo>&RightArrow;</mo> </mover> <mi>diff</mi> </msub> <mo>,</mo> <msub> <mover> <mi>M</mi> <mo>&RightArrow;</mo> </mover> <mi>diff</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&RightArrow;</mo> </mover> <mi>diff</mi> </msub> <mo>)</mo> </mrow> </mrow></math> And obtaining a deformation mode parameter space which is truly matched.
7. The method for shape-changing fingerprint identification based on local triangle structure feature set as claimed in claim 2, wherein in the step (5), in fingerprint image matching, a similarity vector is defined to describe the feature difference between fingerprint images: let T be { T ═ Tt: 1 ≦ T ≦ a } representing the template fingerprint image, I ═ T ≦ Ti: 1 i ≦ b represents an input fingerprint image,
for each Tt∈T, l t I = max { C ( T t - T i ) | i = 1 . . b } , <math><mrow> <msup> <mover> <mi>l</mi> <mo>&RightArrow;</mo> </mover> <mi>I</mi> </msup> <msup> <mrow> <mo>[</mo> <msup> <msub> <mi>l</mi> <mn>1</mn> </msub> <mi>I</mi> </msup> <mo>,</mo> <msup> <msub> <mi>l</mi> <mn>2</mn> </msub> <mi>I</mi> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msup> <mrow> <mo>,</mo> <msub> <mi>l</mi> <mi>a</mi> </msub> </mrow> <mi>I</mi> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow></math>
For each Ti∈I, l i T = max { C ( T i - T t ) | t = 1 . . a } , <math><mrow> <msup> <mover> <mi>l</mi> <mo>&RightArrow;</mo> </mover> <mi>T</mi> </msup> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msup> <msub> <mi>l</mi> <mn>1</mn> </msub> <mi>T</mi> </msup> <mo>,</mo> <msup> <msub> <mi>l</mi> <mn>2</mn> </msub> <mi>T</mi> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <msub> <mi>l</mi> <mi>b</mi> </msub> <mi>T</mi> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow></math>
Defining a (a + b) -dimensional similarity vector for T and I <math><mrow> <msup> <mover> <mi>L</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>L</mi> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow></math> Wherein <math><mrow> <msub> <mi>L</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <msub> <mi>l</mi> <mi>i</mi> </msub> <mi>I</mi> </msup> <mo>,</mo> <mi>i</mi> <mo>&le;</mo> <mi>a</mi> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>-</mo> <mi>a</mi> </mrow> </msub> <mi>T</mi> </msup> <mo>,</mo> <mi>a</mi> <mo>&lt;</mo> <mi>i</mi> <mo>&lt;</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math>
Figure C2005100901760004C9
is a similarity measure function of the local trigonometric feature.
8. The method for identifying deformed fingerprints based on the local triangular feature set according to claim 7, wherein the method for calculating the similarity vector of the fingerprint image introduces a fuzzy feature measurement method to define the similarity measurement function of the local triangular feature set, and the method comprises the following steps:
(1) all elements in the true matching deformation mode parameter space constitute a fuzzy feature set
Figure C2005100901760004C10
Defining a set of fuzzy featuresOf (2) center
Figure C2005100901760004C12
Is the average value of each element in the set;
(2) measurement vectorRelative to fuzzy feature sequencesThe degree of membership of the Cauchy function is defined by adopting an improved form of the Cauchy function <math><mrow> <mi>C</mi> <mo>:</mo> <mover> <mi>D</mi> <mo>~</mo> </mover> <mo>&RightArrow;</mo> <mo>[</mo> <mn>0,1</mn> <mo>]</mo> </mrow></math> The following were used:
when in useEach element of (1) is less than
Figure C2005100901760004C17
When the corresponding elements are used in the formula (I), <math><mrow> <mi>C</mi> <mrow> <mo>(</mo> <mover> <mi>f</mi> <mo>&RightArrow;</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mrow></math> if not, then, <math><mrow> <mi>C</mi> <mrow> <mo>(</mo> <mover> <mi>f</mi> <mo>&RightArrow;</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>&alpha;</mi> <mo>*</mo> <mo>|</mo> <mo>|</mo> <mover> <mi>f</mi> <mo>&RightArrow;</mo> </mover> <mo>-</mo> <mover> <mi>d</mi> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> <mi>&beta;</mi> </msup> <mo>]</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>;</mo> </mrow></math> wherein, <math><mrow> <mover> <mi>f</mi> <mo>&RightArrow;</mo> </mover> <mo>&Element;</mo> <mover> <mi>D</mi> <mo>~</mo> </mover> <mo>,</mo> </mrow></math> β and α ∈ R, β > 0, α being inversely proportional to the width of the function.
9. The method for fingerprint identification based on deformation of local triangle structure characteristic set according to claim 2, wherein in the step (5), similarity vector is used in fingerprint image matchingThe weighted vectors w of each element in the fingerprint image are accumulated to quantize the overall similarity among the fingerprint images; combining the optimal configuration of the area, the optimal center and the optimal angle uniformity, and applying the weight vector
Figure C2005100901760004C22
Is defined as:
<math><mrow> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msub> <mi>p</mi> <mi>A</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <mi>A</mi> </msub> <mo>+</mo> <msub> <mi>p</mi> <mi>B</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <mi>B</mi> </msub> <mo>+</mo> <msub> <mi>p</mi> <mi>C</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <mi>C</mi> </msub> </mrow></math>
CNB2005100901761A 2005-08-11 2005-08-11 Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set Active CN100385451C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100901761A CN100385451C (en) 2005-08-11 2005-08-11 Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100901761A CN100385451C (en) 2005-08-11 2005-08-11 Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set

Publications (2)

Publication Number Publication Date
CN1912889A CN1912889A (en) 2007-02-14
CN100385451C true CN100385451C (en) 2008-04-30

Family

ID=37721824

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100901761A Active CN100385451C (en) 2005-08-11 2005-08-11 Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set

Country Status (1)

Country Link
CN (1) CN100385451C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122950B (en) * 2007-09-04 2011-01-19 成都方程式电子有限公司 Fingerprint elastic deformation correction method and device
CN102262730B (en) * 2011-08-15 2012-10-03 山东志华信息科技股份有限公司 Fingerprint matching method based on multiple reference point pairs
CN102819729B (en) * 2012-07-17 2014-07-16 内江师范学院 Fingerprint recognizing method
CN103903249B (en) * 2012-12-27 2017-10-13 北京京东尚科信息技术有限公司 Image matching system and method
CN104182719B (en) * 2013-05-21 2017-06-30 宁波华易基业信息科技有限公司 A kind of image-recognizing method and device
CN104077560B (en) * 2014-01-13 2017-07-04 北京市公安局刑事侦查总队 Fingerprint comparison method
CN103927511B (en) * 2014-02-25 2017-02-15 华北电力大学(保定) image identification method based on difference feature description
CN104156707B (en) * 2014-08-14 2017-09-22 深圳市汇顶科技股份有限公司 Fingerprint identification method and its fingerprint identification device
CN105447437B (en) * 2015-02-13 2017-05-03 比亚迪股份有限公司 fingerprint identification method and device
CN108446725A (en) * 2018-03-12 2018-08-24 杭州师范大学 A kind of Image Feature Matching method of feature based triangle
CN112487867B (en) * 2020-11-03 2024-04-12 杭州电子科技大学 Visual constraint fingerprint identification method based on enhanced triangulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321765A (en) * 1986-05-07 1994-06-14 Costello Brendan D Method and apparatus for verifying identity
US6041133A (en) * 1996-12-13 2000-03-21 International Business Machines Corporation Method and apparatus for fingerprint matching using transformation parameter clustering based on local feature correspondences
CN1421815A (en) * 2001-11-29 2003-06-04 田捷 Fingerprint image enhancement method based on knowledge
CN1564186A (en) * 2004-04-18 2005-01-12 杭州中正生物认证技术有限公司 Finger-print identifying method base on global crest line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321765A (en) * 1986-05-07 1994-06-14 Costello Brendan D Method and apparatus for verifying identity
US6041133A (en) * 1996-12-13 2000-03-21 International Business Machines Corporation Method and apparatus for fingerprint matching using transformation parameter clustering based on local feature correspondences
CN1421815A (en) * 2001-11-29 2003-06-04 田捷 Fingerprint image enhancement method based on knowledge
CN1564186A (en) * 2004-04-18 2005-01-12 杭州中正生物认证技术有限公司 Finger-print identifying method base on global crest line

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于三角模融合算子的指纹图像分割方法. 祁兵,景晓军,唐良瑞,翟明岳,梁明.计算机工程,第30卷第2期. 2004 *
基于矢量三角法的指纹特征匹配算法的研究. 贾聪智,解梅,李庆嵘.计算机应用,第24卷第7期. 2004 *
自动指纹识别中的图像增强和细节匹配算法. 罗西平,田捷.软件学报,第13卷第5期. 2002 *

Also Published As

Publication number Publication date
CN1912889A (en) 2007-02-14

Similar Documents

Publication Publication Date Title
CN101751555B (en) A deformation fingerprint recognition method and system
CN100414558C (en) Automatic Fingerprint Recognition System and Method Based on Template Learning
Yang et al. A fingerprint verification algorithm using tessellated invariant moment features
CN100395770C (en) A Hand Feature Fusion Authentication Method Based on Feature Relationship Measurement
CN102332084B (en) Identity identification method based on palm print and human face feature extraction
CN101226589A (en) Live Fingerprint Detection Method Based on Thin Plate Spline Deformation Model
Bharadi et al. Off-line signature recognition systems
CN103714323B (en) Fingerprint Image Enhancement and fingerprint identification device
CN100385451C (en) Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set
Bai et al. Person recognition using 3-D palmprint data based on full-field sinusoidal fringe projection
Lakshmi et al. Off-line signature verification using Neural Networks
Maltoni et al. Advances in fingerprint modeling
Houtinezhad et al. Writer-independent signature verification based on feature extraction fusion
Hashem et al. Human identification using foot features
Naser et al. Artificial Neural Network-Based Fingerprint Classification and Recognition.
Thakare et al. A combined feature extraction model using SIFT and LBP for offline signature verification system
CN112395919B (en) Off-line signature authentication method and system based on multi-feature metric learning
Daramola et al. Algorithm for fingerprint verification system
Kekre et al. Gabor filter based feature vector for dynamic signature recognition
Francis-Lothai et al. A fingerprint matching algorithm using bit-plane extraction method with phase-only correlation
Liu et al. Fingerprint image quality assessment based on BP neural network with hierarchical clustering
Kuban et al. A NOVEL MODIFICATION OF SURF ALGORITHM FOR FINGERPRINT MATCHING.
Liu et al. Contactless fingerprint and palmprint fusion recognition based on quality assessment
Dhole et al. Person identification using peg free hand geometry measurement
Dehghani et al. Retinal identification based on rotation invariant moments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151111

Address after: 100088 Beijing city Haidian District North Third Ring Road No. 31 Building No. 4 Building 12 layer Taisite

Patentee after: Beijing Jichuang Northern Technology Co.,Ltd.

Address before: 100080 Zhongguancun East Road, Beijing, No. 95, No.

Patentee before: Institute of Automation, Chinese Academy of Sciences

C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 100088 Beijing city Haidian District North Third Ring Road No. 31 Building No. 4 Building 12 layer Taisite

Patentee after: BEIJING CHIPONE NORTH TECHNOLOGY CO., LTD.

Address before: Haidian District North Third Ring Road No. 31 Building No. 4 Building 12 layer Taisite

Patentee before: Beijing Jichuang Northern Technology Co.,Ltd.