CN100378789C - Active Display and Pixel Driving Circuit - Google Patents
Active Display and Pixel Driving Circuit Download PDFInfo
- Publication number
- CN100378789C CN100378789C CNB2005101096619A CN200510109661A CN100378789C CN 100378789 C CN100378789 C CN 100378789C CN B2005101096619 A CNB2005101096619 A CN B2005101096619A CN 200510109661 A CN200510109661 A CN 200510109661A CN 100378789 C CN100378789 C CN 100378789C
- Authority
- CN
- China
- Prior art keywords
- transistor
- drain
- driving circuit
- pixel
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
Landscapes
- Electroluminescent Light Sources (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
Abstract
Description
技术领域technical field
本发明关于一种像素驱动电路,特别是关于一种可避免扭结效应的像素驱动电路。The present invention relates to a pixel driving circuit, in particular to a pixel driving circuit capable of avoiding kink effect.
背景技术Background technique
有源式的有机发光显示器(AMOLED)以有机发光二极管为发光组件,并以薄膜晶体管作为有机发光二极管的开关组件或驱动组件。有机发光二极管为一种电流控制组件,通常接到薄膜晶体管的漏极,因此其亮度与漏极电流有密切关系。然而,漏极电流常受到薄膜晶体管的阈值电压漂移及扭结效应(kink effect)影响。An active organic light emitting display (AMOLED) uses organic light emitting diodes as light emitting components, and thin film transistors as switching components or driving components of the organic light emitting diodes. Organic light-emitting diode is a current control device, usually connected to the drain of the thin film transistor, so its brightness is closely related to the drain current. However, the drain current is often affected by threshold voltage shift and kink effect of thin film transistors.
理想状况下,薄膜晶体管的漏极电流(ID)和漏极与源极间电压(VDS)应为独立无关的。但是当漏极与源极间电压大于沟道夹断(pinched-off)电压时,在沟道与漏极界面将形成一空乏区而使有效沟道长度小于实体沟道长度。当漏极与源极间电压越大时,有效沟道长度越小,又因为有效沟道长度与漏极电流成反比,所以漏极与源极间电压越大则漏极电流也越大。此现象称为扭结效应,亦称为沟道调制效应(channel length modulation)。扭结效应对显示器内部像素的影响说明如下。Ideally, the drain current (I D ) and the drain-source voltage (V DS ) of a thin film transistor should be independent. But when the voltage between the drain and the source is greater than the pinched-off voltage of the channel, a depletion region will be formed at the interface between the channel and the drain so that the effective channel length is smaller than the actual channel length. When the voltage between the drain and the source is larger, the effective channel length is smaller, and because the effective channel length is inversely proportional to the drain current, the larger the voltage between the drain and the source is, the larger the drain current is. This phenomenon is called the kink effect, also known as the channel length modulation effect. The effect of the kink effect on the pixels inside the display is explained below.
请参照图1A,为公知有源式有机发光显示器的像素驱动电路。有机发光二极管101具有一阴极连接到一参考电压源Vss,以及一阳极连接到一P沟道薄膜晶体管102的漏极。晶体管102的源极连接到一显示电压源VDD,而栅极连接到另一P沟道薄膜晶体管103的栅极。显示电压源VDD与两晶体管102、103的源极同时连接到一电容104的一端,电容104的另一端则同时连接到晶体管102及晶体管103的栅极。晶体管103的栅极与漏极分别连接到一N沟道薄膜晶体管105的漏极与源极。晶体管103的漏极另与一N沟道薄膜晶体管106的漏极连接,晶体管106的源极连接到一数据线107。晶体管105及晶体管106作为开关组件,其栅极分别连接到扫描线108及扫描线109。Please refer to FIG. 1A , which is a pixel driving circuit of a known active organic light emitting display. The OLED 101 has a cathode connected to a reference voltage source Vss, and an anode connected to the drain of a P-
当晶体管105与晶体管106导通时,晶体管102与晶体管103其实就形成了一个电流镜。流经晶体管102与有机发光二极管101的电流IOLED,与流经晶体管103的数据电流IDATA有关。若晶体管102与晶体管103的性质相近,且晶体管103的阈值电压Vtp1等于晶体管102的阈值电压Vtp2,空穴迁移率的相关参数μpCox皆相同,又晶体管103的栅极/源极间电压VGS1等于晶体管102的栅极/源极间电压VGS2,则有如下式(1)的关系:When the
如果连晶体管102及晶体管103的沟道长宽比(W/L)都相同的话,理想上IOLED=IDATA。If the channel aspect ratio (W/L) of the
当晶体管105及晶体管106导通时,其等效电路如图1B所示。晶体管105导通后,使晶体管103的栅极与漏极形成短路状态,亦即VDS1=VGS1。When the
考虑扭结效应的情形,要加上一个与扭结效应有关的因子λ乘上工作电压VDS。假设晶体管102与晶体管103的性质相近,Vtp1=Vtp2、μpCox皆相同。又VGS1=VGS2,VDS1=VGS1,则IOLED与IDATA的关系如下式(2):Considering the kink effect, a kink-related factor λ is multiplied by the operating voltage V DS . Assuming that the properties of the
所以即使晶体管102与晶体管103的沟道长宽比都相同,但是VDS2≠VGS1,则IOLED≠IDATA。Therefore, even if the channel aspect ratios of the
在晶体管102与晶体管103的W/L都是6/6的条件下,仿真图1B的电路可以得到图1C的结果,其横轴为时间(sec);纵轴为电流值(A)。折线110为流经晶体管103的电流,相当于数据线107所提供的电流IDATA;折线111为流经有机发光二极管101的电流IOLED。虽然是电流镜的电路,IOLED仍然与IDATA不同,的确是受到扭结效应的影响所致。Under the condition that the W/L of the
请参照图1D,是一个低温多晶硅(LTPS)的P沟道金属氧化物半导体场效应晶体管(PMOS)的ID-VDS曲线,图标里的分数代表W/L。理想上,每条曲线末端应保持水平,但图中曲线末端皆弯折向上,表示P沟道金属氧化物半导体场效应晶体管都有扭结效应,使漏极电流增大。此外,实体沟道长度越短的P沟道金属氧化物半导体场效应晶体管,曲线弯折程度愈大,代表扭结效应越明显。附带一提,在N沟道金属氧化物半导体场效应晶体管亦有类似现象。Please refer to Figure 1D, which is an I D -V DS curve of a low-temperature polysilicon (LTPS) P-channel metal-oxide-semiconductor field-effect transistor (PMOS), and the fraction in the icon represents W/L. Ideally, the ends of each curve should be kept horizontal, but the ends of the curves in the figure are bent upwards, which means that the p-channel mosfets have a kink effect, which increases the drain current. In addition, the shorter the physical channel length of the P-channel Mosfet, the greater the bending degree of the curve, which means the more obvious the kink effect. Incidentally, a similar phenomenon occurs in N-channel MOSFETs.
为了减小晶体管的扭结效应,通常需提高显示电压源VDD的电压。如图1D,以W/L=6/6的曲线为例,原本工作电压VDS在2V以上时,晶体管皆为饱和区操作,但2V至4V之间的曲线斜率并不为零,即受到扭结效应的影响。而4V至6V之间的曲线斜率就比较接近零,也就是比较容易控制晶体管电流大小的区域。故薄膜晶体管的工作电压VDS要由2-4V提高到4-6V,即显示电压VDD需要提高一些。但即使在公知结构中提高显示电压VDD后,IOLED与IDATA仍不一致。In order to reduce the kink effect of the transistor, it is usually necessary to increase the voltage of the display voltage source V DD . As shown in Figure 1D, taking the curve of W/L=6/6 as an example, when the original operating voltage V DS is above 2V, the transistors are all operating in the saturation region, but the slope of the curve between 2V and 4V is not zero, that is, it is affected by The influence of the kink effect. The slope of the curve between 4V and 6V is relatively close to zero, that is, the area where it is easier to control the magnitude of the transistor current. Therefore, the operating voltage V DS of the thin film transistor needs to be increased from 2-4V to 4-6V, that is, the display voltage V DD needs to be increased a little. But even after increasing the display voltage V DD in the known structure, I OLED and I DATA are still inconsistent.
发明内容Contents of the invention
本发明的目的在于提供一种像素驱动电路,不但能避免扭结效应,且能使实际上通过发光组件的电流与数据电流一致。The purpose of the present invention is to provide a pixel driving circuit, which can not only avoid the kink effect, but also make the current passing through the light-emitting component consistent with the data current.
本发明的像素驱动电路,包含一电流镜、一开关电路、一第一电压源、一第二电压源及一发光组件。该电流镜具有四个晶体管,第一晶体管的源极电连接到第二晶体管的漏极。第三晶体管的栅极电连接到第一晶体管的栅极。第四晶体管的漏极电连接到第三晶体管的源极,且栅极电连接到第二晶体管的栅极与漏极。第一电压源耦接到第二晶体管及第四晶体管的源极。发光组件具有两电极,并以一第一电极耦接到第一晶体管的漏极,且以一第二电极耦接到第二电压源。开关电路则电连接到第三晶体管的漏极与栅极。The pixel driving circuit of the present invention includes a current mirror, a switch circuit, a first voltage source, a second voltage source and a light-emitting component. The current mirror has four transistors, the source of the first transistor being electrically connected to the drain of the second transistor. The gate of the third transistor is electrically connected to the gate of the first transistor. The drain of the fourth transistor is electrically connected to the source of the third transistor, and the gate is electrically connected to the gate and drain of the second transistor. The first voltage source is coupled to sources of the second transistor and the fourth transistor. The light-emitting component has two electrodes, and a first electrode is coupled to the drain of the first transistor, and a second electrode is coupled to the second voltage source. The switch circuit is electrically connected to the drain and the gate of the third transistor.
上述开关电路使用了两条扫描线与两个晶体管来排除馈通电压的影响。发光组件可采用有机发光二极管。第一电压源与第二电压源的电压差形成像素单元的工作电压。晶体管可采用非晶硅薄膜晶体管或金属氧化物半导体场效应晶体管,且不限于N沟道或P沟道晶体管。原则上,第一晶体管的沟道长宽比与第三晶体管的沟道长宽比的比值大致等于第二晶体管的沟道长宽比与第四晶体管的沟道长宽比的比值。The above switching circuit uses two scan lines and two transistors to eliminate the influence of the feed-through voltage. The light-emitting component can use organic light-emitting diodes. The voltage difference between the first voltage source and the second voltage source forms the working voltage of the pixel unit. The transistors can be amorphous silicon thin film transistors or metal oxide semiconductor field effect transistors, and are not limited to N-channel or P-channel transistors. In principle, the ratio of the channel aspect ratio of the first transistor to the channel aspect ratio of the third transistor is approximately equal to the ratio of the channel aspect ratio of the second transistor to the channel aspect ratio of the fourth transistor.
与公知技术相比较,本发明可解决薄膜晶体管的阈值电压飘移导致面板产生线状亮度不均的现象,并弥补所谓的沟道调制效应。如此,可让电流驱动的控制上能更为准确,亦能降低面板上的功率消耗。Compared with the known technology, the present invention can solve the phenomenon that the threshold voltage drift of the thin film transistor causes the panel to produce linear uneven brightness, and can compensate for the so-called channel modulation effect. In this way, the control of the current drive can be more accurate, and the power consumption of the panel can also be reduced.
附图说明Description of drawings
图1A为公知有源式有机发光显示器的像素驱动电路;FIG. 1A is a pixel driving circuit of a known active organic light emitting display;
图1B为公知像素驱动电路的开关晶体管导通时的等效电路;FIG. 1B is an equivalent circuit when a switching transistor of a known pixel driving circuit is turned on;
图1C为仿真图1B电路的电流-时间曲线;Fig. 1 C is the electric current-time curve of simulation Fig. 1 B circuit;
图1D为低温多晶硅的P沟道金属氧化物半导体场效应晶体管的ID-VDS曲线;Fig. 1D is the I D -V DS curve of the P-channel metal-oxide-semiconductor field-effect transistor of the low-temperature polysilicon;
图2A依据本发明第一实施例的像素驱动电路;FIG. 2A is a pixel driving circuit according to the first embodiment of the present invention;
图2B为仿真图2A的电路的电流-时间曲线;Fig. 2B is the current-time curve of the circuit of simulation Fig. 2A;
图3A为图2A中开关电路的两晶体管导通时的等效电路Fig. 3A is the equivalent circuit when the two transistors of the switch circuit in Fig. 2A are turned on
图3B为图2A中开关电路的两晶体管关断时的等效电路;Fig. 3B is the equivalent circuit when the two transistors of the switch circuit in Fig. 2A are turned off;
图3C为图2A中开关电路的两扫描线的时序图;FIG. 3C is a timing diagram of two scan lines of the switch circuit in FIG. 2A;
图4根据本发明第二实施例的像素驱动电路;FIG. 4 is a pixel driving circuit according to a second embodiment of the present invention;
图5根据本发明第三实施例的像素驱动电路;FIG. 5 is a pixel driving circuit according to a third embodiment of the present invention;
图6A根据本发明的有机电致发光显示器;以及FIG. 6A organic electroluminescence display according to the present invention; and
图6B根据本发明另一实施例的有机电致发光显示器。FIG. 6B is an organic electroluminescence display according to another embodiment of the present invention.
主要组件符号说明Explanation of main component symbols
101 有机发光二极管 26 发光组件101 organic light-emitting
102 P沟道薄膜晶体管 27 数据线102 P-channel
103 P沟道薄膜晶体管 28 电容103 P channel
104 电容 30 像素驱动电路104 capacitors 30 pixel drive circuit
105 N沟道薄膜晶体管 40 像素驱动电路105 N-channel
106 N沟道薄膜晶体管 41 N沟道薄膜晶体管106 N-channel thin film transistor 41 N-channel thin film transistor
107 数据线 42 N沟道薄膜晶体管107 data line 42 N-channel thin film transistor
108 扫描线 43 N沟道薄膜晶体管108 scanning lines 43 N-channel thin film transistors
109 扫描线 44 N沟道薄膜晶体管109 scanning lines 44 N-channel thin film transistors
20 像素驱动电路 45 开关电路20
21 P沟道薄膜晶体管 451 P沟道薄膜晶体管21 P-channel thin film transistor 451 P-channel thin film transistor
22 P沟道薄膜晶体管 452 P沟道薄膜晶体管22 P-channel thin film transistor 452 P-channel thin film transistor
23 P沟道薄膜晶体管 50 有机电致发光显示器23 P-channel thin film transistor 50 Organic electroluminescence display
24 P沟道薄膜晶体管 51 扫描驱动单元24 P-channel
25 开关电路 52 数据驱动单元25
25a 开关电路 53 扫描线
251 N沟道薄膜晶体管 54 数据线251 N-channel
252 N沟道薄膜晶体管 55 像素单元252 N-channel
253 扫描线 60 有机电致发光显示器253
253a 扫描线 61 扫描线
254 扫描线 62 数据线254
63像素单元63 pixel units
具体实施方式Detailed ways
现配合图标详述本发明“有源式显示器及其像素驱动电路”,并列举优选实施例说明如下:Cooperate icon now and describe in detail the present invention " active display and pixel drive circuit thereof ", and enumerate preferred embodiment and explain as follows:
请参照图2A,依据本发明的像素驱动电路。像素驱动电路20至少包含四个晶体管21、22、23及24、一显示电压源VDD及一参考电压源VSS、一发光组件26及一开关电路25。晶体管21、22、23及24皆具有一栅极、一源极、一漏极及一沟道,其位于其源极S与漏极D之间,并且共同组成一电流镜。Please refer to FIG. 2A , a pixel driving circuit according to the present invention. The pixel driving circuit 20 includes at least four
该电流镜通过晶体管22及24的源极耦接到显示电压源VDD以获得一高电压电平。再以晶体管21的漏极耦接到发光组件26的一电极,并以晶体管23的漏极与栅极连接到开关电路25。发光组件26的另一电极则耦接到参考电压源VSS以获得一低电压电平。显示电压源VDD与参考电压源VSS的电压差形成像素单元的工作电压。如此一来,通过开关电路25的数据电流IDATA可通过该电流镜以避免扭结效应的影响。The current mirror is coupled to a display voltage source V DD through the sources of
本发明的电流镜结构说明如下。第一晶体管21的源极电连接到第二晶体管22的漏极。第三晶体管23的栅极电连接到第一晶体管21的栅极。第四晶体管24的漏极电连接到第三晶体管23的源极,且第四晶体管24的栅极电连接到第二晶体管21的栅极与漏极。以图2A为例,晶体管21、22、23及24均为P沟道薄膜晶体管,并且参考电压源VSS可为接地。The current mirror structure of the present invention is explained as follows. The source of the
为了达到本发明的目的,开关电路25使用了两条扫描线先排除馈通电压的影响,因为馈通电压(feed-through)导致的电流变化是一个不确定因素。开关电路25由两个晶体管251及252与两条扫描线253及254组成。晶体管251及252同样具有栅极、源极与漏极,晶体管251的栅极耦接到扫描线253,源极耦接到一数据线27,漏极则电连接到晶体管23的漏极。晶体管252的栅极耦接到扫描线254,源极电连接到晶体管251的漏极,而漏极则耦接到晶体管21与晶体管23的栅极。In order to achieve the purpose of the present invention, the
仿真图2A的电路可以得到图2B的电流-时间曲线,其横轴为时间(sec);纵轴为电流值(A)。图2B显示,数据线27所提供的电流IDATA,与流经发光组件26的电流IOLED随时间的变化曲线重叠。仿真出的结果是IDATA=IOLED,说明本发明中电流镜的电流几乎不受扭结效应的影响。The current-time curve in FIG. 2B can be obtained by simulating the circuit in FIG. 2A , the horizontal axis is time (sec); the vertical axis is current value (A). FIG. 2B shows that the current I DATA provided by the
请参照图3A,为图2A中晶体管251与晶体管252导通时的等效电路。利用扫描线253与扫描线254将晶体管251与晶体管252导通时,流经发光组件26的电流IOLED与数据电流IDATA有如下式(3)的关系:Please refer to FIG. 3A , which is an equivalent circuit when the
式(3)中,(W/L)2与(W/L)4分别代表晶体管22与24的沟道长宽比。VGS2为晶体管22的栅极/源极间电压。VDS4为晶体管24的漏极/源极间电压。In formula (3), (W/L) 2 and (W/L) 4 represent the channel aspect ratios of
在晶体管21、22、23及24所构成的环路上,其电压有如下式(4)的关系:On the loop formed by
VGS2=VDS4+VGS3-VGS1 (4)V GS2 = V DS4 +V GS3 -V GS1 (4)
式(4)中,VGS3为晶体管23的栅极/源极间电压。VGS1为晶体管21的栅极/源极间电压。依据式(3)、(4),若式(5)的条件成立,In formula (4), V GS3 is the gate/source voltage of the
则可得式(6),上式(5)中,(W/L)1与(W/L)3分别代表晶体管21与23的沟道长宽比,Then formula (6) can be obtained. In the above formula (5), (W/L) 1 and (W/L) 3 represent the channel aspect ratios of
VGS3=VGS1 (6)V GS3 = V GS1 (6)
进而推得式(7)、(8)Then deduce formula (7), (8)
VGS2=VDS4 (7)V GS2 = V DS4 (7)
由以上算式可推知,当晶体管21的沟道长宽比与晶体管23的沟道长宽比的比值大致等于晶体管22的沟道长宽比与晶体管24的沟道长宽比的比值时,流经发光组件26的电流IOLED相等于数据电流IDATA。依此原则,可能采取的作法如下:It can be deduced from the above formula that when the ratio of the channel aspect ratio of the
一、晶体管21的沟道长宽比相同于该第三晶体管23的沟道长宽比,且晶体管22的沟道长宽比相同于晶体管24的沟道长宽比。1. The channel aspect ratio of the
二、晶体管21、晶体管22、晶体管23及晶体管24均采用相同的沟道长宽比。2. The
三、晶体管21、晶体管22、晶体管23及晶体管24均采用相同的沟道长度及宽度。3. The
上述原则亦适用于以下诸实施例。The above principles are also applicable to the following embodiments.
请参照图3B,为图2A中晶体管251与晶体管252关断时的等效电路。Please refer to FIG. 3B , which is an equivalent circuit when the
一电容28跨接到晶体管21的源极与栅极,利用扫描线253与扫描线254将晶体管251与晶体管252关断时,不考虑馈通电压的影响,电容28储存的电压差还是等于VGS1,所以IDATA-IOLED还是成立。A
请参照图3C,为图2A的扫描线253及254的时序图。曲线A代表扫描线253的时序,曲线B代表扫描线254的时序。开关电路25通过两条扫描线253、254分别控制两个晶体管251及252的通断顺序。在像素起作用时,先关断晶体管252,后关断晶体管251;或是两者同时关断,可以减轻馈通电压效应。Please refer to FIG. 3C , which is a timing diagram of the
请参照图4,根据本发明第二实施例的像素驱动电路30。将图2A的开关电路25改为如图4的开关电路25a,以便于同时导通或关断晶体管251及252。本实施例中,晶体管251的漏极及晶体管252的源极均电连接到晶体管23的漏极。晶体管251与晶体管252的栅极耦接到同一扫描线253a。晶体管251的源极耦接到数据线27,晶体管252的漏极耦接到晶体管21与晶体管23的栅极。Please refer to FIG. 4 , a pixel driving circuit 30 according to a second embodiment of the present invention. The
请参照图5,根据本发明第三实施例的像素驱动电路40。本实施例与图2A的差异说明如下,电流镜由N沟道薄膜晶体管41、42、43及44组成。发光组件26的一电极连接到晶体管41的漏极,另一电极连接到显示电压源VDD。晶体管42与晶体管44的源极则连接到参考电压源VSS或接地。开关电路45的二个晶体管451及452均为P沟道薄膜晶体管,亦分别由二条扫描线加以控制。Please refer to FIG. 5 , a
综上所述,无论电流镜的四个晶体管为N沟道薄膜晶体管或P沟道薄膜晶体管,开关电路所含的晶体管均不限于N沟道薄膜晶体管或P沟道薄膜晶体管。所有实施例中,与发光组件连接的晶体管的栅极与源极分别连接到电容的两端,例如图2A与图4的晶体管21、图5的晶体管41。上述发光组件均可为一有机发光二极管。所有的晶体管均可采用非晶硅薄膜晶体管或金属氧化物半导体场效应晶体管。To sum up, regardless of whether the four transistors of the current mirror are N-channel TFTs or P-channel TFTs, the transistors included in the switch circuit are not limited to N-channel TFTs or P-channel TFTs. In all embodiments, the gate and the source of the transistor connected to the light-emitting component are respectively connected to two ends of the capacitor, such as the
请参照图6A,为根据本发明的有机电致发光显示器。有机电致发光显示器50具有一扫描驱动单元51与多条扫描线53连接、一数据驱动单元52与多条数据线54连接。每二条扫描线53与一条数据线54决定一像素单元55,像素单元55的驱动电路可以是如图2A及图5所示的像素驱动电路。Please refer to FIG. 6A, which is an organic electroluminescence display according to the present invention. The organic electroluminescent display 50 has a
请参照图6B,有机电致发光显示器60中,每一条扫描线61与一条数据线62决定一像素单元63。每个像素单元63具有二个开关晶体管,故与扫描线61有二个连接点,例如图4所示的像素驱动电路30。Referring to FIG. 6B , in the
本发明与公知技术相互比较时,更具备下列特性及优点:When the present invention compares with known technology mutually, possesses following characteristic and advantage:
1.解决因低温多晶硅(LTPS)中使用准分子激光热处理工艺,造成薄膜晶体管的阈值电压飘移而使面板产生线状亮度不均的现象。1. Solve the phenomenon of linear uneven brightness of the panel due to the threshold voltage drift of the thin film transistor caused by the excimer laser heat treatment process in the low temperature polysilicon (LTPS).
2.弥补所谓的沟道调制效应(channel length modulation)将可让电流驱动的控制上能更为准确。2. Compensating the so-called channel length modulation will make the control of current drive more accurate.
3.显示电压将可降至使薄膜晶体管操作在饱和区的电压位置即可,不需提高到扭结效应程度较低的电压区间。3. The display voltage can be lowered to the voltage position where the thin film transistor operates in the saturation region, and does not need to be raised to a voltage range where the degree of kink effect is low.
4.降低显示电压与参考电压间电压,可以降低面板上的功率消耗。4. Reducing the voltage between the display voltage and the reference voltage can reduce the power consumption on the panel.
以上详细说明针对本发明优选实施例的具体说明,但上述实施例并非用以限制本发明的范围,凡未脱离本发明技术构思所为的等效实施或变更,均应包含于本本发明的范围中。The above detailed description is specific to the preferred embodiments of the present invention, but the above embodiments are not intended to limit the scope of the present invention, and all equivalent implementations or changes that do not depart from the technical concept of the present invention should be included in the scope of the present invention middle.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101096619A CN100378789C (en) | 2005-09-19 | 2005-09-19 | Active Display and Pixel Driving Circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101096619A CN100378789C (en) | 2005-09-19 | 2005-09-19 | Active Display and Pixel Driving Circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1741117A CN1741117A (en) | 2006-03-01 |
CN100378789C true CN100378789C (en) | 2008-04-02 |
Family
ID=36093478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101096619A Active CN100378789C (en) | 2005-09-19 | 2005-09-19 | Active Display and Pixel Driving Circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100378789C (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136178B (en) * | 2006-09-01 | 2011-02-16 | 奇美电子股份有限公司 | Image display system |
DE102010019667B4 (en) * | 2010-04-28 | 2014-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Circuit arrangement for arranged in a two-dimensional matrix organic light-emitting diodes |
CN103002624B (en) * | 2011-09-13 | 2015-02-25 | 昆山维信诺显示技术有限公司 | Active OLED (organic light emitting diode) lighting device |
CN105741778A (en) * | 2016-01-19 | 2016-07-06 | 中山大学 | AMOLED display pixel current compensation circuit and driving method thereof |
US10157572B2 (en) * | 2016-11-01 | 2018-12-18 | Innolux Corporation | Pixel driver circuitry for a display device |
CN107134258B (en) | 2017-06-26 | 2019-10-08 | 京东方科技集团股份有限公司 | OLED compensation circuit and preparation method thereof, OLED compensation device and display device |
CN114708828B (en) * | 2022-04-29 | 2023-05-30 | 深圳市华星光电半导体显示技术有限公司 | Pixel circuit and display panel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1558391A (en) * | 2004-02-12 | 2004-12-29 | 友达光电股份有限公司 | Pixel arrangement of electroluminescent device |
US6885029B2 (en) * | 2002-07-31 | 2005-04-26 | Seiko Epson Corporation | System and methods for driving an electro-optical device |
-
2005
- 2005-09-19 CN CNB2005101096619A patent/CN100378789C/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6885029B2 (en) * | 2002-07-31 | 2005-04-26 | Seiko Epson Corporation | System and methods for driving an electro-optical device |
CN1558391A (en) * | 2004-02-12 | 2004-12-29 | 友达光电股份有限公司 | Pixel arrangement of electroluminescent device |
Also Published As
Publication number | Publication date |
---|---|
CN1741117A (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8928564B2 (en) | Pixel circuit of a flat panel display device and method of driving the same | |
JP4737221B2 (en) | Display device | |
KR101458373B1 (en) | Organic electroluminescence display device | |
US8159479B2 (en) | Pixel circuit and display device | |
JP6117232B2 (en) | Pixel unit driving circuit and method, pixel unit, and display device | |
US9852687B2 (en) | Display device and driving method | |
KR101470968B1 (en) | Threshold Voltage and IR drop compensation of an AMOLED Pixel Circuit without VDD line | |
US8068071B2 (en) | Pixel circuit and image display apparatus having the pixel circuit | |
CN105575327B (en) | A kind of image element circuit, its driving method and organic EL display panel | |
CN1700285B (en) | Electronic circuit, electro-optical device, electronic device and electronic apparatus | |
KR101282996B1 (en) | Organic electro-luminescent display device and driving method thereof | |
US9041300B2 (en) | Driving circuit and method for pixel unit, pixel unit and display apparatus | |
US20140111562A1 (en) | Amoled driving circuit, amoled driving method, and amoled display device | |
US11195459B2 (en) | Display device and method for driving same | |
CN106297662A (en) | AMOLED pixel-driving circuit and driving method | |
US9524668B2 (en) | AMOLED driving circuit and driving method thereof, and display device | |
US20160225313A1 (en) | Light emitting diode pixel unit circuit and display panel | |
US11651735B2 (en) | Pixel circuit and drive method thereof, and display panel | |
CN103680412B (en) | High-accuracy voltage programmed pixels circuit and flexible displayer | |
US11127349B2 (en) | Display device and method for driving same | |
US11302241B2 (en) | Pixel circuit for compensation for threshold voltage and driving method thereof | |
CN114038425A (en) | Pixel driving circuit, method and display panel | |
CN100378789C (en) | Active Display and Pixel Driving Circuit | |
US8044896B2 (en) | Organic electroluminescent display and pixel driving circuit thereof for reducing the kink effect | |
US11527200B2 (en) | Display device and driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |