CN100369188C - Fabrication method of image charge effect quantum cellular automaton - Google Patents
Fabrication method of image charge effect quantum cellular automaton Download PDFInfo
- Publication number
- CN100369188C CN100369188C CNB2005100706044A CN200510070604A CN100369188C CN 100369188 C CN100369188 C CN 100369188C CN B2005100706044 A CNB2005100706044 A CN B2005100706044A CN 200510070604 A CN200510070604 A CN 200510070604A CN 100369188 C CN100369188 C CN 100369188C
- Authority
- CN
- China
- Prior art keywords
- quantum
- charge effect
- substrate
- image charge
- cellular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001413 cellular effect Effects 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000000694 effects Effects 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000002096 quantum dot Substances 0.000 claims abstract description 44
- 239000004065 semiconductor Substances 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 230000003647 oxidation Effects 0.000 claims abstract description 12
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 12
- 238000005516 engineering process Methods 0.000 claims abstract description 11
- 238000005530 etching Methods 0.000 claims abstract description 7
- 230000005641 tunneling Effects 0.000 claims abstract description 7
- 238000005137 deposition process Methods 0.000 claims abstract description 6
- 238000005520 cutting process Methods 0.000 claims abstract description 4
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- 238000000992 sputter etching Methods 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
一种镜像电荷效应量子元胞自动机的制作方法,其特征在于,包括以下步骤:在衬底上形成一个厚度可以控制的绝缘层;用晶片键合工艺将半导体层键合到带有绝缘层的衬底上;利用智能切断或研磨等工艺将半导体层减薄到100nm以下的厚度;按量子元胞自动机器件和电路的要求,采用刻蚀工艺将半导体层刻蚀成量子点阵列,该量子点阵列包括多个元胞单元,每一元胞单元包括四个量子点;采用氧化和淀积工艺在量子点周围形成氧化层,制成镜像电荷效应量子元胞自动机,每个元胞中有两个电子;利用扫描隧穿电镜和原子力显微镜,注入额外的电子,当电子注入后,衬底上就会同时形成等量的镜像正电荷。
A method for making an image charge effect quantum cellular automaton is characterized in that it comprises the following steps: forming an insulating layer whose thickness can be controlled on a substrate; On the substrate; use intelligent cutting or grinding to thin the semiconductor layer to a thickness below 100nm; according to the requirements of quantum cellular automaton devices and circuits, use etching technology to etch the semiconductor layer into a quantum dot array, the The quantum dot array includes a plurality of cellular units, and each cellular unit includes four quantum dots; oxidation and deposition processes are used to form an oxide layer around the quantum dots to make a mirror charge effect quantum cellular automaton. There are two electrons; using the scanning tunneling electron microscope and the atomic force microscope, injecting additional electrons, when the electrons are injected, an equal amount of mirror positive charges will be formed on the substrate at the same time.
Description
技术领域technical field
本发明设计一种镜像电荷效应量子元胞自动机的制作方法,尤其是一种在高导电能力的衬底如金属衬底或高掺杂半导体衬底上形成一个厚度可以控制的绝缘层如二氧化硅(SiO2)等,用晶片键合工艺将半导体晶片如硅(Si)等键合到带有绝缘层的高导电能力的衬底上,利用减薄工艺将半导体减薄到100nm以下的厚度,采用刻蚀工艺按量子元胞自动机器件和电路的要求将半导体薄层刻蚀成量子点整列,并采用氧化和淀积工艺在量子点周围形成氧化层制成镜像电荷效应量子元胞自动机的工艺;适用于镜像电荷效应量子元胞自动机器件和电路的制作。The present invention designs a method for manufacturing a mirror image charge effect quantum cellular automaton, especially a method for forming an insulating layer with a controllable thickness such as two layers on a substrate with high conductivity such as a metal substrate or a highly doped semiconductor substrate. Silicon oxide (SiO 2 ), etc., use wafer bonding technology to bond semiconductor wafers such as silicon (Si) to a substrate with high conductivity with an insulating layer, and use a thinning process to thin the semiconductor to below 100nm Thickness, according to the requirements of quantum cellular automaton devices and circuits, the semiconductor thin layer is etched into an array of quantum dots by etching technology, and an oxide layer is formed around the quantum dots by oxidation and deposition processes to form a mirror charge effect quantum cell Automata technology; suitable for mirror charge effect quantum cellular automata devices and circuits.
背景技术Background technique
在过去的几十年中,微电子集成电路的集成度越来越高,随着其特征线宽的不断缩小,晶体管的特性接近其物理极限,量子效应也更加显著,这使集成电路的发展遇到一个不可逾越的瓶颈。为了克服以上问题并利用量子力学效应开发新的器件和电路,Lent提出了一种新的计算模式--量子元胞自动机(Quantum cellular automaton,简称QCA)的概念。量子元胞自动机利用了元胞之间近距离相互作用来实现信息传输和逻辑运算,它可以避免大规模集成电路中长距离布线困难的问题,同时它具有高速,低功耗,高集成度等特点。近些年,对QCA的研究已得到越来越多的关注,很多具体的实现方案被提出来,并且小规模的QCA逻辑电路在实验上得到了验证。其中,我们提出的镜像电荷效应量子元胞自动机(QCA)是最具可实现性的方案之一。镜像电荷QCA与其他的QCA相比的一个突出的优点是容易达到整个器件结构的电荷中性,而且利用量子力学的隧穿效应能在各个元胞中注入二个剩余的工作电荷。尽管镜像电荷效应QCA结构方案被已经被提出来了,但是到目前为止还没有一套完整的实现镜像电荷效应QCA的工艺方法。In the past few decades, the integration of microelectronic integrated circuits has become higher and higher. With the continuous shrinking of its characteristic line width, the characteristics of transistors are close to their physical limits, and the quantum effects are more significant, which makes the development of integrated circuits Encountered an insurmountable bottleneck. In order to overcome the above problems and use quantum mechanical effects to develop new devices and circuits, Lent proposed a new computing model - the concept of quantum cellular automaton (Quantum cellular automaton, referred to as QCA). Quantum cellular automaton utilizes the close-range interaction between cells to realize information transmission and logic operations. It can avoid the problem of long-distance wiring difficulties in large-scale integrated circuits. At the same time, it has high speed, low power consumption, and high integration. Features. In recent years, more and more attention has been paid to the research of QCA, many specific implementation schemes have been proposed, and small-scale QCA logic circuits have been verified experimentally. Among them, the image charge effect quantum cellular automata (QCA) proposed by us is one of the most feasible schemes. An outstanding advantage of image charge QCA compared with other QCAs is that it is easy to achieve the charge neutrality of the entire device structure, and the tunneling effect of quantum mechanics can be used to inject two remaining working charges into each cell. Although the structure scheme of image charge effect QCA has been proposed, but so far there is no complete set of process methods for realizing image charge effect QCA.
发明内容Contents of the invention
本发明的目的是提供一种镜像电荷效应量子元胞自动机的制作方法,其优点是采用标准的半导体工艺和纳米加工技术相结合的方法,可实现镜像电荷效应量子元胞自动机器件和电路。The purpose of the present invention is to provide a manufacturing method of mirror charge effect quantum cellular automata, which has the advantage of adopting the method of combining standard semiconductor technology and nano-processing technology, which can realize mirror charge effect quantum cellular automata devices and circuits .
为了达到上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
本发明是一种镜像电荷效应量子元胞自动机的制作方法,其特征在于,包括以下步骤:The present invention is a kind of manufacturing method of image charge effect quantum cellular automaton, is characterized in that, comprises the following steps:
1)在衬底上形成一个厚度可以控制的绝缘层;1) Forming an insulating layer with a controllable thickness on the substrate;
2)用晶片键合工艺将半导体层键合到带有绝缘层的衬底上;2) Bonding the semiconductor layer to the substrate with the insulating layer by a wafer bonding process;
3)利用智能切断或研磨等工艺将半导体层减薄到100nm以下的厚度;3) Thin the semiconductor layer to a thickness below 100nm by using intelligent cutting or grinding processes;
4)按量子元胞自动机器件和电路的要求,采用刻蚀工艺将半导体层刻蚀成量子点阵列,该量子点阵列包括多个元胞单元,每一元胞单元包括四个量子点;4) According to the requirements of the quantum cellular automaton device and circuit, the semiconductor layer is etched into a quantum dot array by an etching process, the quantum dot array includes a plurality of cellular units, and each cellular unit includes four quantum dots;
5)采用氧化和淀积工艺在量子点周围形成氧化层,制成镜像电荷效应量子元胞自动机,每个元胞中有两个电子;5) Oxidation and deposition processes are used to form an oxide layer around the quantum dots to form a mirror charge effect quantum cellular automaton, with two electrons in each cell;
6)利用扫描隧穿电镜和原子力显微镜,注入额外的电子,当电子注入后,衬底上就会同时形成等量的镜像正电荷。6) Using the scanning tunneling electron microscope and the atomic force microscope to inject additional electrons, when the electrons are injected, an equal amount of mirror positive charges will be formed on the substrate at the same time.
其中衬底是高导电能力的衬底,是金属材料或高掺杂半导体材料,可以在上面进行各种工艺加工。The substrate is a substrate with high conductivity, which is a metal material or a highly doped semiconductor material, on which various processes can be processed.
其中衬底上的绝缘层是氧化层或氮化层,用高温氧化法形成,或用淀积的方法形成,可以根据镜像电荷效应量子元胞自动机器件和电路的要求,调节温度,时间等参数得到相应的绝缘层的厚度。The insulating layer on the substrate is an oxide layer or a nitride layer, which is formed by high-temperature oxidation or deposition. The temperature and time can be adjusted according to the requirements of the image charge effect quantum cellular automaton device and circuit. parameter to get the thickness of the corresponding insulating layer.
其中半导体层是Si、GaAs半导体单晶片或带有超晶格结构的半导体,通过键合方法键合到衬底的绝缘层上。Wherein the semiconductor layer is a Si, GaAs semiconductor single wafer or a semiconductor with a superlattice structure, which is bonded to the insulating layer of the substrate by a bonding method.
其中量子点阵列用电子束曝光加离子刻蚀等纳米生长加工技术形成,量子点是柱状或半球状,量子点的尺寸和量子点的间距根据镜像电荷效应量子元胞自动机器件的要求进行加工。The quantum dot array is formed by nano-growth processing technologies such as electron beam exposure and ion etching. The quantum dots are columnar or hemispherical. The size and spacing of quantum dots are processed according to the requirements of mirror charge effect quantum cellular automaton devices. .
其中量子点阵列形成之后的氧化层根据半导体的种类采用高温氧化加氧化层的淀积的方法形成或单纯的氧化层的淀积的方法形成。The oxide layer after the formation of the quantum dot array is formed by high temperature oxidation plus oxide layer deposition or simply oxide layer deposition according to the type of semiconductor.
附图说明Description of drawings
为进一步说明本发明的技术,以下结合实施方式及附图详细说明如下,其中:In order to further illustrate the technology of the present invention, the following detailed descriptions are as follows in conjunction with the embodiments and accompanying drawings, wherein:
图1是镜像电荷效应量子元胞自动机器件的结构示意图。Fig. 1 is a schematic diagram of the structure of the image charge effect quantum cellular automata device.
图2是制作镜像电荷效应量子元胞自动机的工艺流程图。Fig. 2 is a process flow chart of making the image charge effect quantum cellular automaton.
具体实施方式Detailed ways
请参阅图1及图2所示,Please refer to Figure 1 and Figure 2,
请参阅图1,图1给出了镜像电荷效应量子元胞自动机的结构示意图。它是由衬底101,绝缘层102,半导体量子点104,及在量子点104周围形成氧化层103所构成的。其衬底101的材料是金属材料。在此衬底101上可形成一个厚度可以控制的二氧化硅(SiO2)绝缘层102。利用晶片键合工艺可以将半导体层108(硅(Si)晶片)键合到带有氧化硅(SiO2)绝缘层102的金属衬底101上。然后采用智能切断(smart cut)工艺可将半导体层(108)减薄到100nm以下的厚度。这个半导体层108的薄层可采用刻蚀工艺按量子元胞自动机器件和电路的要求刻蚀成量子点104整列,四个量子点构成一个元胞106,每个元胞中有两个电子105,相应地会在金属衬底101中存在两个镜像电荷107。最后采用高温氧化和氧化层淀积工艺在量子点周围形成SiO2氧化层103,就可制成镜像电荷效应量子元胞自动机。Please refer to Fig. 1, Fig. 1 shows a schematic diagram of the structure of the image charge effect quantum cellular automaton. It is composed of a substrate 101 , an insulating layer 102 , semiconductor quantum dots 104 , and an oxide layer 103 formed around the quantum dots 104 . The material of the substrate 101 is a metal material. A silicon dioxide (SiO 2 ) insulating layer 102 with a controllable thickness can be formed on the substrate 101 . A semiconductor layer 108 (silicon (Si) wafer) may be bonded to a metal substrate 101 with a silicon oxide (SiO 2 ) insulating layer 102 using a wafer bonding process. Then, the semiconductor layer (108) can be thinned to a thickness below 100 nm by using a smart cut process. The thin layer of the semiconductor layer 108 can be etched into a whole column of quantum dots 104 according to the requirements of quantum cellular automaton devices and circuits by using an etching process. Four quantum dots form a cell 106, and each cell has two electrons. 105 , correspondingly there will be two image charges 107 in the metal substrate 101 . Finally, a SiO 2 oxide layer 103 is formed around the quantum dots by high temperature oxidation and oxide layer deposition process, and the image charge effect quantum cellular automaton can be made.
请参阅图2,本发明一种镜像电荷效应量子元胞自动机的制作方法,包括以下步骤:Please refer to Fig. 2, a kind of preparation method of image charge effect quantum cellular automaton of the present invention, comprises the following steps:
1)在衬底101上形成一个厚度可以控制的绝缘层102(图2a);该衬底101是高导电能力的衬底,是金属材料或高掺杂半导体材料,可以在上面进行各种工艺加工;1) Form an insulating layer 102 with a controllable thickness on the substrate 101 (FIG. 2a); the substrate 101 is a substrate with high conductivity, which is a metal material or a highly doped semiconductor material, on which various processes can be performed processing;
2)用晶片键合工艺将半导体层108键合到带有绝缘层102的衬底101上(图2b);该半导体层108是Si、GaAs半导体单晶片或带有超晶格结构的半导体,通过键合方法键合到衬底101的绝缘层102上;2) the semiconductor layer 108 is bonded to the substrate 101 with the insulating layer 102 (Fig. 2b) by a wafer bonding process; the semiconductor layer 108 is a Si, GaAs semiconductor single wafer or a semiconductor with a superlattice structure, Bonding to the insulating layer 102 of the substrate 101 by a bonding method;
3)利用智能切断或研磨等工艺将半导体层108减薄到100nm以下的厚度(图2c);3) Thinning the semiconductor layer 108 to a thickness below 100nm by using processes such as intelligent cutting or grinding (FIG. 2c);
4)按量子元胞自动机器件和电路的要求,采用刻蚀工艺将半导体层108刻蚀成量子点阵列,该量子点阵列包括多个元胞单元106,每一元胞单元106包括四个量子点104(图2d);其中量子点阵列用电子束曝光加离子刻蚀等纳米生长加工技术形成,量子点104是柱状或半球状,量子点104的尺寸和量子点104的间距根据镜像电荷效应量子元胞自动机器件的要求进行加工;4) According to the requirements of the quantum cellular automaton device and circuit, the semiconductor layer 108 is etched into a quantum dot array by using an etching process. The quantum dot array includes a plurality of cellular units 106, and each cellular unit 106 includes four quantum dots. Dot 104 (Fig. 2d); wherein the quantum dot array is formed by nano-growth processing technologies such as electron beam exposure plus ion etching, the quantum dot 104 is columnar or hemispherical, and the size of the quantum dot 104 and the spacing of the quantum dot 104 are based on the image charge effect Quantum cellular automaton device requirements for processing;
5)采用氧化和淀积工艺在量子点104周围形成氧化层103(图2e),制成镜像电荷效应量子元胞自动机,每个元胞中有两个电子105;其中绝缘层102上的氧化层103用高温氧化法形成,或用淀积的方法形成,可以根据镜像电荷效应量子元胞自动机器件和电路的要求,调节温度,时间等参数得到相应的氧化层103的厚度;5) Oxidation and deposition processes are used to form an oxide layer 103 (Fig. 2e) around the quantum dot 104 to make a mirror image charge effect quantum cellular automaton, with two electrons 105 in each cell; Oxide layer 103 is formed by high-temperature oxidation method, or formed by deposition method, and the thickness of corresponding oxide layer 103 can be obtained by adjusting parameters such as temperature and time according to the requirements of image charge effect quantum cellular automaton device and circuit;
6)利用扫描隧穿电镜和原子力显微镜,注入额外的电子,当电子注入后,衬底101上就会同时形成等量的镜像正电荷107(图2e)。6) Using a scanning tunneling electron microscope and an atomic force microscope to inject additional electrons, when the electrons are injected, an equal amount of mirror positive charges 107 will be simultaneously formed on the substrate 101 ( FIG. 2 e ).
实施例Example
请再参阅图2,图2中给出了制作镜像电荷元胞自动机器件的工艺示意图。首先,如图2中(a)所示,在金属衬底101上淀积了一个二氧化硅(SiO2)绝缘层102,可以根据镜像电荷效应量子元胞自动机器件的要求,调节温度,时间等参数得到相应的氧化层的厚度。Please refer to FIG. 2 again. FIG. 2 shows a schematic diagram of the fabrication process of the mirror charge cellular automaton device. First, as shown in (a) of FIG. 2 , a silicon dioxide (SiO 2 ) insulating layer 102 is deposited on the metal substrate 101, and the temperature can be adjusted according to the requirements of the image charge effect quantum cellular automaton device. Time and other parameters to get the thickness of the corresponding oxide layer.
然后,如图2中(b)所示,在SiO2绝缘层102上可用晶片键合工艺将半导体层108(Si晶片)键合上去。然后采用智能切断(smart cut)工艺将半导体层108减薄到100nm以下的厚度,得到如图2中(c)所示的结果。Then, as shown in (b) of FIG. 2 , the semiconductor layer 108 (Si wafer) can be bonded on the SiO 2 insulating layer 102 by a wafer bonding process. Then, the semiconductor layer 108 is thinned to a thickness below 100 nm by using a smart cut process, and the result shown in (c) of FIG. 2 is obtained.
接着,根据我们想要得到的镜像电荷效应量子元胞自动机器件的结构进行加工形成Si量子点104阵列,如图2(d)中所示。量子点104阵列可以用电子束曝光加离子刻蚀等纳米生长加工技术形成,这些量子点104可以是柱状或半球状等形状,量子点104整列中的量子点104的排列,量子点104的尺寸和量子点104的间距都可以根据我们的实际需要进行刻蚀或生长而得到。在量子点104中,利用扫描隧穿电镜(STM)和原子力显微镜(AFM),可以注入额外的电子。当电子注入后,金属衬底上就会同时形成等量的镜像正电荷107,从而保持整个QCA电路的电荷中性。Next, according to the structure of the image charge effect quantum cellular automaton device we want to obtain, the array of Si quantum dots 104 is formed, as shown in FIG. 2( d ). The array of quantum dots 104 can be formed by nano-growth processing technologies such as electron beam exposure plus ion etching. These quantum dots 104 can be in the shape of columns or hemispheres. The distance between them and the quantum dots 104 can be obtained by etching or growing according to our actual needs. In the quantum dot 104, additional electrons can be injected using a scanning tunneling electron microscope (STM) and an atomic force microscope (AFM). After the electrons are injected, an equal amount of mirrored positive charges 107 will be formed on the metal substrate at the same time, thereby maintaining the charge neutrality of the entire QCA circuit.
最后,如图2(e)所示,在量子点104阵列形成之后,需要在量子点104的周围形成氧化层103。氧化层103可以根据半导体的种类采用高温氧化加氧化层的淀积的方法形成或单纯的氧化层的淀积的方法形成。这个氧化层起着遂穿势垒的作用。Finally, as shown in FIG. 2( e ), after the quantum dots 104 array is formed, an oxide layer 103 needs to be formed around the quantum dots 104 . The oxide layer 103 can be formed by a method of high temperature oxidation plus oxide layer deposition or a simple oxide layer deposition method according to the type of semiconductor. This oxide layer acts as a tunneling barrier.
通过以上的工艺过程就可以实现利用镜像电荷107效应的量子元胞自动机的器件结构。Through the above process, the device structure of the quantum cellular automaton utilizing the image charge 107 effect can be realized.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100706044A CN100369188C (en) | 2005-05-16 | 2005-05-16 | Fabrication method of image charge effect quantum cellular automaton |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100706044A CN100369188C (en) | 2005-05-16 | 2005-05-16 | Fabrication method of image charge effect quantum cellular automaton |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1866464A CN1866464A (en) | 2006-11-22 |
CN100369188C true CN100369188C (en) | 2008-02-13 |
Family
ID=37425440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100706044A Expired - Fee Related CN100369188C (en) | 2005-05-16 | 2005-05-16 | Fabrication method of image charge effect quantum cellular automaton |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100369188C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104407835A (en) * | 2014-10-11 | 2015-03-11 | 南京航空航天大学 | Three-dimensional quantum cellular automata adder |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105741357B (en) * | 2014-12-06 | 2018-10-12 | 中国石油化工股份有限公司 | A method of it reproducing the crystallization process of molecular sieve and describes its exterior appearance |
CN109522671B (en) * | 2018-11-30 | 2022-09-20 | 合肥工业大学 | Two-dimensional clock structure for nanometer quantum cellular automatic machine circuit and design method thereof |
CN110287628B (en) * | 2019-07-01 | 2023-03-24 | 合肥工业大学 | Simulation method of nanometer quantum cellular automatic machine circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366331A (en) * | 2001-01-18 | 2002-08-28 | 株式会社Comtecs | Manufacturing method of SOI chip |
JP2003204859A (en) * | 2002-01-15 | 2003-07-22 | Tosu:Kk | Synthetic resin-made pinch |
CN1495849A (en) * | 2002-08-10 | 2004-05-12 | 朴在仅 | Method for manufacturing nano-SOI wafer and nano-SOI wafer manufactured by the method |
JP2005116939A (en) * | 2003-10-10 | 2005-04-28 | Nikon Corp | Solid-state image sensor |
-
2005
- 2005-05-16 CN CNB2005100706044A patent/CN100369188C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366331A (en) * | 2001-01-18 | 2002-08-28 | 株式会社Comtecs | Manufacturing method of SOI chip |
JP2003204859A (en) * | 2002-01-15 | 2003-07-22 | Tosu:Kk | Synthetic resin-made pinch |
CN1495849A (en) * | 2002-08-10 | 2004-05-12 | 朴在仅 | Method for manufacturing nano-SOI wafer and nano-SOI wafer manufactured by the method |
JP2005116939A (en) * | 2003-10-10 | 2005-04-28 | Nikon Corp | Solid-state image sensor |
Non-Patent Citations (4)
Title |
---|
Configuration-Interaction Based Simulation of a QuantumCellular Automaton Cell. M.Girlanda, M.Governale, M.Macucci, G.Iannaccone.Extended Abstracts of 1998 Sixth International Workshop on. 1998 * |
Quantum Cellular Automaton Device Using the Image ChargeEffect. Nan-Jian Wu, Naoto Shibata, and Yoshihito Amemiya.Jpn. J. Appl. Phys,Vol.37 . 1998 * |
Simulation of a complete chain of QCA cells with realisticpotentials. M.Girlanda and M.Macucci.IWCE Glasqow 2000. 7th International Workshop on. 2000 * |
量子点分布误差对镜像电荷自动元胞机的影响. 汪艳贞,吴南健.第十三届全国化合物半导体材料、微波器件和光电器件学术会议. 2004 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104407835A (en) * | 2014-10-11 | 2015-03-11 | 南京航空航天大学 | Three-dimensional quantum cellular automata adder |
CN104407835B (en) * | 2014-10-11 | 2017-05-17 | 南京航空航天大学 | three-dimensional quantum cellular automata adder |
Also Published As
Publication number | Publication date |
---|---|
CN1866464A (en) | 2006-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11677017B2 (en) | Quantum well stacks for quantum dot devices | |
US10763347B2 (en) | Quantum well stacks for quantum dot devices | |
US10361353B2 (en) | Sidewall metal spacers for forming metal gates in quantum devices | |
CN110176455A (en) | Gate arrangement in quantum dot device | |
TWI338360B (en) | Nonometer-scale memory device utilizing self-aligned rectifying elements and method of making | |
CN110233150A (en) | Fin strain in quantum dot device | |
CN110176491A (en) | Gate arrangement in quantum dot device | |
US8455297B1 (en) | Method to fabricate high performance carbon nanotube transistor integrated circuits by three-dimensional integration technology | |
US20200279937A1 (en) | Quantum dot devices | |
CN100405550C (en) | Electrode manufacturing method | |
WO2018084878A1 (en) | Quantum dot devices | |
JP2005159350A (en) | Method of fabricating multi-layered storage structure, cross-point memory structure and memory stack | |
JP2001523049A (en) | Quantum ridges and quantum peaks | |
US7939398B2 (en) | Method to manufacture silicon quantum islands and single-electron devices | |
CN106463350A (en) | Vertical channel transistors fabrication process by selective subtraction of a regular grid | |
US20200052233A1 (en) | Nanoscale light emitting diode, and methods of making same | |
JP3761319B2 (en) | Manufacturing method of semiconductor device | |
CN211789023U (en) | Quantum chip three-dimensional structure | |
CN109941962A (en) | A method for electrically connecting high-density slope-stepped nanowires | |
CN100369188C (en) | Fabrication method of image charge effect quantum cellular automaton | |
US5972744A (en) | Quantum effect device, method of manufacturing the same | |
CN103762265B (en) | Novel optical interconnected structure based on standard CMOS process and preparation method thereof | |
US20220181315A1 (en) | High density architecture design for 3d logic and 3d memory circuits | |
CN102129981B (en) | Manufacturing methods of nanowire and nanowire transistor | |
CN106058036B (en) | A kind of quantum interference device structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |