CN100368463C - One-step synthesis of amphiphilic superparamagnetic submicron inorganic/polymer composite hollow spheres - Google Patents
One-step synthesis of amphiphilic superparamagnetic submicron inorganic/polymer composite hollow spheres Download PDFInfo
- Publication number
- CN100368463C CN100368463C CNB2006100167560A CN200610016756A CN100368463C CN 100368463 C CN100368463 C CN 100368463C CN B2006100167560 A CNB2006100167560 A CN B2006100167560A CN 200610016756 A CN200610016756 A CN 200610016756A CN 100368463 C CN100368463 C CN 100368463C
- Authority
- CN
- China
- Prior art keywords
- submicron
- hollow spheres
- block polymer
- superparamagnetic
- ferric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 74
- 239000002131 composite material Substances 0.000 title claims description 12
- 230000015572 biosynthetic process Effects 0.000 title claims 2
- 238000003786 synthesis reaction Methods 0.000 title claims 2
- 239000002245 particle Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 10
- 150000003839 salts Chemical class 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 17
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 claims description 9
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 4
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 239000001632 sodium acetate Substances 0.000 claims description 4
- 235000017281 sodium acetate Nutrition 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 2
- 229940011182 cobalt acetate Drugs 0.000 claims description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 2
- 229940044175 cobalt sulfate Drugs 0.000 claims description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical group Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- 229940071125 manganese acetate Drugs 0.000 claims description 2
- 235000002867 manganese chloride Nutrition 0.000 claims description 2
- 239000011565 manganese chloride Substances 0.000 claims description 2
- 229940099596 manganese sulfate Drugs 0.000 claims description 2
- 235000007079 manganese sulphate Nutrition 0.000 claims description 2
- 239000011702 manganese sulphate Substances 0.000 claims description 2
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 claims 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims 1
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 29
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 230000035484 reaction time Effects 0.000 abstract description 7
- 238000009776 industrial production Methods 0.000 abstract description 5
- 238000012377 drug delivery Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 4
- 238000003759 clinical diagnosis Methods 0.000 abstract description 3
- 231100000252 nontoxic Toxicity 0.000 abstract description 3
- 230000003000 nontoxic effect Effects 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000002054 transplantation Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000012454 non-polar solvent Substances 0.000 abstract description 2
- 239000002798 polar solvent Substances 0.000 abstract description 2
- 239000000376 reactant Substances 0.000 abstract description 2
- 238000003860 storage Methods 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 description 19
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 19
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 18
- 229910017052 cobalt Inorganic materials 0.000 description 14
- 239000010941 cobalt Substances 0.000 description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000011257 shell material Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 238000001338 self-assembly Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229910001447 ferric ion Inorganic materials 0.000 description 3
- -1 iron ions Chemical class 0.000 description 3
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明通过溶剂热技术一步合成出铁酸盐/嵌段聚合物杂化亚微米空心球,这种超顺磁的铁酸盐/嵌段聚合物杂化亚微米空心球的粒径可以在200-800nm之间通过简单地控制反应条件(包括反应物浓度和反应时间)来调变,而且粒径分布较窄,能分散于大部分极性和非极性溶剂中。所得的双亲的超顺磁的铁酸盐/嵌段聚合物杂化亚微米空心球在微流体的控制,生物移植及分离,药物输运,生物传感,临床诊断和治疗等方面具有实际的应用价值。这种方法简单直接,成本低,产率高(>90%),反应原料无毒而且易得,产物为固体粉末而且性质稳定、易储运等优点,适于工业生产。
The present invention synthesizes ferrite/block polymer hybrid submicron hollow spheres in one step through solvothermal technology. The particle size of the superparamagnetic ferrite/block polymer hybrid submicron hollow spheres can be within 200 -800nm can be adjusted by simply controlling the reaction conditions (including reactant concentration and reaction time), and the particle size distribution is narrow, which can be dispersed in most polar and non-polar solvents. The resulting amphiphilic superparamagnetic ferrite/block polymer hybrid submicron hollow spheres have practical applications in microfluidic control, biological transplantation and separation, drug delivery, biosensing, clinical diagnosis and treatment, etc. Value. This method is simple and direct, low in cost, high in yield (>90%), non-toxic and readily available as a reaction raw material, and the product is a solid powder with stable properties and easy storage and transportation, and is suitable for industrial production.
Description
技术领域technical field
本发明属于磁性材料的制备领域,特别涉及一种无机物/聚合物复合材料的制备方法,具体涉及一种粒径可控的双亲的铁酸盐/嵌段聚合物杂化的超顺磁性亚微米空心球的制备方法。The invention belongs to the field of preparation of magnetic materials, in particular to a preparation method of an inorganic substance/polymer composite material, in particular to a superparamagnetic ferrite/block polymer hybrid hybrid superparamagnetic ferrite with controllable particle size Preparation method of micron hollow spheres.
背景技术Background technique
具有特殊结构、光学、磁学和表面的性质的纳米到微米级空心球,因其在科学理论上的重要性和技术上的潜在应用价值而成为当今科学研究的热点之一。空心结构因其特殊的形貌结构和其异于相应块体的机械和化学性质被广泛应用于催化剂、填料、锂离子电池的正极材料、生物移植及分离、药物输运、传感、以及太阳能吸收材料等。其中在生物相关领域的应用发展尤为迅速,包括药物输运,生物快速分离技术和临床诊断及治疗(特别是癌症的诊断和治疗)等方面。在上述生物相关领域中要求磁性空心球壳具有无毒,生物兼容,能在液体媒介特别是水中稳定的分散,而且大多要求必须是超顺磁。在各种磁性的空心球壳材料中,铁氧化物(包括Fe3O4和Y-Fe2O3)及反尖晶石结构的铁酸盐类化合物MFe2O4(M=Co,Zn,Mn,Ni等)的空心球壳因其良好的稳定性和生物兼容性成为研究的热点。Nanoscale to micron-scale hollow spheres with special structural, optical, magnetic and surface properties have become one of the hotspots of current scientific research because of their importance in scientific theory and potential application value in technology. Hollow structures are widely used in catalysts, fillers, cathode materials for lithium-ion batteries, biological transplantation and separation, drug delivery, sensing, and solar energy due to their special morphology and mechanical and chemical properties different from those of corresponding bulks. absorbent material, etc. Among them, the application in biological related fields is developing rapidly, including drug delivery, biological rapid separation technology and clinical diagnosis and treatment (especially cancer diagnosis and treatment). In the above-mentioned bio-related fields, the magnetic hollow spherical shells are required to be non-toxic, biocompatible, and capable of stably dispersing in liquid media, especially water, and most of them must be superparamagnetic. Among various magnetic hollow spherical shell materials, iron oxides (including Fe 3 O 4 and Y-Fe 2 O 3 ) and ferrite compounds MFe 2 O 4 (M=Co, Zn , Mn, Ni, etc.) hollow spherical shells have become a research hotspot because of their good stability and biocompatibility.
用于制备空心球壳传统的方案主要分为两大类:①利用模板制备空心结构②利用自组装制备空心结构。方案①多使用“牺牲性”的模板,包括“硬”模板(如聚苯乙烯和二氧化硅微球)和“软”模板(如液滴、微乳液、聚合物胶囊和胶束来制备空心球)。具体包括三个步骤:(1)通过各种方法制备出需要的经过一定表面修饰的模板;(2)利用化学沉积在制备好的模板上包覆需要的球壳材料;(3)通过化学刻蚀,灼烧或其他方法除去模板并得到空心结构。方案②自组装制备空心结构的方法是一种非常直接有效,简单经济的方法。但用于合成空心球壳特别是聚合物/无机物空心球的方法并不多。The traditional schemes for preparing hollow spherical shells are mainly divided into two categories: ①Using templates to prepare hollow structures ②Using self-assembly to prepare hollow structures. Scheme ① mostly uses "sacrificial" templates, including "hard" templates (such as polystyrene and silica microspheres) and "soft" templates (such as droplets, microemulsions, polymer capsules, and micelles) to prepare hollow ball). It specifically includes three steps: (1) preparing the required template with a certain surface modification by various methods; (2) coating the required spherical shell material on the prepared template by chemical deposition; (3) chemically engraving Etching, burning or other methods remove the template and give a hollow structure. Solution ② The method of preparing hollow structures by self-assembly is a very direct, effective, simple and economical method. However, there are not many methods for synthesizing hollow spherical shells, especially polymer/inorganic hollow spheres.
在众多纳米和微米级空心材料中,无机物/聚合物复合空心材料比单一的无机或有机聚合物空心球壳有更广泛的应用价值。目前,合成无机物/聚合物复合空心球壳材料的方法多采用方案①中提到的模板法,尽管这个方法适用于制备各种化学组成的空心球壳,但是实验过程比较烦琐、成本高而且产量低,有时还需要一些精密的设备,不适于工业生产。少数几个通过自组装两步法来制备无机物/聚合物复合空心球壳:一种方法是先制备无机粒子然后通过特定的表面活性剂或聚合物自组装成空心结构:另一种方法是首先通过自组装形成聚合物空心球壳,然后在上面沉积无机的组分。而简便、有效的制备具有特定功能(特别是具有磁性的)的无机物/聚合物复合空心球壳并适用于工业生产的合成方法更是不多。因此寻找一种简单、产率高、成本低、适合工业生产的制备聚合物/无机物空心球的方法成为亟待解决的问题。Among numerous nanometer and micrometer-scale hollow materials, inorganic/polymer composite hollow materials have wider application value than single inorganic or organic polymer hollow spherical shells. At present, the method of synthesizing inorganic/polymer composite hollow spherical shell materials mostly adopts the template method mentioned in scheme ①. Although this method is suitable for preparing hollow spherical shells with various chemical compositions, the experimental process is cumbersome, costly and The output is low, and some sophisticated equipment is sometimes required, which is not suitable for industrial production. A few of them prepare inorganic/polymer composite hollow spherical shells by self-assembly two-step method: one method is to prepare inorganic particles first and then self-assemble into hollow structures through specific surfactants or polymers: the other method is First, hollow polymer shells are formed by self-assembly, and then inorganic components are deposited on top. However, there are not many synthetic methods for preparing inorganic/polymer composite hollow spherical shells with specific functions (especially magnetic) conveniently and effectively and suitable for industrial production. Therefore, finding a method for preparing polymer/inorganic hollow spheres that is simple, high in yield, low in cost and suitable for industrial production has become an urgent problem to be solved.
发明内容Contents of the invention
本发明的目的就是要克服背景技术的不足,采用一步法合成具有双亲性和超顺磁性的亚微米无机物/嵌段聚合物复合空心球。The purpose of the present invention is to overcome the deficiency of the background technology and adopt a one-step method to synthesize submicron inorganic matter/block polymer composite hollow spheres with amphiphilicity and superparamagnetism.
本发明以三氯化铁及其他金属的氯化物和嵌段聚合物(PEO-PPO-PEO)为原料,通过溶剂热合成技术在含有醋酸钠的乙二醇体系中一步合成出带有空心结构的铁酸盐/嵌段聚合物杂化亚微米球。In the present invention, ferric chloride and other metal chlorides and block polymers (PEO-PPO-PEO) are used as raw materials, and a compound with a hollow structure is synthesized in one step in an ethylene glycol system containing sodium acetate by solvothermal synthesis technology. Ferrite/block polymer hybrid submicron spheres.
合成铁酸盐/嵌段聚合物杂化亚微米空心球的具体方法如下:The specific method of synthesizing ferrite/block polymer hybrid submicron hollow spheres is as follows:
一、四氧化三铁/嵌段聚合物杂化亚微米空心球的制备:1. Preparation of Fe3O4/block polymer hybrid submicron hollow spheres:
将三价铁盐、醋酸钠(CH3COONa)、分子量在1000~20000之间的PEO-PPO-PEO(购于Aldrich公司)溶解在乙二醇溶液中搅拌至均匀,三价铁盐和醋酸钠的摩尔比为1∶2~450,三价铁盐的浓度为0.003~0.60M(mol/L),PEO-PPO-PEO的浓度为0.001~0.05M,然后将该溶液装入不锈钢反应釜中,在200℃反应4~72小时,自然冷却至室温;所得黑色产物通过离心分离或者在外磁场的作用下沉淀分离,然后再分散于无水乙醇中进行清洗,如此循环1~2次,从而将表面的一些离子、多余的聚合物和其他杂质除去,并将所得到的固体在室温下真空干燥,即得粒径在200~800nm之间的四氧化三铁/嵌段聚合物杂化亚微米空心球的黑色粉术。Dissolve ferric salt, sodium acetate (CH 3 COONa), PEO-PPO-PEO (purchased from Aldrich Company) with a molecular weight between 1000 and 20000 in ethylene glycol solution and stir until uniform, ferric salt and acetic acid The molar ratio of sodium is 1:2~450, the concentration of ferric salt is 0.003~0.60M (mol/L), the concentration of PEO-PPO-PEO is 0.001~0.05M, and then put the solution into a stainless steel reaction kettle reaction at 200°C for 4 to 72 hours, and naturally cooled to room temperature; the obtained black product was separated by centrifugation or precipitation under the action of an external magnetic field, and then dispersed in absolute ethanol for cleaning, and this cycle was repeated 1 to 2 times, thereby Some ions, redundant polymers and other impurities on the surface are removed, and the obtained solid is vacuum-dried at room temperature to obtain ferric oxide/block polymer hybrid sub Black powder technique of micron hollow spheres.
二、MFe2O4(M=Co,Mn)/嵌段聚合物杂化亚微米空心球的制备:2. Preparation of MFe 2 O 4 (M=Co, Mn)/block polymer hybrid submicron hollow spheres:
制备方法与四氧化三铁/嵌段聚合物杂化亚微米空心球的制备方法相同,只是用Co或Mn的二价盐代替部分三价铁盐,三价铁盐与Co或Mn的二价盐的摩尔比为2∶1,其余条件相同,即得粒径在200~800nm之间的MFe2O4(M=Co或Mn)/嵌段聚合物杂化亚微米空心球的黑色粉末。The preparation method is the same as the preparation method of ferric oxide/block polymer hybrid submicron hollow spheres, except that part of the ferric salt is replaced by a divalent salt of Co or Mn, and the ferric salt and the divalent salt of Co or Mn The molar ratio of the salt is 2:1, and the rest of the conditions are the same to obtain a black powder of MFe 2 O 4 (M=Co or Mn)/block polymer hybrid submicron hollow spheres with a particle size of 200-800 nm.
本发明的制备过程:对于四氧化三铁/嵌段聚合物杂化亚微米空心球的制备,一部分的三价铁离子在还原性溶剂热体系中还原成二价铁离子并与剩余的三价铁离子共沉淀生成四氧化三铁纳米粒子,形成的四氧化三铁纳米粒子再与嵌段聚合物自组装成空心亚微米球,两个过程同时进行。而制备MFe2O4(M=Co,Mn)/嵌段聚合物杂化亚微米空心球则是二价M离子直接和三价铁离子共沉淀生成MFe2O4纳米粒子,同时MFe2O4纳米粒子和嵌段聚合物自组装成空心亚微米球。The preparation process of the present invention: for the preparation of ferric oxide/block polymer hybrid submicron hollow spheres, a part of ferric ions are reduced to ferrous ions in a reducing solvothermal system and combined with the remaining ferric ions Co-precipitation of iron ions produces ferric oxide nanoparticles, and the formed ferric oxide nanoparticles are self-assembled with block polymers to form hollow submicron spheres, and the two processes are carried out simultaneously. In the preparation of MFe 2 O 4 (M=Co, Mn)/block polymer hybrid submicron hollow spheres, divalent M ions directly co-precipitate with ferric ions to form MFe 2 O 4 nanoparticles, while MFe 2 O 4 Nanoparticles and block polymers self-assemble into hollow submicron spheres.
本发明的方法中,所用的嵌段聚合物的分子量可以在1000到20000之间改变;三价铁盐可以为氯化铁(FeCl3·6H2O)、硝酸铁(Fe(NO3)3·9H2O)或硫酸铁(Fe2(SO4)3·6H2O);Co(Mn)的二价盐可以是二氯化钴(二氯化锰)、醋酸钴(醋酸锰)、硝酸钴(硝酸锰)、硫酸钴(硫酸锰)。In the method of the present invention, the molecular weight of the block polymer used can be changed between 1000 and 20000; the ferric salt can be iron chloride (FeCl 3 ·6H 2 O), iron nitrate (Fe(NO 3 ) 3 9H 2 O) or iron sulfate (Fe 2 (SO 4 ) 3 6H 2 O); the divalent salt of Co(Mn) can be cobalt dichloride (manganese dichloride), cobalt acetate (manganese acetate), Cobalt nitrate (manganese nitrate), cobalt sulfate (manganese sulfate).
所得产品能均匀分散于大部分溶剂中,如己烷、甲苯、氯仿、甲醇、乙氰、二甲基亚砜、水等。在一些溶剂中可得稳定的黑色悬浊液,比如乙醇,水和二硫化碳等溶剂中,能稳定储存一周而不沉淀。而将所得固体在室温真空下干燥得到的固体粉末,同样能分散于大部分溶剂中而无明显团聚。The obtained product can be uniformly dispersed in most solvents, such as hexane, toluene, chloroform, methanol, acetonitrile, dimethyl sulfoxide, water, etc. A stable black suspension can be obtained in some solvents, such as ethanol, water and carbon disulfide, which can be stored stably for one week without precipitation. The solid powder obtained by drying the obtained solid under vacuum at room temperature can also be dispersed in most solvents without obvious agglomeration.
本发明通过溶剂热技术一步合成出铁酸盐/嵌段聚合物杂化亚微米空心球。通过简单地控制反应条件(包括反应物浓度和反应时间),这种超顺磁的铁酸盐/嵌段聚合物杂化亚微米空心球的粒径可以在200~800nm之间进行调变,而且粒径分布较窄,能分散于大部分极性和非极性溶剂中。这种方法具有简单直接,成本低,产率高(>90%),反应原料无毒而且易得,产物为固体粉末而且性质稳定、易储运等优点,适于工业生产。而且,所得的双亲的超顺磁的铁酸盐/嵌段聚合物杂化亚微米空心球在微流体的控制,生物移植及分离,药物输运,生物传感,临床诊断和治疗等方面具有实际的应用价值。The invention synthesizes the ferrite/block polymer hybrid submicron hollow spheres in one step through the solvothermal technology. By simply controlling the reaction conditions (including reactant concentration and reaction time), the particle size of this superparamagnetic ferrite/block polymer hybrid submicron hollow sphere can be adjusted between 200-800nm, Moreover, the particle size distribution is narrow, and it can be dispersed in most polar and non-polar solvents. The method has the advantages of simplicity and directness, low cost, high yield (>90%), non-toxic and easy-to-obtain reaction raw materials, and the product is solid powder with stable properties and easy storage and transportation, and is suitable for industrial production. Moreover, the obtained amphiphilic superparamagnetic ferrite/block polymer hybrid submicron hollow spheres have great potential in microfluidic control, biological transplantation and separation, drug delivery, biosensing, clinical diagnosis and treatment, etc. practical application value.
附图说明Description of drawings
图1:铁酸钴/嵌段聚合物杂化亚微米空心球的扫描电镜照片;Figure 1: Scanning electron micrograph of cobalt ferrite/block polymer hybrid submicron hollow spheres;
图2:铁酸钴/嵌段聚合物杂化亚微米空心球的透射电镜照片;Figure 2: Transmission electron micrograph of cobalt ferrite/block polymer hybrid submicron hollow spheres;
图3:铁酸钴/嵌段聚合物杂化亚微米空心球的粉末X-射线衍射谱图;Figure 3: Powder X-ray diffraction spectrum of cobalt ferrite/block polymer hybrid submicron hollow spheres;
图4:铁酸钴/嵌段聚合物杂化亚微米空心球的温度为4K和300K时的磁滞回线;Figure 4: Hysteresis loops of cobalt ferrite/block polymer hybrid submicron hollow spheres at 4K and 300K;
图5:铁酸钴/嵌段聚合物杂化亚微米空心球在各种溶剂中分散的照片。Figure 5: Photographs of cobalt ferrite/block polymer hybrid submicron hollow spheres dispersed in various solvents.
具体实施方式Detailed ways
下面结合实施例对本发明进行进一步阐述。The present invention is further elaborated below in conjunction with embodiment.
实施例1:Example 1:
将35mL摩尔浓度分别为0.57M的FeCl3·6H2O、1.25M的CH3COONa和0.0024M的PEO-PPO-PEO(Aldrich,分子量:14600)的乙二醇溶液搅拌至均匀。然后将该溶液装入带有聚四氟乙烯内衬容量为50mL的不锈钢反应釜中,然后在200℃的烘箱中反应8小时,自然冷却至室温。所得黑色产物可以通过离心(4000rpm)分离或者在外磁场(永磁铁)的作用下沉淀分离,然后再分散于无水乙醇中进行清洗,如此循环1-2次,将表面的一些离子、多余的聚合物和其他杂质除去,并将所得固体在室温下真空干燥,即得四氧化三铁/嵌段聚合物杂化亚微米空心球的黑色粉末,平均粒径为400nm。35 mL of an ethylene glycol solution with a molar concentration of 0.57M FeCl 3 ·6H 2 O, 1.25M CH 3 COONa and 0.0024M PEO-PPO-PEO (Aldrich, molecular weight: 14600) was stirred until homogeneous. Then put the solution into a 50 mL stainless steel reaction kettle with a polytetrafluoroethylene liner, react in an oven at 200° C. for 8 hours, and cool to room temperature naturally. The resulting black product can be separated by centrifugation (4000rpm) or precipitated and separated under the action of an external magnetic field (permanent magnet), and then dispersed in absolute ethanol for cleaning, so that it can be circulated for 1-2 times to remove some ions and excess polymerization on the surface. and other impurities were removed, and the resulting solid was vacuum-dried at room temperature to obtain a black powder of ferric oxide/block polymer hybrid submicron hollow spheres, with an average particle size of 400nm.
实施例2:Example 2:
实验方法同实施例1,只是反应配比不同,将FeCl3·6H2O的浓度变为0.086M,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为350nm。The experimental method is the same as in Example 1, except that the reaction ratio is different, and the concentration of FeCl 3 6H 2 O is changed to 0.086M, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle size of 350nm .
实施例3:Example 3:
实验方法同实施例1,只是反应配比不同,将FeCl3·6H2O的浓度变为0.029M,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为300nm。The experimental method is the same as in Example 1, except that the reaction ratio is different, and the concentration of FeCl 3 6H 2 O is changed to 0.029M, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle size of 300nm .
实施例4:Example 4:
实验方法同实施例1,只是将FeCl3·6H2O的浓度变为0.003M,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为250nm。The experimental method was the same as that in Example 1, except that the concentration of FeCl 3 ·6H 2 O was changed to 0.003M, and ferric oxide/block polymer hybrid submicron hollow spheres were also obtained, with an average particle size of 250 nm.
实施例5:Example 5:
实验方法同实施例1,只是将PEO-PPO-PEO的分子量由14600变为1900,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 1, except that the molecular weight of PEO-PPO-PEO is changed from 14600 to 1900, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle size of 400nm.
实施例6:Embodiment 6:
实验方法同实施例1,只是将PEO-PPO-PEO的分子量由14600变为5800,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 1, except that the molecular weight of PEO-PPO-PEO is changed from 14600 to 5800, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle size of 400nm.
实施例7:Embodiment 7:
实验方法同实施例1,只将FeCl3·6H2O的浓度变为0.4M,反应时间变为72小时,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为800nm。The experimental method is the same as in Example 1, only the concentration of FeCl 3 6H 2 O is changed to 0.4M, and the reaction time is changed to 72 hours, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 800nm.
实施例8:Embodiment 8:
实验方法同实施例1,只将FeCl3·6H2O的浓度变为0.4M,反应时间变为48小时,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为680nm。The experimental method is the same as in Example 1, only the concentration of FeCl 3 6H 2 O is changed to 0.4M, and the reaction time is changed to 48 hours, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 680nm.
实施例9:Embodiment 9:
实验方法同实施例1,只将FeCl3·6H2O的浓度变为0.4M,反应时间变为24小时,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为600nm。The experimental method is the same as that in Example 1, only the concentration of FeCl 3 6H 2 O is changed to 0.4M, and the reaction time is changed to 24 hours, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 600nm.
实施例10:Example 10:
实验方法同实施例1,只将FeCl3·6H2O的浓度变为0.4M,反应时间变为12小时,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为550nm。The experimental method is the same as that in Example 1, only the concentration of FeCl 3 6H 2 O is changed to 0.4M, and the reaction time is changed to 12 hours, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 550nm.
实施例11:Example 11:
实验方法同实施例1,只将FeCl3·6H2O的浓度变为0.086M,反应时间变为4小时,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为200nm。The experimental method is the same as that in Example 1, only the concentration of FeCl 3 6H 2 O is changed to 0.086M, and the reaction time is changed to 4 hours, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 200nm.
实施例12:Example 12:
实验方法同实施例1,只是将FeCl3·6H2O换成Fe(NO3)3·9H2O,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as that in Example 1, except that FeCl 3 6H 2 O is replaced by Fe(NO 3 ) 3 9H 2 O, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 400nm.
实施例13:Example 13:
实验方法同实施例1,只是将FeCl3·6H2O换成Fe2(SO4)3·6H2O,同样得到四氧化三铁/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 1, except that FeCl 3 6H 2 O is replaced by Fe 2 (SO 4 ) 3 6H 2 O, and ferric oxide/block polymer hybrid submicron hollow spheres are also obtained, with an average particle diameter of 400nm.
实施例14:Example 14:
将35mL摩尔浓度分别为0.14M的FeCl3·6H2O、0.07M的CoCl2·4H2O、1.25M的CH3COONa和0.0024M的PEO-PPO-PEO(Aldrich,分子量:1900)的乙二醇溶液搅拌至均匀。然后将该溶液装入带有聚四氟乙烯内衬容量为50mL的不锈钢反应釜中,然后在200℃的烘箱中反应8小时,自然冷却至室温。所得黑色产物可以通过离心分离或者在外磁场的作用下沉淀分离,然后再分散于无水乙醇中进行清洗,如此循环1-2次,将表面的一些离子、多余的聚合物和其他杂质除去,并将所得固体在室温下真空干燥得到固体粉末。35 mL molar concentrations of 0.14M FeCl 3 6H 2 O, 0.07M CoCl 2 4H 2 O, 1.25M CH 3 COONa and 0.0024M PEO-PPO-PEO (Aldrich, molecular weight: 1900) in B The diol solution was stirred until homogeneous. Then put the solution into a 50 mL stainless steel reaction kettle with a polytetrafluoroethylene liner, react in an oven at 200° C. for 8 hours, and cool to room temperature naturally. The resulting black product can be separated by centrifugation or precipitation under the action of an external magnetic field, and then dispersed in absolute ethanol for cleaning. This cycle is repeated 1-2 times to remove some ions, excess polymers and other impurities on the surface, and The resulting solid was vacuum dried at room temperature to obtain a solid powder.
对本实施例制备的铁酸钴/嵌段聚合物杂化亚微米空心球进行了一些结构和性能的表征。铁酸钴/嵌段聚合物杂化亚微米空心球的扫描电镜表征如图1所示,铁酸钴/嵌段聚合物杂化亚微米空心球的透射电镜表征如图2所示,由图1和图2可以确定,所得的球为空心球壳,平均粒径为200nm,而且粒径几乎单分散,球壳由无机的纳米粒子镶嵌于嵌段聚合物中形成。铁酸钴/嵌段聚合物杂化亚微米空心球的球壳中的无机组成可由其粉末X-射线衍射谱图来确定为CoFe2O4(JCPDS 03-0864),而且在特征峰衍射峰(30.0°、35.4°、43.0°、53.4°、56.9°和62.5°)处有明显宽化,表明其粒子很小,为纳米级,如图3所示。铁酸钴/嵌段聚合物杂化亚微米空心球的磁性的表征如图4,通过其温度在4K和300K时的磁滞回线可确定为超顺磁。图5为铁酸钴/嵌段聚合物杂化亚微米空心球的固体粉末超声扩散于(从左到右依次为)正己烷、甲苯、氯仿、甲醇、乙氰、二甲基亚砜、水中,这种既分散于水又很好地分散于油相的现象表明了产品具有良好的双亲性质和优秀的可分散性。The structures and properties of the cobalt ferrite/block polymer hybrid submicron hollow spheres prepared in this example were characterized. The scanning electron microscope characterization of cobalt ferrite/block polymer hybrid submicron hollow spheres is shown in Figure 1, and the transmission electron microscope characterization of cobalt ferrite/block polymer hybrid submicron hollow spheres is shown in Figure 2. 1 and Figure 2, it can be confirmed that the obtained ball is a hollow spherical shell with an average particle size of 200nm, and the particle size is almost monodisperse, and the spherical shell is formed by embedding inorganic nanoparticles in a block polymer. The inorganic composition in the spherical shell of cobalt ferrite/block polymer hybrid submicron hollow spheres can be determined as CoFe 2 O 4 (JCPDS 03-0864) by its powder X-ray diffraction spectrum, and in the characteristic peak diffraction peak (30.0°, 35.4°, 43.0°, 53.4°, 56.9°, and 62.5°) have obvious broadening, indicating that the particles are very small and are nanoscale, as shown in Figure 3. The magnetic characterization of the cobalt ferrite/block polymer hybrid submicron hollow spheres is shown in Figure 4, and the hysteresis loops at temperatures of 4K and 300K can be determined to be superparamagnetic. Figure 5 is the ultrasonic diffusion of solid powder of cobalt ferrite/block polymer hybrid submicron hollow spheres in (from left to right) n-hexane, toluene, chloroform, methanol, acetonitrile, dimethyl sulfoxide, water , this phenomenon of being well dispersed in both water and oil phase indicates that the product has good amphiphilic properties and excellent dispersibility.
实施例15:Example 15:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的Co(CH3COO)2·4H2O,同样得到铁酸钴/嵌段聚合物杂化亚微米空心球,平均粒径为200nm。The experimental method is the same as in Example 12, except that the concentration of 0.07M CoCl 2 ·4H 2 O is replaced by the concentration of 0.07M Co(CH 3 COO) 2 ·4H 2 O, and the cobalt ferrite/block polymer hetero Submicron hollow spheres with an average particle size of 200nm.
实施例16:Example 16:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的Co(NO3)2·6H2O,同样得到铁酸钴/嵌段聚合物杂化亚微米空心球,平均粒径为200nm。The experimental method is the same as in Example 12, except that CoCl 2 ·4H 2 O with a concentration of 0.07M is replaced with Co(NO 3 ) 2 ·6H 2 O with a concentration of 0.07M, and cobalt ferrite/block polymer hybrid Submicron hollow spheres with an average particle size of 200nm.
实施例17:Example 17:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的CoSO4·7H2O,同样得到铁酸钴/嵌段聚合物杂化亚微米空心球,平均粒径为200nm。The experimental method is the same as in Example 12, except that the concentration of 0.07M CoCl 2 ·4H 2 O is replaced by the concentration of 0.07M CoSO 4 ·7H 2 O, and cobalt ferrite/block polymer hybrid submicron hollow spheres are also obtained , the average particle size is 200nm.
实施例18:Example 18:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的MnCl2·4H2O,同样得到铁酸锰/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 12, except that the concentration of 0.07M CoCl 2 ·4H 2 O is replaced by the concentration of 0.07M MnCl 2 ·4H 2 O, and manganese ferrite/block polymer hybrid submicron hollow spheres are also obtained , the average particle size is 400nm.
实施例19:Example 19:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的Mn(CH3COO)2·4H2O,同样得到铁酸锰/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 12, except that the concentration of 0.07M CoCl 2 ·4H 2 O is replaced by the concentration of 0.07M Mn(CH 3 COO) 2 ·4H 2 O, and the manganese ferrite/block polymer hetero Submicron hollow spheres with an average particle size of 400nm.
实施例20:Example 20:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的Mn(NO3)2·6H2O,同样得到铁酸锰/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 12, except that the concentration of 0.07M CoCl 2 ·4H 2 O is replaced by the concentration of 0.07M Mn(NO 3 ) 2 ·6H 2 O, and the manganese ferrite/block polymer hybrid Submicron hollow spheres with an average particle size of 400nm.
实施例21:Example 21:
实验方法同实施例12,只是将浓度为0.07M的CoCl2·4H2O换成浓度为0.07M的MnSO4·H2O,同样得到铁酸锰/嵌段聚合物杂化亚微米空心球,平均粒径为400nm。The experimental method is the same as in Example 12, except that the concentration of 0.07M CoCl 2 ·4H 2 O is replaced by the concentration of 0.07M MnSO 4 ·H 2 O, and manganese ferrite/block polymer hybrid submicron hollow spheres are also obtained , the average particle size is 400nm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100167560A CN100368463C (en) | 2006-04-07 | 2006-04-07 | One-step synthesis of amphiphilic superparamagnetic submicron inorganic/polymer composite hollow spheres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100167560A CN100368463C (en) | 2006-04-07 | 2006-04-07 | One-step synthesis of amphiphilic superparamagnetic submicron inorganic/polymer composite hollow spheres |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1844201A CN1844201A (en) | 2006-10-11 |
CN100368463C true CN100368463C (en) | 2008-02-13 |
Family
ID=37063171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100167560A Expired - Fee Related CN100368463C (en) | 2006-04-07 | 2006-04-07 | One-step synthesis of amphiphilic superparamagnetic submicron inorganic/polymer composite hollow spheres |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100368463C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102502858A (en) * | 2011-10-24 | 2012-06-20 | 中国科学院理化技术研究所 | Preparation method of polyacrylic acid modified water-soluble ferrite nanocluster |
CN104150540B (en) * | 2014-07-14 | 2016-01-20 | 河南大学 | A kind of adsorbent for heavy metal ferrite hollow ball MFe 2o 4 |
CN114261993B (en) * | 2022-03-01 | 2023-03-10 | 广东工业大学 | Cobalt ferrite nano particle and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4775598A (en) * | 1986-11-27 | 1988-10-04 | Norddeutsche Affinerie Akitiengesellschaft | Process for producing hollow spherical particles and sponge-like particles composed therefrom |
CN1569323A (en) * | 2004-04-29 | 2005-01-26 | 西安科技大学 | Preparation of composite hollow nano-structure |
CN1600674A (en) * | 2003-09-28 | 2005-03-30 | 中国科学院化学研究所 | A kind of inorganic semiconductor composite nanoscale hollow sphere and its preparation method |
CN1631951A (en) * | 2004-12-02 | 2005-06-29 | 同济大学 | A kind of polymer hollow microsphere and preparation method thereof |
CN1669629A (en) * | 2004-12-29 | 2005-09-21 | 浙江大学 | Method for preparing organic-inorganic hybrid nanocapsules with polymer as core |
-
2006
- 2006-04-07 CN CNB2006100167560A patent/CN100368463C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4775598A (en) * | 1986-11-27 | 1988-10-04 | Norddeutsche Affinerie Akitiengesellschaft | Process for producing hollow spherical particles and sponge-like particles composed therefrom |
CN1600674A (en) * | 2003-09-28 | 2005-03-30 | 中国科学院化学研究所 | A kind of inorganic semiconductor composite nanoscale hollow sphere and its preparation method |
CN1569323A (en) * | 2004-04-29 | 2005-01-26 | 西安科技大学 | Preparation of composite hollow nano-structure |
CN1631951A (en) * | 2004-12-02 | 2005-06-29 | 同济大学 | A kind of polymer hollow microsphere and preparation method thereof |
CN1669629A (en) * | 2004-12-29 | 2005-09-21 | 浙江大学 | Method for preparing organic-inorganic hybrid nanocapsules with polymer as core |
Also Published As
Publication number | Publication date |
---|---|
CN1844201A (en) | 2006-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rafienia et al. | Solvothermal synthesis of magnetic spinel ferrites | |
CN102659191B (en) | Method for controlling morphology and performance of ferriferrous oxide | |
CN101289314B (en) | A kind of preparation method of spinel type ferrite nano hollow microsphere | |
CN101318710B (en) | Iron oxide multi-stage hollow core-shell material and preparation method thereof | |
CN104538145B (en) | Multi-scale uniform and single-dispersion magnetic microsphere and preparation method thereof | |
CN101948140B (en) | Method for preparing Fe2O3 and Fe3O4 nano materials by taking F2<2+> salt as raw material | |
CN101186745B (en) | Method for preparing polythiophene-metal oxide nano composite material | |
CN104607651B (en) | Chemical method for preparing spherical porous hollow nanometer cobalt powder | |
CN105060351B (en) | Flower-like cobaltosic oxide material composed of nanoparticles and preparation method thereof | |
CN107601461A (en) | A kind of magnetic composite of Fe 3 O 4 coating carbon nanotube and preparation method thereof | |
CN102786299A (en) | Mn element and Zn element-doped super-paramagnetic ferrite nanoparticles and preparation method thereof | |
CN101805026A (en) | Method for preparing spherical super-paramagnetic ferroferric oxide nano-clusters | |
CN108249482B (en) | Preparation method of magnetic Fe2O3 nanoparticles and method for compounding with nanocarbon materials | |
CN110787743A (en) | A kind of magnetic responsive photonic crystal, its simple and large-scale preparation method and application | |
CN101728045A (en) | Cobalt oxide/carbon composite nano wave-absorbing material and preparation method thereof | |
CN100368463C (en) | One-step synthesis of amphiphilic superparamagnetic submicron inorganic/polymer composite hollow spheres | |
CN101786601B (en) | Preparation method of Fe3O4/CoO core-shell structure composite nanoparticles | |
Zhang et al. | Necklace‐Like Nanostructures: From Fabrication, Properties to Applications | |
Karimzadeh et al. | Preparation and characterization of poly (vinylpyrrolidone)/polyvinyl chloride coated superparamagnetic iron oxide (Fe3O4) nanoparticles for biomedical applications | |
CN108439486A (en) | A kind of Fe of morphology controllable3O4The preparation method of nano material | |
CN101423258B (en) | Preparation of inverse spine ferriferrous oxide nano tablet by liquid phase chemical oxidation process | |
Liu et al. | Solvothermal synthesis of CoFe2O4 hollow spheres | |
CN108499530A (en) | A kind of porous flower-shaped CoFe2O4@C nucleocapsid compounds and preparation method thereof | |
CN103480308B (en) | Preparation method of Fe3O4/alpha-Fe2O3 magnetic microspheres in core/shell structure | |
CN113680291B (en) | Preparation method of paramagnetic metal oxide/spinel/carbon composite microsphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080213 |