[go: up one dir, main page]

CN100368434C - Tomato RNA virus host factor and its coding gene and application - Google Patents

Tomato RNA virus host factor and its coding gene and application Download PDF

Info

Publication number
CN100368434C
CN100368434C CNB2005100766543A CN200510076654A CN100368434C CN 100368434 C CN100368434 C CN 100368434C CN B2005100766543 A CNB2005100766543 A CN B2005100766543A CN 200510076654 A CN200510076654 A CN 200510076654A CN 100368434 C CN100368434 C CN 100368434C
Authority
CN
China
Prior art keywords
gene
tomato
significant
virus
totom3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100766543A
Other languages
Chinese (zh)
Other versions
CN1721435A (en
Inventor
陈保善
蒙姣荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CNB2005100766543A priority Critical patent/CN100368434C/en
Publication of CN1721435A publication Critical patent/CN1721435A/en
Application granted granted Critical
Publication of CN100368434C publication Critical patent/CN100368434C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention discloses a host factor of a tomato RNA virus, a coded gene thereof and the application thereof. The present invention provides a host factor of a tomato RNA virus, a coded gene thereof and the application of the host factor in antivirus plant breeding. The host factor of a tomato RNA virus is a protein with one of the following amino acid residue sequences: firstly, SEQ ID No. 1 in a sequence list; secondly, a protein which is used for substituting, deleting or adding one to ten amino acid residues of an amino acid residue sequence of the SEQ ID No. 1 in the sequence list and has the function of supporting virus copy. By transferring an antisense gene fragment or using an RNA interfering method, the coded gene of the protein in a plant body is silenced so as to obtain an antiviral plant. The host factor gene ToTOM3 of a tomato RNA virus and a method for inhibiting the gene expression have great practical meanings and wide application prospects of antivirus plant breeding.

Description

番茄RNA病毒寄主因子及其编码基因与应用 Tomato RNA virus host factor and its coding gene and application

技术领域technical field

本发明涉及生物技术领域中的蛋白及其编码基因与应用,特别是涉及一种番茄RNA病毒寄主因子及其编码基因与其在植物抗病毒育种上的应用。The invention relates to a protein and its coding gene and application in the field of biotechnology, in particular to a tomato RNA virus host factor and its coding gene and its application in plant anti-virus breeding.

背景技术Background technique

番茄是一种重要的水果型蔬菜。在其生长发育过程中,容易受到各种病害的危害,其中以病毒性病害最为严重。目前报道的侵染番茄的病毒大多数是RNA病毒,其中最常见的RNA病毒有7种,即黄瓜花叶病毒(Cucumber mosaic virus,CMV)、烟草花叶病毒(Tabacco mosaic virus,TMV)、番茄花叶病毒(Toma to mosaic virus,ToMV)、马铃薯Y病毒(Potato virus Y, PVY)、番茄丛矮病毒(Tomato bushy stunt virus,TBSV)、番茄不孕病毒(Tomato aspermy virus,TAV)和番茄褪绿斑病毒(Tomatochlorotic spot virus,TCSV)。Tomato is an important fruit-type vegetable. During its growth and development, it is vulnerable to various diseases, among which viral diseases are the most serious. Most of the viruses infecting tomato reported so far are RNA viruses, of which seven are the most common, namely, cucumber mosaic virus (CMV), tobacco mosaic virus (Tabacco mosaic virus, TMV), tomato Mosaic virus (Tomato mosaic virus, ToMV), potato virus Y (Potato virus Y, PVY), tomato bushy stunt virus (TBSV), tomato infertility virus (Tomato aspermy virus, TAV) and tomato mosaic virus Green spot virus (Tomatochlorotic spot virus, TCSV).

植物病毒病是造成农业生产重大损失的重要病害之一。由于病毒是严格的专性寄生物,至今还没有严格选择性的化学药剂用于植物病毒病的防治。在生产实践中主要以清除毒源、切断病毒的传播途径如用化学药剂杀灭介体昆虫和种植抗病品种等预防性措施来控制病毒病的危害,其中以种植抗病品种最为经济有效。然而,常规的抗病育种方法过程繁琐,需要大量的人力物力,更重要的是抗病基因常与不良农艺形状基因连锁,难以达到抗病优质的生产要求;另一方面,抗性基因资源的缺乏也限制了常规育种方法的应用。植物基因工程在育种上的应用为植物病毒病的防治开辟了新的途径。目前获得抗病毒转基因植株的方法主要有两种:一是将来源于病毒自身的基因或基因的调控序列(如病毒的外壳蛋白基因、复制酶基因及其片段、运动蛋白基因及其3’或5’端非编码区、病毒反义RNA、核酶基因以及病毒卫星RNA等)导入受体植物,从而获得病毒起源的抗性(pathogen-derived resistance)的抗病毒植株(Lomonossoff G.P.,1995.Pathogen-derived Resistance to Plant Viruses,Annu.Rev.Phytopathol.,33:323-343)。然而,这些转基因植物在抗病毒功能方面存在一定的局限性,如特异性高,甚至出现株系专化性等,而且还存在生物安全性等潜在的危险因素;另一种方法是利用植物本身的抗病基因(如N基因)来获得抗病毒植物(Goldbach R.,Bucher E.,and Prins M.2003.Resistance mechani sms to plantviruses:an review.Virus Research.,92:207-212),但是,迄今为止,经克隆和鉴定的植物抗病毒基因仅有少数几个,限制了这一策略的进一步发展。Plant virus disease is one of the important diseases that cause great loss of agricultural production. Since viruses are strictly obligate parasites, there is no strictly selective chemical agent for the prevention and treatment of plant virus diseases. In production practice, preventive measures such as removing the source of the virus and cutting off the transmission route of the virus, such as killing vector insects with chemicals and planting disease-resistant varieties, are mainly used to control the harm of virus diseases. Among them, planting disease-resistant varieties is the most economical and effective. However, the conventional disease-resistant breeding method is cumbersome and requires a lot of manpower and material resources. More importantly, disease-resistant genes are often linked with poor agronomic shape genes, making it difficult to meet the production requirements of disease-resistant and high-quality. On the other hand, the availability of resistant gene resources The lack also limits the application of conventional breeding methods. The application of plant genetic engineering in breeding has opened up a new way for the prevention and treatment of plant virus diseases. At present, there are mainly two methods for obtaining anti-virus transgenic plants: one is to introduce the gene or regulatory sequence of the gene derived from the virus itself (such as the coat protein gene of the virus, the replicase gene and its fragments, the motor protein gene and its 3' or 5' end non-coding region, viral antisense RNA, ribozyme gene and viral satellite RNA, etc.) into recipient plants, thereby obtaining virus-resistant (pathogen-derived resistance) virus-resistant plants of origin (Lomonossoff G.P., 1995. Pathogen -derived Resistance to Plant Viruses, Annu.Rev.Phytopathol., 33:323-343). However, these transgenic plants have certain limitations in antiviral function, such as high specificity, even strain specialization, etc., and there are potential risk factors such as biological safety; another method is to use the plant itself Disease resistance genes (such as N gene) to obtain virus-resistant plants (Goldbach R., Bucher E., and Prins M.2003. Resistance mechani sms to plant viruses: an review. Virus Research., 92: 207-212), but , So far, only a few plant antiviral genes have been cloned and identified, which limits the further development of this strategy.

病毒侵入细胞后,在寄主细胞内复制增殖并造成系统侵染需经历以下过程:病毒的脱衣壳、病毒的基因组复制及蛋白质的合成、新的病毒颗粒的组装及病毒粒子在细胞中和细胞间的运输等。在此过程中,寄主细胞提供给病毒的一切便利条件被称为寄主因子(Host Factors),也称寄主蛋白(host proteins)或细胞蛋白(cellularproteins)。寄主细胞内如果缺少这些寄主因子,病毒便不能复制或复制的效率大大降低(Ahlquist P.,Noueiry,A.O.,and Lee,W.M.,et al.,2003.Host Factor inPositive-Strand RNA Viruses Genome Replication.Journal  ofVirology,77(15):8181-8126.)。因此,通过抑制或沉默寄主细胞中支持病毒复制的基因,将有可能使其不支持病毒在寄主细胞内的复制和维持,从而获得广谱性的抗病毒植株。因此,对病毒寄主因子基因的研究,为抗病毒基因工程提供了一条新的途径。After the virus invades the cell, it needs to go through the following processes when it replicates and proliferates in the host cell and causes systemic infection: uncapsiding of the virus, genome replication of the virus and protein synthesis, assembly of new virus particles, and virus particle in-cell and inter-cellular transportation etc. In this process, all the convenient conditions provided by the host cell to the virus are called host factors (Host Factors), also known as host proteins or cellular proteins. If these host factors are lacking in the host cell, the virus cannot replicate or the efficiency of replication is greatly reduced (Ahlquist P., Noueiry, A.O., and Lee, W.M., et al., 2003.Host Factor in Positive-Strand RNA Viruses Genome Replication.Journal of Virology, 77(15): 8181-8126.). Therefore, by inhibiting or silencing the genes that support virus replication in host cells, it will be possible to make them unable to support virus replication and maintenance in host cells, thereby obtaining broad-spectrum virus-resistant plants. Therefore, the study of virus host factor genes provides a new way for antiviral genetic engineering.

发明内容Contents of the invention

本发明的目的是提供一种番茄RNA病毒寄主因子及其编码基因。The purpose of the present invention is to provide a tomato RNA virus host factor and its coding gene.

本发明所提供的番茄RNA病毒寄主因子,名称为ToTOM3,来源于番茄属番茄(Lycopersicon esculentum Miller),是具有下述氨基酸残基序列之一的蛋白质:The tomato RNA virus host factor provided by the present invention is called ToTOM3, which is derived from Lycopersicon esculentum Miller and is a protein with one of the following amino acid residue sequences:

1)序列表中的SEQ ID №:1;1) SEQ ID №: 1 in the sequence listing;

2)将序列表中SEQ ID №:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有支持病毒复制作用的蛋白质。2) Substitution, deletion or addition of one to ten amino acid residues to the amino acid residue sequence of SEQ ID №: 1 in the sequence listing and a protein capable of supporting virus replication.

序列表中的SEQ ID №:1由295个氨基酸残基组成。包含多个高疏水性的区域,推测该蛋白是一种具有7个跨膜结构域的跨膜蛋白,与拟南芥AToTOM3在氨基酸水平上的同源性为76.9%。SEQ ID No. 1 in the sequence listing consists of 295 amino acid residues. Containing multiple highly hydrophobic regions, it is speculated that the protein is a transmembrane protein with 7 transmembrane domains, and the homology with Arabidopsis AToTOM3 at the amino acid level is 76.9%.

编码序列表中SEQ ID №:1蛋白质序列的多核苷酸也属于本发明的保护范围。The polynucleotide encoding the protein sequence of SEQ ID №: 1 in the sequence listing also belongs to the protection scope of the present invention.

番茄RNA病毒寄主因子的编码基因(ToTOM3)包括番茄RNA病毒寄主因子的cDNA基因和番茄RNA病毒寄主因子的基因组基因。其基因组基因,是下述核苷酸序列之一:The gene encoding the host factor of tomato RNA virus (ToTOM3) includes the cDNA gene of host factor of tomato RNA virus and the genome gene of host factor of tomato RNA virus. Its genome gene is one of the following nucleotide sequences:

1)序列表中SEQ ID №:2的DNA序列;1) The DNA sequence of SEQ ID №: 2 in the sequence listing;

2)在高严谨条件下可与序列表中SEQ ID №:2限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 2 in the sequence listing under high stringency conditions.

序列表中的SEQ ID №:2由8129个碱基组成,具有11个外显子和10个内含子,自5′端的第1245-1487位碱基为该基因组基因的第一个外显子,自5′端的第3519-3609位碱基为该基因组基因的第二个外显子,自5′端的第3765-3817位碱基为该基因组基因的第三个外显子,自5′端的第3895-3987位碱基为该基因组基因的第四个外显子,自5′端的第4065-4136位碱基为该基因组基因的第五个外显子,自5′端的第4791-4863位碱基为该基因组基因的第六个外显子,自5′端的第4939-4984位碱基为该基因组基因的第七个外显子,自5′端的第6259-6322位碱基为该基因组基因的第八个外显子,自5′端的第6403-6456位碱基为该基因组基因的第九个外显子,自5′端的第6790-6867位碱基为该基因组基因的第十个外显子,自5′端的第7730-8129位碱基为该基因组基因的第十一个外显子,自5′端的第1317-1319位碱基为该基因组基因的起始密码子ATG,自5′端的第7821-7822位碱基为该基因组基因的终止密码子TGA;自5′端的第1488-3518位碱基为该基因组基因的第一个内含子,自5′端的第3610-3764位碱基为该基因组基因的第二个内含子,自5′端的第3818-3894位碱基为该基因组基因的第三个内含子,自5′端的第3988-4064位碱基为该基因组基因的第四个内含子,自5′端的第4137-4790位碱基为该基因组基因的第五个内含子,自5′端的第4864-4938位碱基为该基因组基因的第六个内含子,自5′端的第4985-6258位碱基为该基因组基因的第七个内含子,自5′端的第6323-6402位碱基为该基因组基因的第八个内含子,自5′端的第6457-6789位碱基为该基因组基因的第九个内含子,自5′端的第6868-7729位碱基为该基因组基因的第十个内含子。SEQ ID № in the sequence listing: 2 consists of 8129 bases, has 11 exons and 10 introns, and the 1245th-1487th bases from the 5′ end are the first exon of the genome gene The 3519-3609th base from the 5' end is the second exon of the genome gene, and the 3765-3817th base from the 5' end is the third exon of the genome gene, since 5' The 3895-3987th base at the 'end is the fourth exon of the genome gene, and the 4065-4136th base from the 5' end is the fifth exon of the genome gene, and the 4791st base from the 5' end Base -4863 is the sixth exon of the genome gene, bases 4939-4984 from the 5' end are the seventh exon of the genome gene, bases 6259-6322 from the 5' end The base is the eighth exon of the genome gene, the 6403-6456 base from the 5' end is the ninth exon of the genome gene, and the 6790-6867 base from the 5' end is the genome The tenth exon of the gene, the 7730-8129th base from the 5' end is the eleventh exon of the genome gene, and the 1317-1319th base from the 5' end is the beginning of the genome gene The start codon ATG, bases 7821-7822 from the 5' end are the stop codon TGA of the genome gene; bases 1488-3518 from the 5' end are the first intron of the genome gene, since Bases 3610-3764 at the 5' end are the second intron of the genome gene, bases 3818-3894 at the 5' end are the third intron of the genome gene, bases at the 5' end are the third intron Bases 3988-4064 are the fourth intron of the genome gene, bases 4137-4790 from the 5' end are the fifth intron of the genome gene, bases 4864-4938 from the 5' end The base is the sixth intron of the genome gene, the 4985-6258th base from the 5' end is the seventh intron of the genome gene, and the 6323-6402th base from the 5' end is the The eighth intron of the genome gene, the 6457-6789th base from the 5' end is the ninth intron of the genome gene, and the 6868-7729th base from the 5' end is the first intron of the genome gene Ten introns.

其cDNA序列,是下述核苷酸序列之一:Its cDNA sequence is one of the following nucleotide sequences:

1)序列表中SEQ ID №:3的DNA序列;1) The DNA sequence of SEQ ID №: 3 in the sequence listing;

2)在高严谨条件下可与序列表中SEQ ID №:3限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 3 in the sequence listing under high stringency conditions.

序列表中的SEQ ID №:3由1282个碱基组成,其开放阅读框架(ORF)为自5′端第73-957位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质。SEQ ID №: 3 in the sequence listing consists of 1282 bases, and its open reading frame (ORF) is the 73-957th base from the 5′ end, encoding the amino acid residues with SEQ ID №: 1 in the sequence listing sequence of proteins.

上述高严谨条件可为用0.1×SSPE(或0.1×SSC),0.1%SDS的溶液,在65℃下杂交并洗膜。The above-mentioned high stringency conditions can be 0.1×SSPE (or 0.1×SSC), 0.1% SDS solution, hybridization at 65° C. and washing the membrane.

含有上述番茄RNA病毒寄主因子编码基因的表达载体、转基因细胞系和宿主菌以及扩增番茄RNA病毒寄主因子编码基因中任一片段的引物也属于本发明的保护范围。The expression vector containing the gene encoding the host factor of tomato RNA virus, the transgenic cell line and the host bacterium, and the primers for amplifying any fragment of the gene encoding the host factor of tomato RNA virus also belong to the protection scope of the present invention.

本发明的另一个目的是提供一种培育抗病毒植物的方法。Another object of the present invention is to provide a method for breeding virus-resistant plants.

本发明所提供的培育抗病毒植物的方法,是将ToTOM3的反义RNA或ToTOM3的RNA干扰表达载体导入植物中,得到转基因植株。The method for cultivating anti-virus plants provided by the present invention is to introduce the antisense RNA of ToTOM3 or the RNA interference expression vector of ToTOM3 into plants to obtain transgenic plants.

可按照植物基因工程领域中的常规方法,将ToTOM3的反义RNA或ToTOM3的RNA干扰表达载体导入转化植物细胞或组织,如农杆菌介导转化法、基因枪介导转化法或花粉管通道法等。被转化的植物宿主可为茄科、十字花科或葫芦科的植物。The antisense RNA of ToTOM3 or the RNA interference expression vector of ToTOM3 can be introduced into transformed plant cells or tissues according to conventional methods in the field of plant genetic engineering, such as Agrobacterium-mediated transformation, gene gun-mediated transformation or pollen tube passage method wait. The transformed plant host can be a plant of Solanaceae, Brassicaceae or Cucurbitaceae.

本发明所提供的番茄RNA病毒寄主因子ToTOM3是一种RNA病毒在植物体内存活的相关蛋白,通过转反义RNA或RNA干扰载体的方法沉默植物体内的该RNA病毒寄主因子基因可得到抗病毒的植物。实验证明,与非转基因植株相比,转ToTOM3反义RNA和RNA干扰载体的转基因番茄植株CMV和TMV的积累量显著减少,发病时间明显推迟,甚至无症状表现,表明番茄ToTOM3是CMV和TMV的一个寄主因子基因,通过抑制或沉默ToTOM3可获得抗CMV和TMV的植物品种。本发明的番茄RNA病毒寄主因子基因ToTOM3及抑制该基因表达的方法,在抗病毒植物的培育和育种中具有较大的实际意义和广阔的应用前景。The tomato RNA virus host factor ToTOM3 provided by the present invention is a related protein for the survival of RNA viruses in plants, and the antiviral effect can be obtained by silencing the RNA virus host factor gene in plants by transfecting antisense RNA or RNA interference vectors. plant. Experiments have shown that compared with non-transgenic plants, the accumulation of CMV and TMV in transgenic tomato plants transfected with ToTOM3 antisense RNA and RNA interference vectors is significantly reduced, the onset time is significantly delayed, and even symptoms are asymptomatic, indicating that tomato ToTOM3 is the CMV and TMV A host factor gene, CMV- and TMV-resistant plant varieties can be obtained by inhibiting or silencing ToTOM3. The tomato RNA virus host factor gene ToTOM3 and the method for inhibiting the gene expression of the present invention have great practical significance and broad application prospects in the cultivation and breeding of anti-virus plants.

附图说明Description of drawings

图1为ToTOM3的3’RACE产物的琼脂糖凝胶电泳检测结果Figure 1 shows the results of agarose gel electrophoresis detection of the 3'RACE product of ToTOM3

图2为含有ToTOM3的3’RACE PCR片段的克隆载体的酶切鉴定结果Figure 2 is the result of enzyme digestion and identification of the cloning vector containing the 3'RACE PCR fragment of ToTOM3

图3为ToTOM3的5’RACE产物的琼脂糖凝胶电泳检测结果Figure 3 shows the results of agarose gel electrophoresis detection of the 5'RACE product of ToTOM3

图4为含有ToTOM3的5’RACE PCR片段的克隆载体的酶切鉴定结果Figure 4 is the result of enzyme digestion identification of the cloning vector containing the 5'RACE PCR fragment of ToTOM3

图5为ToTOM3的PCR扩增片段的琼脂糖凝胶电泳检测结果Figure 5 is the agarose gel electrophoresis detection result of the PCR amplified fragment of ToTOM3

图6为番茄总DNA与ToTOM3的PCR扩增片段(探针)的Southern杂交结果Figure 6 is the Southern hybridization result of the total tomato DNA and the PCR amplified fragment (probe) of ToTOM3

图7为用菌落原位杂交法获得的阳性克隆Figure 7 is the positive clone obtained by colony in situ hybridization

图8为ToTOM3基因组基因3’端片段PCR产物的琼脂糖凝胶电泳检测结果Fig. 8 is the agarose gel electrophoresis detection result of ToTOM3 genomic gene 3' end fragment PCR product

图9为连接ToTOM3基因组基因3’端片段的重组质粒的琼脂糖凝胶电泳检测结果Figure 9 is the agarose gel electrophoresis detection result of the recombinant plasmid connected with the 3' end fragment of the ToTOM3 genome gene

图10为PCR扩增的ToTOM3全长基因组基因片段的琼脂糖凝胶电泳检测结果Figure 10 is the agarose gel electrophoresis detection result of the ToTOM3 full-length genome gene fragment amplified by PCR

图11为ToTOM3全长基因组片段重组质粒的酶切鉴定Figure 11 shows the enzyme digestion identification of the recombinant plasmid of ToTOM3 full-length genome fragment

图12为ToTOM3反义RNA表达质粒的琼脂糖凝胶电泳检测结果Fig. 12 is the agarose gel electrophoresis detection result of ToTOM3 antisense RNA expression plasmid

图13为反义RNA表达质粒的PCR鉴定结果Figure 13 is the PCR identification result of antisense RNA expression plasmid

图14为PCR扩增获得RNAi(A)片段Fig. 14 obtains RNAi (A) fragment for PCR amplification

图15为RNA干扰质粒pUToT3R(A-)的BglII和SpeI双酶切鉴定结果Figure 15 is the identification result of BglII and SpeI double enzyme digestion of RNA interference plasmid pUToT3R(A-)

图16为RNA干扰质粒pUToT3R(A)SalI和XhoI双酶切鉴定结果Figure 16 is the result of double enzyme digestion identification of RNA interference plasmid pUToT3R(A)SalI and XhoI

图17为RNA干扰表达质粒pBIToT3R(A)的BglII酶切鉴定结果Figure 17 is the BglII digestion identification result of the RNA interference expression plasmid pBIToT3R (A)

图18为RNA干扰表达质粒pBIToT3R(A)的PCR鉴定结果Figure 18 is the PCR identification result of RNA interference expression plasmid pBIToT3R (A)

图19为BglII和SpeI双酶切pTTOM3-3获得的RNAi(B)片段的琼脂糖凝胶电泳检测结果Figure 19 is the agarose gel electrophoresis detection result of the RNAi (B) fragment obtained by double digestion of pTTOM3-3 with BglII and SpeI

图20为RNA干扰质粒pUToT3R(B-)BglII和SPeI双酶切鉴定结果Figure 20 is the identification result of RNA interference plasmid pUToT3R(B-)BglII and SPeI double enzyme digestion

图21为RNA干扰质粒pUToT3R(B)的SalI和XhoI双酶切鉴定结果Fig. 21 is the identification result of SalI and XhoI double enzyme digestion of RNA interference plasmid pUToT3R(B)

图22为重组RNA干扰表达质粒pBIToT3R(B)的BglII酶切鉴定结果Figure 22 is the BglII digestion identification result of the recombinant RNA interference expression plasmid pBIToT3R (B)

图23为重组RNA干扰表达质粒pBIToT3R(B)的PCR鉴定结果Figure 23 is the PCR identification result of recombinant RNA interference expression plasmid pBIToT3R (B)

图24为转反义RNA表达质粒pBIToT3(A)转基因番茄的PCR检测结果Figure 24 is the PCR detection result of the antisense RNA expression plasmid pBIToT3 (A) transgenic tomato

图25为转反义RNA表达质粒pBIToT3(A)转基因番茄(总DNA BamHI单酶切)Southern杂交分析结果Figure 25 is the result of Southern hybridization analysis of antisense RNA expression plasmid pBIToT3 (A) transgenic tomato (total DNA BamHI single enzyme cut)

图26为转RNA干扰质粒pBIToT3R(A)转基因番茄的PCR检测结果Fig. 26 is the PCR detection result of RNA interference plasmid pBIToT3R (A) transgenic tomato

图27为8B.转RNA干扰质粒pBIToT3R(A)的转基因番茄(总DNAEcoRI单酶切)Southern杂交分析结果Figure 27 is the Southern hybridization analysis result of transgenic tomato (total DNAEcoRI single enzyme digestion) of 8B. transfer RNA interference plasmid pBIToT3R (A)

图28为9A.转RNA干扰质粒pBIToT3R(B)转基因番茄的PGR检测结果Figure 28 is the PGR detection result of 9A. transfer RNA interference plasmid pBIToT3R(B) transgenic tomato

图29为9B.转RNA干扰质粒pBIToT3R(B)的转基因番茄(总DNA EcoRII单酶切)Southern杂交分析结果Figure 29 is the Southern hybridization analysis result of transgenic tomato (total DNA EcoRII single enzyme digestion) of 9B. transfer RNA interference plasmid pBIToT3R (B)

图30A为接种TMV 10天转基因番茄苗的症状Figure 30A is the symptom of transgenic tomato seedlings inoculated with TMV for 10 days

图30B为接种TMV 10天非转基因番茄苗的症状Figure 30B is the symptoms of non-transgenic tomato seedlings inoculated with TMV for 10 days

图30C为接种CMV 10天转基因番茄苗的症状Figure 30C is the symptom of transgenic tomato seedlings inoculated with CMV for 10 days

图30D为接种CMV 10天非转基因番茄苗的症状Figure 30D is the symptoms of non-transgenic tomato seedlings inoculated with CMV for 10 days

图31A为接种TMV 90天转基因番茄苗的症状Figure 31A is the symptom of 90-day transgenic tomato seedlings inoculated with TMV

图31B为接种TMV 90天非转基因番茄苗的症状Figure 31B shows the symptoms of non-transgenic tomato seedlings inoculated with TMV for 90 days

图31C为接种CMV 90天转基因番茄苗的症状Figure 31C is the symptom of transgenic tomato seedlings inoculated with CMV for 90 days

图31D为接种CMV 90天非转基因番茄苗的症状Figure 31D shows the symptoms of 90-day non-transgenic tomato seedlings inoculated with CMV

图32为植物表达载体pBI121的物理图谱Figure 32 is the physical map of the plant expression vector pBI121

具体实施方式Detailed ways

下述实施例中所用方法如无特别说明均为常规方法,所用番茄品种为购自广西农科院的“超级大明星”。The methods used in the following examples are conventional methods unless otherwise specified, and the tomato variety used is "Super Star" purchased from Guangxi Academy of Agricultural Sciences.

实施例1、番茄寄主因子基因ToTOM3的全长cDNA序列的克隆Embodiment 1, the cloning of the full-length cDNA sequence of tomato host factor gene ToTOM3

1、ToTOM33’端cDNA的克隆1. Cloning of ToTOM3 3' end cDNA

根据GenBank搜寻到的与拟南芥ATOM3(gi:15425640)具有一定同源性的番茄EST序列BI923910(250nt)(gi:16225384)设计两条正向引物扩增ToTOM33’端的cDNA序列,引物序列如下:According to the tomato EST sequence BI923910 (250nt) (gi: 16225384) found in GenBank that has a certain homology with Arabidopsis ATOM3 (gi: 15425640), two forward primers were designed to amplify the cDNA sequence at the 3' end of ToTOM3. The primer sequences are as follows :

ttom3-1:5’-CGGAGATGGTTGTAGGCCCG-3’;ttom3-1: 5'-CGGAGATGGTTGTAGGCCCG-3';

ttom3-A:5’-TGAATGATGCAATCAATTGG-3’ttom3-A: 5'-TGAATGATGCAATCAATTGG-3'

利用3’RACE System for Rapid Amplication of cDNA Ends试剂盒(Invitrogen公司,目录号18373-027)合成ToTOM33’端的cDNA。提取番茄的总RNA,反转录合成其第一链cDNA,反应体系及反应条件为:8μL ddH2O(RNase-Free),1μL AP(10μM)(AP:5’-GCCACGCGTCGACTAGTACT(T)16-3’),3μL番茄总RNA(约5μg)和1μL dNTP(10mM),混匀后,72℃水浴10分钟,迅速置冰上5分钟,然后再加入4μL 5×第一链缓冲液和2μL0.1M DTT,混匀,42℃水浴3min后,加入1μLSuperScript II RT(Invitrogen公司),42℃反应1小时。反应结束后,70℃加热15min使转录酶失活。以反转录合成的第一链cDNA为模板,在引物ttom3-1和上述试剂盒提供的引物AUAP:5’-GGCCACGCGTCGACTAGTAC-3’的引导下,进行第一次PCR,再以第一次PCR产物为模板,在引物ttom3-A和引物AUAP的引导下,进行第二次PCR,反应结束后对PCR产物进行0.8%琼脂糖凝胶电泳检测,检测结果如图1所示(泳道M:100bp DNA Ladder泳道1:ToTOM3的3’RACE PCR产物),表明扩增出一条长度约1200bp的特异性条带,与预期结果相符。回收该特异性PCR产物,利用TOPO TA Cloning Kits(Invitrogen公司)对3’RACE PCR产物进行克隆,反应体系为:2μL PCR产物,0.5μLSalt Solution和0.5μLpCR 2.1-TOPO载体。将反应液置于室温下反应30分钟将目的片段与载体pCR 2.1-TOPO连接,然后将连接产物转化E.coli DH5α感受态细胞,经蓝白斑筛选后挑选白色单菌落提质粒,用限制性内切酶EcoR I进行酶切鉴定,酶切鉴定结果如图2所示(泳道M:GeneRuler l kb DNA ladder,泳道CK1:载体pCR2.1-TOPO的EcoRI酶切产物,泳道CK2:ToTOM3的3’RACE PCR片段,泳道1-3:重组质粒的EcoR I酶切产物),表明克隆到的长度约1200bp的ToTOM3的3’RACE PCR片段已正确插入到载体pCR 2.1-TOPO中,将该重组载体命名为pCToT3-3。对pCToT3-3进行DNA序列测定,测序结果表明所插入的DNA片段长度为1149bp,具有序列表中SEQ ID №:3的自5’端第134-1282位的DNA序列,该DNA片段的3’端具有长度为15个碱基的poly(A)尾。The cDNA at the 3' end of ToTOM was synthesized using the 3'RACE System for Rapid Aplication of cDNA Ends kit (Invitrogen, catalog number 18373-027). Total RNA was extracted from tomato, and its first-strand cDNA was synthesized by reverse transcription. The reaction system and reaction conditions were: 8 μL ddH 2 O (RNase-Free), 1 μL AP (10 μM) (AP: 5'-GCCACGCGTCGACTAGTACT(T) 16 - 3'), 3 μL tomato total RNA (about 5 μg) and 1 μL dNTP (10 mM), after mixing, bathe in water at 72°C for 10 minutes, quickly put it on ice for 5 minutes, then add 4 μL 5× first-strand buffer and 2 μL 0. 1M DTT, mixed evenly, after 3 min in water bath at 42°C, 1 μL of SuperScript II RT (Invitrogen Company) was added, and reacted at 42°C for 1 hour. After the reaction, heat at 70°C for 15 minutes to inactivate the transcriptase. Using the first-strand cDNA synthesized by reverse transcription as a template, under the guidance of primer ttom3-1 and the primer AUAP: 5'-GGCCACGCGTCGACTAGTAC-3' provided by the above kit, the first PCR was carried out, and then the first PCR The product is a template, and under the guidance of primer ttom3-A and primer AUAP, the second PCR is carried out. After the reaction, the PCR product is detected by 0.8% agarose gel electrophoresis, and the detection result is as shown in Figure 1 (swimming lane M: 100bp DNA Ladder lane 1: 3'RACE PCR product of ToTOM3), indicating that a specific band with a length of about 1200bp was amplified, which was consistent with the expected result. The specific PCR product was recovered, and the 3'RACE PCR product was cloned using TOPO TA Cloning Kits (Invitrogen Company). The reaction system was: 2 μL PCR product, 0.5 μL Salt Solution and 0.5 μL pCR 2.1-TOPO vector. Put the reaction solution at room temperature for 30 minutes, connect the target fragment with the carrier pCR 2.1-TOPO, and then transform the ligated product into E.coli DH5α competent cells. Dicer enzyme EcoR I was used for enzyme digestion identification, and the results of enzyme digestion identification are shown in Figure 2 (lane M: GeneRuler 1 kb DNA ladder, lane CK1: EcoRI digestion product of vector pCR2.1-TOPO, lane CK2: 3' of ToTOM3 RACE PCR fragment, swimming lane 1-3: the EcoR I digestion product of the recombinant plasmid), indicating that the 3' RACE PCR fragment of ToTOM3 with a length of about 1200bp cloned has been correctly inserted into the vector pCR 2.1-TOPO, and the recombinant vector was named is pCToT3-3. Carry out DNA sequence determination to pCToT3-3, the sequencing result shows that the length of the inserted DNA fragment is 1149bp, has the DNA sequence of the 134th-1282th position from the 5' end of SEQ ID №: 3 in the sequence table, and the 3' of the DNA fragment The end has a poly(A) tail of 15 bases in length.

2、ToTOM35’端cDNA的克隆2. Cloning of ToTOM35' end cDNA

根据GenBank搜寻到的与拟南芥ATOM3(gi:15425640)具有一定同源性的番茄EST序列BI923910(250nt)(gi:16225384)设计两条反向引物扩增ToTOM35’端的cDNA序列,引物序列如下:According to the tomato EST sequence BI923910 (250nt) (gi: 16225384) found in GenBank that has a certain homology with Arabidopsis ATOM3 (gi: 15425640), two reverse primers were designed to amplify the cDNA sequence at the 5' end of ToTOM. The primer sequences are as follows :

ttom3-2:CCATTCACAAAGAAATTGAG;ttom3-2: CCATTCACAAAGAAATTGAG;

ttom3-B:GAGCAACGACGGCGACAACGCCGTAGAGttom3-B: GAGCAACGACGGCGACAACGCCGTAGAG

利用SMARTTMRACE cDNA Ampiification试剂盒(Clontech公司,目录号K1881-1)合成ToTOM35’端的cDNA。提取番茄的总RNA,反转录合成其第一链cDNA,反应体系及反应条件为:3μL番茄总RNA(1μg/μL),1μL5’-CDS引物(5’-(T)25N-1N-3’)(10μM)和1μL SMART II A Oligo(5’-AAGCAGTGGTATCAACGCAGAGTACGCGGG-3’)(10μM),混匀后,72℃水浴2分钟,迅速置冰上2分钟,然后再加入2μL5×第一链缓冲液,1μL20mM DTT,1μL10mM dNTP Mix和1μLPower Script反转录酶,混匀,42℃水浴反应90分钟,加入100μLTricine-EDTA缓冲液,72℃水浴7分钟,然后置冰上,停止反应。以反转录合成的第一链cDNA为模板,在引物ttom3-2和上述试剂盒提供的引物UPM:5’-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3’的引导下,进行第一次PCR,再以第一次PCR产物为模板,在引物ttom3-B和引物NUP:5’-AAGCAGTGGTATCAACGCAGAGT-3’的引导下,进行第二次PCR,反应结束后对PCR产物进行1.2%琼脂糖凝胶电泳检测,检测结果如图3所示(泳道M:1kb DNA Ladder,泳道1:ToTOM3的5’RACE PCR片段),表明扩增出一条长度约250bp的特异性条带,与预期结果相符。回收该特异性PCR产物,利用TOPO TA Cloning Kits对5’RACE PCR产物进行克隆,首先将目的片段与载体pCR2.1-TOPO连接(反应体系及反应条件同步骤1中ToTOM33’端cDNA的克隆),然后将连接产物转化E.coli DH5α感受态细胞,经蓝白斑筛选后挑选白色单菌落提质粒,用限制性内切酶EcoR I进行酶切鉴定,酶切鉴定结果如图4所示(泳道M:GeneRuler 1kb DNA ladder,CK1:5’RACE PCR片段,CK2:pCR2.1-TOPO(3913bp),泳道1-5:连接有5’RACE PCR片段的重组质粒的EcoR I酶切产物),表明克隆到的长度约250bp的ToTOM3的5’RACE PCR片段已正确插入到载体TOPO中,将该重组载体命名为pCToT3-5。对pCToT3-5进行DNA序列测定,测序结果表明5’RACE PCR片断的长度为241bp,具有序列表中SEQ ID №:3的自5’端第1-241位核苷酸的DNA序列。The cDNA at the 5' end of ToTOM was synthesized using the SMART TM RACE cDNA Ampiification kit (Clontech, catalog number K1881-1). The total RNA of tomato was extracted, and its first-strand cDNA was synthesized by reverse transcription. The reaction system and reaction conditions were: 3 μL tomato total RNA (1 μg/μL), 1 μL 5'-CDS primer (5'-(T) 25 N -1 N -3') (10 μM) and 1 μL SMART II A Oligo (5'-AAGCAGTGGTATCAACGCAGAGTACGCGGG-3') (10 μM), after mixing, bathe in water at 72°C for 2 minutes, quickly put it on ice for 2 minutes, and then add 2 μL of 5×first Strain buffer, 1 μL 20mM DTT, 1 μL 10mM dNTP Mix and 1 μL Power Script reverse transcriptase, mix well, react in 42°C water bath for 90 minutes, add 100 μL Tricine-EDTA buffer, 72°C water bath for 7 minutes, then place on ice to stop the reaction. Using the first-strand cDNA synthesized by reverse transcription as a template, under the guidance of primer ttom3-2 and the primer UPM provided by the above kit: 5'-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3', the first PCR was carried out, and then the first PCR The product is used as a template. Under the guidance of primer ttom3-B and primer NUP: 5'-AAGCAGTGGTATCAACGCAGAGT-3', the second PCR is carried out. After the reaction, the PCR product is detected by 1.2% agarose gel electrophoresis. The detection result is shown in the figure As shown in 3 (lane M: 1kb DNA Ladder, lane 1: 5'RACE PCR fragment of ToTOM3), it shows that a specific band with a length of about 250bp was amplified, which is consistent with the expected result. Recover the specific PCR product, use TOPO TA Cloning Kits to clone the 5'RACE PCR product, and first connect the target fragment to the vector pCR2.1-TOPO (the reaction system and reaction conditions are the same as the cloning of the ToTOM3' end cDNA in step 1) , and then the ligation product was transformed into E.coli DH5α competent cells, and the white single colony was selected to extract the plasmid after the blue-white screening, and the restriction endonuclease EcoR I was used for enzyme digestion identification, and the enzyme digestion identification results are shown in Figure 4 (swimming lane M: GeneRuler 1kb DNA ladder, CK1: 5'RACE PCR fragment, CK2: pCR2.1-TOPO (3913bp), lanes 1-5: EcoR I digestion product of recombinant plasmid connected with 5'RACE PCR fragment), indicating The cloned 5'RACE PCR fragment of ToTOM3 with a length of about 250bp has been correctly inserted into the vector TOPO, and the recombinant vector was named pCToT3-5. DNA sequence determination was carried out on pCToT3-5, and the sequencing results showed that the length of the 5'RACE PCR fragment was 241bp, and it had the DNA sequence of nucleotides 1-241 from the 5' end of SEQ ID No. 3 in the sequence listing.

3、ToTOM3全长cDNA的获得3. Obtaining the full-length cDNA of ToTOM3

对步骤1和步骤2获得的ToTOM3的5’RACE PCR片段和3’RACE PCR片段进行序列分析,分析结果表明5’RACE PCR片段的自5’端第148位碱基处有一个限制性内切酶Mun I的酶切位点与3’RACE PCR片断重叠。在载体pCToT3-5上有一个Xba I酶切位点,利用Mun I和Xba I两个酶切位点将3’RACE和5’RACE的cDNA连接起来,得到ToTOM3的全长cDNA。对该全长cDNA进行测序,测序结果表明该序列具有序列表中SEQ ID №:3的核苷酸序列,序列表中SEQ ID №:3由1282个核苷酸组成,3’端具有长度为15个碱基的poly(A)尾。用Vector NTI软件对ToTOM3全长的cDNA序列进行序列分析,分析结果表明其开放阅读框架(ORF)为自5’端第73-957位碱基,其5’端非编码区长度为72个碱基,3’端非编码区长度为307个碱基,编码序列表中SEQ ID №:1的氨基酸残基序列,序列表中的SEQ ID №:1由295个氨基酸残基组成,将ToTOM3与拟南芥AtTOM3编码的氨基酸残基序列进行同源性比较,ToTOM3与拟南芥AtTOM3在氨基酸水平上的同源性为76.9%。用Kyte & Doolittle的方法(Kyte &Doolittle,A simple method for displaying the hydropathic character of a protein,Journal Molecular Biology,157(1):105-132)对ToTOM3编码的蛋白质的疏水性进行分析,结果表明ToTOM3编码的蛋白质具有高疏水性的区域,用在线软件TMPred(http://www.ch.embnet.org/cgi-bin/TMPREN-FORM-PARSER)进行跨膜结构区预测,推断该蛋白是一种具有7个跨膜结构域的跨膜蛋白。Sequence analysis was performed on the 5'RACE PCR fragment and 3'RACE PCR fragment of ToTOM3 obtained in steps 1 and 2, and the analysis results showed that there was a restriction endonuclease at the 148th base from the 5' end of the 5'RACE PCR fragment The cleavage site of the enzyme Mun I overlaps with the 3'RACE PCR fragment. There is an Xba I restriction site on the vector pCToT3-5, and the Mun I and Xba I restriction sites are used to connect the cDNA of 3'RACE and 5'RACE to obtain the full-length cDNA of ToTOM3. The full-length cDNA is sequenced, and the sequencing results show that the sequence has the nucleotide sequence of SEQ ID №: 3 in the sequence listing. SEQ ID №: 3 in the sequence listing consists of 1282 nucleotides, and the 3' end has a length of 15 base poly(A) tail. Sequence analysis was performed on the full-length cDNA sequence of ToTOM3 with Vector NTI software, and the analysis results showed that its open reading frame (ORF) was 73-957 bases from the 5' end, and the length of the 5' non-coding region was 72 bases base, the length of the 3' non-coding region is 307 bases, the amino acid residue sequence of SEQ ID №: 1 in the coding sequence listing, and the SEQ ID №: 1 in the sequence listing is composed of 295 amino acid residues. ToTOM3 and The homology comparison of the amino acid residue sequence encoded by Arabidopsis AtTOM3 showed that the homology between ToTOM3 and Arabidopsis AtTOM3 at the amino acid level was 76.9%. The method of Kyte & Doolittle (Kyte & Doolittle, A simple method for displaying the hydropathic character of a protein, Journal Molecular Biology, 157(1): 105-132) was used to analyze the hydrophobicity of the protein encoded by ToTOM3, and the results showed that ToTOM3 encoded The protein has a highly hydrophobic region, and the online software TMPred (http://www.ch.embnet.org/cgi-bin/TMPREN-FORM-PARSER) is used to predict the transmembrane structure region, and it is inferred that the protein is a protein with Transmembrane protein with 7 transmembrane domains.

实施例2、ToTOM3基因组基因的克隆Cloning of embodiment 2, ToTOM3 genome gene

根据已获得的ToTOM3的全长cDNA序列设计引物扩增ToTOM3的基因组序列,引物序列如下:According to the obtained full-length cDNA sequence of ToTOM3, primers were designed to amplify the genome sequence of ToTOM3. The primer sequences are as follows:

ttom3-1:5’-CGGAGATGGTTGTAGGCCCG-3’;ttom3-1: 5'-CGGAGATGGTTGTAGGCCCG-3';

ttom3-2:5’-CCATTCACAAAGAAATTGAG-3’ttom3-2: 5'-CCATTCACAAAGAAATTGAG-3'

以番茄总DNA为模板,在引物ttom3-1和引物ttom3-2的引导下,进行PCR扩增,反应结束后对PCR进行0.8%琼脂糖凝胶电泳检测,检测结果如图5所示(泳道M:1KbDNAMarker,泳道1:PCR扩增的ToTOM3的基因片段),表明扩增出一条大小约2.3kb的ToTOM3的基因片段,对该DNA片段进行测序,测序结果表明该片段包含ToTOM3的部分序列。将番茄总DNA用限制性内切酶EcoR V进行酶切,酶切产物经0.7%琼脂糖凝胶电泳后转移到尼龙膜上,与用32P标记的上述PCR扩增的2.3kb的DNA片段进行Southern杂交检测,结果如图6所示(泳道M:1Kb DNA Marker,泳道1:杂交条带),表明获得了大小约6.5kb的杂交带。用限制性内切酶EcoR V对番茄总DNA进行酶切,经0.7%琼脂糖凝胶电泳分离,回收大小为6.0-6.5kb的片段,将这些回收的DNA片段克隆到经EcoRV酶切并且去磷酸化的载体pSL118(Promega公司)中,转化大肠杆菌DH5a,得到番茄基因组DNA EcoR V酶切产物的部分基因文库。采用菌落原位杂交的方法筛选约10000个转化子,获得一个阳性克隆(图7),命名为pSLToT3-6K,双向双链测定该阳性克隆的DNA序列,结果表明该EcoR V酶切片段的大小为6533bp,具有序列表中序列表中SEQ ID №:2的自5’端第1-6533位的核苷酸序列。以番茄总DNA为模板,在引物ttom3-RNAi-lF:CCTCAGATCTGGGCTGAGATATACTAC和引物ttom3-G2:GAGAACAACGTGAAGTTTCAGGAG的引导下,PCR扩增ToTOM3基因组基因的3’端片段,反应结束后对PCR进行0.8%琼脂糖凝胶电泳检测,检测结果如图8所示(泳道M:1KbDNA Marker,泳道1:PCR产物),表明获得了大小约为4.0kb的特异性条带。回收该特异性扩增产物,将其与T载体pCR2.1-TOPO连接,对连接产物进行0.8%琼脂糖凝胶电泳检测,检测结果如图9所示(泳道CK:pCR2.1-TOPO,泳道1-3:连接ToTOM3基因组基因3’端片段的重组质粒),得到3种比对照pCR2.1-TOPO大的重组载体,对泳道1和泳道3的重组载体进行双向双链DNA序列测定,结果表明该PCR产物的大小为4165bp,具有序列表中SEQ ID №:2的自5’端第3965-8129位的核苷酸序列,其中,自5’端第5595位碱基处为限制性内切酶Sac I的酶切位点,在载体pCR2.1-TOPO(Invitrogen公司)的序列上有一个BamHI酶切位点,利用这两个酶切位点将上述大小为6533bp和4165bp的两段DNA片段连接起来,得到番茄ToTOM3的全长基因组基因片段,测序结果表明其基因组基因具有序列表中SEQ ID №:2的核苷酸序列,序列表中的SEQ ID №:2由8129个碱基组成,具有11个外显子和10个内含子,自5′端的第1245-1487位碱基为该基因组基因的第一个外显子,自5′端的第3519-3609位碱基为该基因组基因的第二个外显子,自5′端的第3765-3817位碱基为该基因组基因的第三个外显子,自5′端的第3895-3987位碱基为该基因组基因的第四个外显子,自5′端的第4065-4136位碱基为该基因组基因的第五个外显子,自5′端的第4791-4863位碱基为该基因组基因的第六个外显子,自5′端的第4939-4984位碱基为该基因组基因的第七个外显子,自5′端的第6259-6322位碱基为该基因组基因的第八个外显子,自5′端的第6403-6456位碱基为该基因组基因的第九个外显子,自5′端的第6790-6867位碱基为该基因组基因的第十个外显子,自5′端的第7730-8129位碱基为该基因组基因的第十一个外显子,自5′端的第1317-1319位碱基为该基因组基因的起始密码子ATG,自5′端的第7821-7822位碱基为该基因组基因的终止密码子TGA;自5′端的第1488-3518位碱基为该基因组基因的第一个内含子,自5′端的第3610-3764位碱基为该基因组基因的第二个内含子,自5′端的第3818-3894位碱基为该基因组基因的第三个内含子,自5′端的第3988-4064位碱基为该基因组基因的第四个内含子,自5′端的第4137-4790位碱基为该基因组基因的第五个内含子,自5′端的第4864-4938位碱基为该基因组基因的第六个内含子,自5′端的第4985-6258位碱基为该基因组基因的第七个内含子,自5′端的第6323-6402位碱基为该基因组基因的第八个内含子,自5′端的第6457-6789位碱基为该基因组基因的第九个内含子,自5′端的第6868-7729位碱基为该基因组基因的第十个内含子。With tomato total DNA as template, under the guidance of primer ttom3-1 and primer ttom3-2, carry out PCR amplification, carry out 0.8% agarose gel electrophoresis detection to PCR after reaction finishes, and detection result is as shown in Figure 5 (swimming lane M: 1KbDNAMarker, lane 1: PCR-amplified gene fragment of ToTOM3), indicating that a gene fragment of ToTOM3 with a size of about 2.3kb was amplified, and the DNA fragment was sequenced, and the sequencing results showed that the fragment contained a partial sequence of ToTOM3. The tomato total DNA was digested with the restriction endonuclease EcoR V, and the digested product was subjected to 0.7% agarose gel electrophoresis and then transferred to a nylon membrane, and the 2.3kb DNA fragment amplified by the above-mentioned PCR labeled with 32 P Southern hybridization detection was carried out, and the results are shown in Figure 6 (swimming lane M: 1Kb DNA Marker, swimming lane 1: hybridization band), indicating that a hybridization band with a size of about 6.5 kb was obtained. Digest total tomato DNA with restriction endonuclease EcoR V, separate by 0.7% agarose gel electrophoresis, and recover fragments with a size of 6.0-6.5kb. The phosphorylated vector pSL118 (Promega Company) was transformed into Escherichia coli DH5a to obtain a partial gene library of tomato genomic DNA EcoR V digestion products. About 10,000 transformants were screened by colony in situ hybridization, and a positive clone was obtained (Fig. 7), which was named pSLToT3-6K. The DNA sequence of the positive clone was determined by duplex duplex, and the results showed that the size of the EcoR V restriction fragment It is 6533bp, and has the nucleotide sequence from the 1st to the 6533rd position of the 5' end of SEQ ID No.: 2 in the sequence listing. Using tomato total DNA as a template, under the guidance of primer ttom3-RNAi-IF: CCTCAGATCTGGGCTGAGATATACTAC and primer ttom3-G2: GAGAACAACGTGAAGTTTCAGGAG, PCR amplified the 3' end fragment of ToTOM3 genomic gene, and after the reaction, PCR was performed on 0.8% agarose gel Gel electrophoresis detection, the detection results are shown in Figure 8 (swimming lane M: 1Kb DNA Marker, swimming lane 1: PCR product), indicating that a specific band with a size of about 4.0kb was obtained. The specific amplification product was recovered, connected to the T carrier pCR2.1-TOPO, and the connected product was detected by 0.8% agarose gel electrophoresis, and the detection results were shown in Figure 9 (swimming lane CK: pCR2.1-TOPO, Swimming lanes 1-3: the recombinant plasmids connected with the 3' end fragment of the ToTOM3 genome gene) to obtain 3 recombinant vectors larger than the control pCR2. The result shows that the size of the PCR product is 4165bp, and has the nucleotide sequence of 3965-8129 from the 5' end of SEQ ID No. 2 in the sequence table, wherein the 5595th base from the 5' end is a restriction The restriction site of endonuclease Sac I has a BamHI restriction site on the sequence of the vector pCR2.1-TOPO (Invitrogen Company), utilizes these two restriction sites to convert the above-mentioned two sizes of 6533bp and 4165bp The DNA fragments were connected to obtain the full-length genome gene fragment of tomato ToTOM3, and the sequencing results showed that its genome gene had the nucleotide sequence of SEQ ID №: 2 in the sequence listing, and SEQ ID №: 2 in the sequence listing consisted of 8129 bases Base composition, with 11 exons and 10 introns, bases 1245-1487 from the 5' end are the first exon of the genome gene, bases 3519-3609 from the 5' end It is the second exon of the genome gene, the 3765-3817th base from the 5' end is the third exon of the genome gene, and the 3895-3987th base from the 5' end is the genome gene The fourth exon, bases 4065-4136 from the 5' end are the fifth exon of the genome gene, and bases 4791-4863 from the 5' end are the sixth exon of the genome gene Exons, bases 4939-4984 from the 5' end are the seventh exon of the genome gene, bases 6259-6322 from the 5' end are the eighth exon of the genome gene, Bases 6403-6456 from the 5' end are the ninth exon of the genome gene, bases 6790-6867 from the 5' end are the tenth exon of the genome gene, and bases from the 5' end are the tenth exon of the genome gene. The 7730-8129th base is the eleventh exon of the genomic gene, the 1317-1319th base from the 5' end is the start codon ATG of the genomic gene, and the 7821-7822nd from the 5' end The first base is the stop codon TGA of the genome gene; the 1488-3518th base from the 5' end is the first intron of the genome gene, and the 3610-3764th base from the 5' end is the genome The second intron of the gene, the 3818-3894th base from the 5' end is the third intron of the genome gene, and the 3988-4064th base from the 5' end is the fourth intron of the genome gene The 4137-4790th base from the 5' end is the fifth intron of the genome gene, and the 4864-4938th base from the 5' end is the sixth intron of the genome gene , bases 4985-6258 from the 5' end are the seventh intron of the genome gene, bases 6323-6402 from the 5' end are the eighth intron of the genome gene, and bases from the 5' end are the eighth intron of the genome gene The 6457-6789 bases at the end are the ninth intron of the genome gene, and the 6868-7729 bases from the 5' end are the tenth intron of the genome gene.

实施例3、转基因番茄植株的获得Embodiment 3, the acquisition of transgenic tomato plants

一、植物表达载体的构建1. Construction of plant expression vectors

1、含ToTOM3反义RNA的植物表达载体的构建1. Construction of plant expression vectors containing ToTOM3 antisense RNA

根据番茄ToTOM3的全长cDNA的5’端和3’端非编码区序列设计引物,引物序列如下:Primers were designed according to the 5' and 3' UTR sequences of the full-length cDNA of tomato ToTOM3, and the primer sequences were as follows:

ttom3-F:GTGAGTTTGATTTTGGAATCTCCG;ttom3-F: GTGAGTTTGATTTTGGAATCTCCG;

ttom3-G2:GAGAACAACGTGAAGTTTCAGGAGttom3-G2: GAGAACAACGTGAAGTTTCAGGAG

以番茄总DNA为模板,在引物ttom3-F和引物ttom3-G2的引导下,PCR扩增ToTOM3全长基因组基因片段,反应结束后对PCR进行0.8%琼脂糖凝胶电泳检测,检测结果如图10所示(泳道M:1Kb DNA Marker,泳道1:PCR产物),表明扩增到一条约6.5kb的特异性条带。回收该特异性PCR产物,将其与载体pCR2.1-TOPO(Invitrogen公司)连接,结果获得了3种比对照pCR2.1-TOPO大的重组质粒,进一步用限制性内切酶BamHI和Xho I对其进行酶切,将酶切产物进行0.8%琼脂糖凝胶电泳检测,检测结果如图11所示(泳道M:1Kb DNA Marker,泳道1-3:重组质粒,泳道CK1:pCR2.1-TOPO的BamH I和XhoI酶切产物,泳道CK2:ToTOM3全长基因组基因的PCR产物),表明3组重组质粒均含大小为6.5kb的外源DNA片段。对泳道2和泳道3所示的克隆用正向和反向通用引物M13F和M13R进行测序,测序结果表明扩增得到的6.5kb的PCR产物为ToTOM3的基因组DNA,且均正向插入(通用引物M13F测序序列与ToTOM35’端cDNA序列对应),将重组质粒命名为pCToT3-6K。用限制性内切酶Xho I对pCToT3-6K进行酶切,经T4聚合酶补平后,再用BamHI进行酶切,回收6.5kb的外源DNA片段,将其定向克隆到经限制性内切酶Sma I和BamH I酶切的载体pBI121(Clontech)上,转化大肠杆菌,挑选长出的单菌落在含卡那霉素(50mg/L)的LB液体培养基中振荡培养过夜,提质粒,对所提质粒进行0.8%琼脂糖凝胶电泳检测,检测结果如图12所示(泳道CK:pBI121,泳道1-2:重组表达质粒),得到2个比对照pBI121大的条带。以所提质粒为模板,在引物ttom3-F和引物ttom3-G2的引导下进行PCR鉴定,反应结束后对PCR产物进行0.8%琼脂糖凝胶电泳检测,检测结果如图13所示(泳道M:1Kb DNA Marker,泳道CK:pBI121,泳道1-2:重组表达质粒),扩增出了6.5kb的特异性条带,表明全长ToTOM3已插入到载体pBI121上,将重组质粒命名为pBIToT3-A。Using the total tomato DNA as a template, under the guidance of primers ttom3-F and ttom3-G2, PCR amplifies the full-length genome gene fragment of ToTOM3. After the reaction, the PCR was tested by 0.8% agarose gel electrophoresis. The test results are shown in the figure As shown in 10 (lane M: 1Kb DNA Marker, lane 1: PCR product), it shows that a specific band of about 6.5kb was amplified. Reclaim this specific PCR product, connect it with carrier pCR2.1-TOPO (Invitrogen Company), obtain 3 kinds of recombinant plasmids bigger than control pCR2.1-TOPO as a result, further use restriction endonuclease BamHI and XhoI It was digested, and the digested products were detected by 0.8% agarose gel electrophoresis, and the detection results were shown in Figure 11 (lane M: 1Kb DNA Marker, lane 1-3: recombinant plasmid, lane CK1: pCR2.1- BamH I and XhoI digestion products of TOPO, lane CK2: PCR product of ToTOM3 full-length genomic gene), indicating that all three groups of recombinant plasmids contain exogenous DNA fragments with a size of 6.5 kb. The clones shown in swimming lane 2 and swimming lane 3 were sequenced with forward and reverse universal primers M13F and M13R, and the sequencing results showed that the 6.5kb PCR product amplified was the genomic DNA of ToTOM3, and they were all inserted forward (universal primer The M13F sequencing sequence corresponds to the ToTOM3 5' end cDNA sequence), and the recombinant plasmid was named pCToT3-6K. Digest pCToT3-6K with restriction endonuclease Xho I, fill in with T4 polymerase, and then digest with BamHI to recover a 6.5kb exogenous DNA fragment, which is directional cloned into the restricted On the carrier pBI121 (Clontech) digested with Dicerase Sma I and BamH I, transform Escherichia coli, select a single colony that grows out, shake and culture overnight in LB liquid medium containing kanamycin (50mg/L), and extract the plasmid 0.8% agarose gel electrophoresis detection was carried out on the proposed plasmid, and the detection results are shown in Figure 12 (swimming lane CK: pBI121, swimming lane 1-2: recombinant expression plasmid), and 2 bands larger than the control pBI121 were obtained. Using the plasmid as a template, carry out PCR identification under the guidance of primer ttom3-F and primer ttom3-G2. After the reaction, the PCR product is detected by 0.8% agarose gel electrophoresis, and the detection results are as shown in Figure 13 (swimming lane M : 1Kb DNA Marker, lane CK: pBI121, lane 1-2: recombinant expression plasmid), a 6.5kb specific band was amplified, indicating that the full-length ToTOM3 had been inserted into the vector pBI121, and the recombinant plasmid was named pBIToT3- a.

2、ToTOM3的RNA干扰质粒pBIToT3R-A的构建2. Construction of ToTOM3 RNA interference plasmid pBIToT3R-A

根据番茄ToTOM3的全长cDNA序列设计一对引物扩增ToTOM3的小干扰RNA的编码基因,引物序列如下:According to the full-length cDNA sequence of tomato ToTOM3, a pair of primers were designed to amplify the coding gene of the small interfering RNA of ToTOM3. The primer sequences are as follows:

ttom3-RNAi-1F:5’-CCTCAGATCTGGGCTGAGATATACTAC-3’(划线部分碱基为限制性内切酶Bgl II识别位点);ttom3-RNAi-1F: 5'- CCTCAGA TCTGGGCTGAGATATACTAC-3' (underlined part of the base is the restriction endonuclease Bgl II recognition site);

ttom3-RNAi-1R:5’-TCTCACTAGTAGAGGAGAAATCCCAATG-3’(划线部分碱基为限制性内切酶Spe I识别位点)。ttom3-RNAi-1R: 5'- TCTCACTA GTAGAGGAGAAATCCCAATG-3' (the bases underlined are the recognition site of the restriction endonuclease Spe I).

以ToTOM3的3’RACE克隆质粒pTTOM3-3为模板,在引物ttom3-RNAi-1F和引物ttom3-RNAi-1R的引导下进行PCR扩增,并使扩增产物的两端分别添加上限制性内切酶Bgl II和Spe I识别位点。对PCR产物进行1.2%琼脂糖凝胶电泳检测,检测结果如图14所示(泳道M:100bp DNA ladder,泳道1:PCR产物),得到大小约200bp的特异片段(RNAi(A)片段)。用限制性内切酶BglII和SpeI双重酶切获得的PCR产物并与经相同酶双酶切的RNA干扰质粒pUCGA(构建方法:以马铃薯总DNA为模板,在引物GA-F:5’-AGG  GAGCTC  CTCGAG  ACTAGT   AGATCTGGTACGGACCGTACTACTCTATTCG-3’(划线部分碱基依次为限制性内切酶Sac I、Xho I、Spe I 和Bgl II的识别位点)和引物GA-R:5’-AGGGGATCCCTATATAATTTAAGTGGAAAAAAAGGTTAAC-3’(划线部分碱基为限制性内切酶BamHI的识别位点)的引导下进行PCR扩增,得到马铃薯GA20氧化酶基因的第一个内含子片段(199bp),对该片段用Sac I和BamH I酶切,与经同样酶双酶切的载体pUC18(TaKaRa公司)连接,将获得的重组载体命名为pUCGA)连接,将连接产物转化大肠杆菌,涂布在含氨苄青霉素(100mg/L)的LBA培养基上培养12-24小时。挑选长出的3个单菌落在含氨苄青霉素(50mg/L)的LB液体培养基中振荡培养12-24小时,提取重组质粒并用限制性内切酶BglII和SpeI进行酶切鉴定,结果如图15所示(泳道M:100bp DNA ladder,泳道CK1:RNAi(A)片段,泳道CK2:pUCGA,泳道1-3:重组质粒),酶切释放出长度约200bp的片段,表明PCR扩增的RNAi(A)片段已插入到pUCGA载体中,将该重组质粒命名为pUToT3R(A-)。用限制性内切酶Xba I和BamH I对pUToT3R(A-)进行双酶切,然后与经限制性内切酶BglII和SpeI双酶切的RNAi(A)片段连接。将连接产物转化大肠杆菌,涂布在含氨苄青霉素(100mg/L)的LBA培养基上培养12-24小时。挑选3个单菌落在含氨苄青霉素(50mg/L)的LB液体培养基中振荡培养过夜,提取质粒并用限制性内切酶SalI和XhoI进行酶切鉴定,结果如图16所示(泳道M:1kb DNA ladder,泳道CK:pUToT3R(A-),泳道1-3:重组质粒),3个重组质粒均可释放出长度约600bp的片段,而第一次连接获得的质粒pUToT3R(A-)释放的片段约400bp,表明ToTOM3的RNAi(A)片段分别以正反两个方向连接到pUCGA上,将该重组RNA干扰中间质粒命名为pUToT3R(A)。用限制性内切酶Sal I对pUToT3R(A)进行酶切,用T4DNA聚合酶补平末端,再用限制性内切酶SpeI进行酶切,经琼脂糖凝胶电泳后回收600bp的小片段,将回收片段与经SmaI和XbaI双酶切的载体pBI121连接,将连接产物转化大肠杆菌,涂布在含卡那霉素(100mg/L)的LBA培养基上培养12-24小时。挑取5个单菌落在含卡那霉素(50mg/L)的LB液体培养基中振荡培养过夜,提取质粒进行酶切鉴定。由于pBI121的第2349及第9149位碱基处各有一个BglII的酶切位点(其物理图谱如图32所示),ToTOM3的RNA干扰片段有一个BglII位点,如果将该片段插入多克隆位点,用限制性内切酶BglII酶切重组的RNA干扰表达质粒将获得三个片段,其中一个为7948bp,另外两个片段的长度约为3700bp。酶切鉴定结果如图17所示(泳道M:1Kb DNA Marker,泳道1-2:重组RNA干扰表达质粒,泳道3:pBI121),用限制性内切酶BglII酶切后,重组质粒被切为三个片段,其中有一片段与对照pBI121的7948bp片段大小一致,其余两片段长度约为3700bp(电泳结果显示这两个片段重叠)。以重组质粒为模板,在特异性引物ttom3-RNAi-1F和引物35S-F:5’-AATCTTCGTCAACATGGTGGAGCAC-3’的引导下,进行PCR检测,将PCR产物进行1.2%琼脂糖凝胶电泳检测,检测结果如图18所示(泳道M:pUC Mix8 DNAMarker,泳道1-2:重组RNA干扰表达质粒),扩增出长度约为640bp的特异性条带,表明RNA干扰片段已连接到表达载体pBI121上,将该ToTOM3的RNA干扰载体命名为pBIToT3R-A。Using the 3'RACE cloning plasmid pTTOM3-3 of ToTOM3 as a template, PCR amplification was carried out under the guidance of primers ttom3-RNAi-1F and primers ttom3-RNAi-1R, and the two ends of the amplified products were respectively added with restriction endogenous Dicer Bgl II and Spe I recognition sites. The PCR product was detected by 1.2% agarose gel electrophoresis, and the detection result is shown in Figure 14 (swimming lane M: 100bp DNA ladder, swimming lane 1: PCR product), and a specific fragment (RNAi (A) fragment) with a size of about 200bp was obtained. The obtained PCR product was double-digested with restriction endonucleases BglII and SpeI, and the RNA interference plasmid pUCGA was double-digested with the same enzymes (construction method: using total potato DNA as a template, primer GA-F: 5'-AGG GAGCTC CTCGAG ACTAGT AGATCTG GTACGGACCGTACTACTCTATTCG-3' (the bases underlined are the recognition sites of restriction enzymes Sac I, Xho I, Spe I and Bgl II) and primer GA-R: 5'-AGG GGATCC CTATATAATTTAAGTGGAAAAAAAAGGTTAAC- Carry out PCR amplification under the guidance of 3' (underlining part base is the recognition site of restriction endonuclease BamHI), obtain the first intron fragment (199bp) of potato GA20 oxidase gene, this fragment is used Sac I and BamH I digestion, and the carrier pUC18 (TaKaRa company) that is double digested with the same enzyme is connected, and the recombinant vector obtained is called pUCGA) connection, the connection product is transformed into Escherichia coli, coated with ampicillin (100 mg /L) on LBA medium for 12-24 hours. Select the 3 single colonies that grew out and shake and culture them in LB liquid medium containing ampicillin (50mg/L) for 12-24 hours, extract the recombinant plasmid and carry out enzyme digestion and identification with restriction endonucleases BglII and SpeI, the results are shown in the figure As shown in 15 (lane M: 100bp DNA ladder, lane CK1: RNAi (A) fragment, lane CK2: pUCGA, lanes 1-3: recombinant plasmid), enzyme digestion releases a fragment with a length of about 200bp, indicating that PCR amplified RNAi (A) The fragment has been inserted into the pUCGA vector, and the recombinant plasmid is named pUToT3R(A-). pUToT3R (A-) was double-digested with restriction enzymes Xba I and BamH I, and then ligated with the RNAi (A) fragment double-digested with restriction enzymes BglII and SpeI. The ligation product was transformed into Escherichia coli, spread on LBA medium containing ampicillin (100 mg/L) and cultured for 12-24 hours. Pick 3 single bacterium colonies and shake culture overnight in the LB liquid medium containing ampicillin (50mg/L), extract plasmid and carry out enzyme digestion identification with restriction endonuclease SalI and XhoI, the result is as shown in Figure 16 (swimming lane M: 1kb DNA ladder, lane CK: pUToT3R(A-), lane 1-3: recombinant plasmid), the three recombinant plasmids can all release fragments with a length of about 600bp, and the plasmid pUToT3R(A-) obtained by the first ligation released The fragment is about 400bp, indicating that the RNAi (A) fragment of ToTOM3 is connected to pUCGA in both forward and reverse directions, and the recombinant RNA interference intermediate plasmid is named pUToT3R(A). Digest pUToT3R(A) with restriction endonuclease Sal I, blunt the ends with T 4 DNA polymerase, then digest with restriction endonuclease SpeI, and recover a small 600bp fragment after agarose gel electrophoresis Fragments, the recovered fragments were ligated with the carrier pBI121 double-digested by SmaI and XbaI, the ligated products were transformed into Escherichia coli, spread on LBA medium containing kanamycin (100 mg/L) and cultivated for 12-24 hours. Pick 5 single colonies and shake them overnight in LB liquid medium containing kanamycin (50mg/L), and extract plasmids for identification by enzyme digestion. Since there is a BglII restriction site at the 2349th and 9149th bases of pBI121 (the physical map is shown in Figure 32), the RNA interference fragment of ToTOM3 has a BglII site. If the fragment is inserted into the polyclonal Site, cut the recombinant RNA interference expression plasmid with the restriction endonuclease BglII to obtain three fragments, one of which is 7948bp, and the length of the other two fragments is about 3700bp. The results of enzyme digestion identification are shown in Figure 17 (lane M: 1Kb DNA Marker, lane 1-2: recombinant RNA interference expression plasmid, lane 3: pBI121), after digestion with restriction endonuclease BglII, the recombinant plasmid was cut into Among the three fragments, one fragment has the same size as the 7948bp fragment of the control pBI121, and the other two fragments are about 3700bp in length (electrophoresis results show that these two fragments overlap). Using the recombinant plasmid as a template, under the guidance of the specific primer ttom3-RNAi-1F and the primer 35S-F: 5'-AATCTTCGTCAACATGGTGGAGCAC-3', PCR detection was carried out, and the PCR product was detected by 1.2% agarose gel electrophoresis to detect The results are shown in Figure 18 (lane M: pUC Mix8 DNAMarker, lanes 1-2: recombinant RNA interference expression plasmid), a specific band with a length of about 640bp was amplified, indicating that the RNA interference fragment had been connected to the expression vector pBI121 , and named the RNA interference vector of ToTOM3 as pBIToT3R-A.

3、ToTOM3的RNA干扰质粒pBIToT3R-B的构建3. Construction of ToTOM3 RNA interference plasmid pBIToT3R-B

用限制性内切酶BglII和SpeI双酶切ToTOM3的3’RACE克隆质粒pTTOM3-3,将酶切产物进行1.2%琼脂糖凝胶电泳检测,检测结果如图19所示(泳道M:100bp DNAladder,泳道1:RNAi(B)片段),回收并纯化大小为334bp的RNAi(B)片段,将该334bp大小的片段与经限制性内切酶BglII和SpeI双酶切的RNA干扰载体pUCGA进行连接,将连接产物转化大肠杆菌,涂布在含氨苄青霉素(100mg/L)的LBA培养基上培养12-24小时。挑取3个单菌落进一步培养,提取质粒用限制性内切酶BglII和SpeI进行酶切鉴定,结果如图20所示(泳道M:1kb DNA ladder,泳道CK1:RNAi(A)片段,泳道CK2:pUCGA,泳道1-2:重组质粒),经BglII和SpeI双酶切可释放出长度约300bp的片段,表明RNAi(B)片段已插入到pUCGA的BglII和SpeI酶切位点之间,将该重组质粒命名为pUToT3(B-)。将pUToT3(B-)用限制性内切酶XbaI和BamHI双酶切后与RNAi(B)片段连接,将连接产物转化大肠杆菌,涂布在含氨苄青霉素(100mg/L)的LBA培养基上培养12-24小时。挑取2个单菌落进一步培养,提取质粒用限制性内切酶SalI和XhoI做进一步的酶切鉴定,结果如图21所示(泳道M:100bp DNAladder plus,泳道CK:pUToT3R(B-),泳道1-2:重组质粒),所获得的2个重组质粒均可释放出长度约900bp的片段,而第一次连接获得的质粒pUToT3R(B-)释放的片段约600bp,表明ToTOM3的RNAi(B)片段分别以正反两个方向连接到载体pUCGA上,将此ToTOM3的重组RNA干扰中间质粒命名为pUToT3R(B)。The 3'RACE clone plasmid pTTOM3-3 of ToTOM3 was digested with restriction endonucleases BglII and SpeI, and the digested product was subjected to 1.2% agarose gel electrophoresis detection, and the detection results were shown in Figure 19 (lane M: 100bp DNAladder , lane 1: RNAi (B) fragment), recovering and purifying the RNAi (B) fragment with a size of 334bp, connecting the 334bp fragment with the RNA interference vector pUCGA double-digested with restriction endonucleases BglII and SpeI , the ligation product was transformed into Escherichia coli, spread on the LBA medium containing ampicillin (100 mg/L) and cultivated for 12-24 hours. Pick 3 single colonies for further culture, extract the plasmid and carry out enzyme digestion and identification with restriction endonucleases BglII and SpeI, the results are shown in Figure 20 (swimming lane M: 1kb DNA ladder, swimming lane CK1: RNAi (A) fragment, swimming lane CK2 : pUCGA, lane 1-2: recombinant plasmid), a fragment of about 300bp in length can be released after double digestion with BglII and SpeI, indicating that the RNAi (B) fragment has been inserted between the BglII and SpeI restriction sites of pUCGA, and The recombinant plasmid was named pUToT3(B-). pUToT3(B-) was digested with restriction endonucleases XbaI and BamHI and ligated with the RNAi(B) fragment, the ligated product was transformed into Escherichia coli, and spread on the LBA medium containing ampicillin (100mg/L) Incubate for 12-24 hours. Pick 2 single colonies for further culture, extract the plasmid and use restriction endonucleases SalI and XhoI for further digestion and identification, the results are shown in Figure 21 (lane M: 100bp DNAladder plus, lane CK: pUToT3R(B-), Swimming lane 1-2: recombinant plasmid), the two obtained recombinant plasmids can release fragments with a length of about 900bp, and the fragment released by the plasmid pUToT3R (B-) obtained for the first ligation is about 600bp, indicating that the RNAi of ToTOM3 ( B) The fragments were connected to the vector pUCGA in both positive and negative directions, and the recombinant RNA interference intermediate plasmid of ToTOM3 was named pUToT3R(B).

用限制性内切酶SalI对上述RNA干扰中间质粒pUToT3R(B)酶切后,用T4DNA聚合酶补平,再用限制性内切酶SpeI酶切,经0.8%琼脂糖凝胶电泳回收900bp的小片段,与经SmaI和XbaI双酶切的载体pBI121进行连接,将连接产物转化大肠杆菌,挑取5个单菌落进一步培养,提取质粒用限制性内切酶BglII进行酶切鉴定,酶切鉴定结果如图22所示(泳道M:1Kb DNA Marker,泳道1-2:重组RNA干扰表达质粒,泳道3:pBI121),泳道1-2所示的重组质粒被切为三个片段,其中有一片段与对照pBI121的7948bp片段大小一致,其余两片段均约3700bp(电泳结果显示这两个片段重叠),以重组质粒为模板,在特异性引物ttom3-g:5’-CCGTCTGTCCTCACACTAGGCAG-3’和引物35S-F的引导下作进一步的PCR鉴定,PCR鉴定结果如图23所示(泳道M:pUCMix8 DNA Marker,泳道1-2:重组RNA干扰表达质粒),PCR扩增出长度约440bp的特异性条带,表明RNA干扰片段均已连接到表达载体pBI121上,将该ToTOM3的RNA干扰载体命名为pBIToT3R-B。Digest the above-mentioned RNA interference intermediate plasmid pUToT3R(B) with restriction endonuclease SalI, fill in with T4 DNA polymerase, digest with restriction endonuclease SpeI, and recover by 0.8% agarose gel electrophoresis A small fragment of 900bp was ligated with the carrier pBI121 that had been cut with SmaI and XbaI, and the ligated product was transformed into Escherichia coli, and 5 single colonies were picked for further culture, and the extracted plasmid was identified by restriction endonuclease BglII. The cut identification results are shown in Figure 22 (lane M: 1Kb DNA Marker, lane 1-2: recombinant RNA interference expression plasmid, lane 3: pBI121), the recombinant plasmid shown in lane 1-2 was cut into three fragments, of which One fragment has the same size as the 7948bp fragment of the control pBI121, and the other two fragments are about 3700bp (the electrophoresis results show that the two fragments overlap). Using the recombinant plasmid as a template, specific primers ttom3-g: 5'-CCGTCTGTCCTCACACTAGGCAG-3' and Under the guidance of primer 35S-F, further PCR identification was carried out. The PCR identification results are shown in Figure 23 (lane M: pUCMix8 DNA Marker, lane 1-2: recombinant RNA interference expression plasmid), PCR amplified a specific DNA marker with a length of about 440bp. Sexual bands indicated that the RNA interference fragments had been connected to the expression vector pBI121, and the RNA interference vector of ToTOM3 was named pBIToT3R-B.

二、番茄的遗传转化2. Genetic transformation of tomato

1、三亲结合法将植物表达质粒转化农杆菌1. Transformation of plant expression plasmids into Agrobacterium by three-parent combination method

用三亲结合法将步骤一构建的三种植物表达质粒pBIToT3-A、pBIToT3R-A和pBIToT3R-B(Rogers S.G.,Horsch R.B.,and Fraley R.T.1986.Gene transfer inplant:production of transformed plants using Ti-plasmid vectors.MethodsEnzymol.,118:627-640)分别转化农杆菌EHA105,在含50mg/mL利福平(Rif)和50mg/mL卡那霉素的LA平板进行筛选,得到含有上述3种植物表达质粒的农杆菌转化子。The three plant expression plasmids pBIToT3-A, pBIToT3R-A and pBIToT3R-B (Rogers S.G., Horsch R.B., and Fraley R.T. 1986. Gene transfer inplant: production of transformed plants using Ti-plasmid vectors.MethodsEnzymol., 118:627-640) were transformed into Agrobacterium EHA105, and screened on LA plates containing 50mg/mL rifampicin (Rif) and 50mg/mL kanamycin to obtain expression plasmids containing the above three kinds of plants Agrobacterium transformants.

2、番茄的遗传转化2. Genetic transformation of tomato

用下述方法分别将转化有pBIToT3-A、pBIToT3R-A和pBIToT3R-B的农杆菌转化子导入番茄,下述用于番茄组织培养和转化的培养基为MS基本培养基。The Agrobacterium transformants transformed with pBIToT3-A, pBIToT3R-A and pBIToT3R-B were respectively introduced into tomato by the following method, and the following medium for tomato tissue culture and transformation was MS minimal medium.

1)Flamingo Bill外植体的制备1) Preparation of Flamingo Bill explants

参考Javier Pozueta-Romero等人的方法(Pozueta-romero,J.,Houlnè,G.,

Figure C20051007665400151
L.,et al.2001.Enhanced regeneration of tomato and pepper seedlingexplants for Agrobactereium-mediated transformation.Plant cell,Tissue andorgan culture.,67:173-180)制备Flamingo Bill外植体,具体方法为:将番茄种子一个个地分开,用蒸馏水洗3次,然后用80%乙醇浸泡并不停地搅动2分钟,加入4-6滴100%的Tween-80,倒去乙醇溶液,再用无菌水洗涤2-3次。加入有效氯为1%的NaClO溶液与4-6滴100%Tween-80在搅拌器上不停地搅动15分钟,倒去NaClO溶液,用无菌水洗2次,再重复二次,直至番茄种子的颜色由褐色变为金黄色,至此,番茄种子基本无菌,再用无菌水冲洗6-10次,将其置于无菌滤纸上晾干。晾干后把种子接入倒有1/2MS培养基(含3%的蔗糖)的培养瓶中,封口,在25-28℃的光照培养箱中培养7天,再把培养瓶放在超净台中,打开盖子,补充培养瓶中的水分,使无菌苗在开放的环境下培养15个小时,使其直立生长,子叶平展,以利下一步操作。将培养的无菌苗的一侧子叶从叶柄基部连同顶芽及周围分生组织全部切去,只留一侧子叶,另外将无菌苗的大部分根系切去只保留长度为2-3cm的胚根。Referring to the methods of Javier Pozueta-Romero et al. (Pozueta-romero, J., Houlnè, G.,
Figure C20051007665400151
L., et al.2001.Enhanced regeneration of tomato and pepper seedling explants for Agrobactereium-mediated transformation.Plant cell, Tissue andorgan culture., 67:173-180) prepare Flamingo Bill explants, the specific method is: a tomato seed Separate them one by one, wash them three times with distilled water, then soak them in 80% ethanol and stir them continuously for 2 minutes, add 4-6 drops of 100% Tween-80, pour off the ethanol solution, and wash them with sterile water for 2-3 minutes. Second-rate. Add NaClO solution with 1% available chlorine and 4-6 drops of 100% Tween-80, stir continuously on the stirrer for 15 minutes, pour off the NaClO solution, wash 2 times with sterile water, and repeat twice until the tomato seeds The color of the tomato is changed from brown to golden yellow. So far, the tomato seeds are basically sterile, and then rinsed with sterile water for 6-10 times, and placed on sterile filter paper to dry. After drying, insert the seeds into a culture bottle poured with 1/2MS medium (containing 3% sucrose), seal it, and cultivate it in a light incubator at 25-28°C for 7 days, then put the culture bottle in an ultra-clean In Taichung, open the lid, supplement the water in the culture bottle, and cultivate the sterile seedlings in an open environment for 15 hours to make them grow upright and the cotyledons flatten to facilitate the next operation. Cut off one cotyledon of the cultured aseptic seedling from the base of the petiole together with the terminal bud and the surrounding meristem, leaving only one side of the cotyledon, and cut off most of the root system of the aseptic seedling, leaving only the 2-3cm in length. Radicle.

2)用农杆菌EHA105感染外植体Flamingo-Bill2) Infect the explant Flamingo-Bill with Agrobacterium EHA105

将转化有pBIToT3-A、pBIToT3R-A和pBIToT3R-B的农杆菌在含50mg/mL卡那霉素和50mg/mL利福平的YEB平板上划线,置28℃恒温培养约24h,长出菌落后挑取单菌落接种于含相应抗生素的YEB液体培养基中,28℃恒温摇床(200转/分)培养约24h至OD600为04-0.6,转入无菌离心管中,3000rpm离心10min,弃上清液,将收集的菌体用MS培养液清洗一次并重新悬浮,稀释50倍后用于番茄的转化。Streak the Agrobacterium transformed with pBIToT3-A, pBIToT3R-A and pBIToT3R-B on the YEB plate containing 50 mg/mL kanamycin and 50 mg/mL rifampicin, culture at 28°C for about 24 hours, and grow After colonization, pick a single colony and inoculate it in YEB liquid medium containing corresponding antibiotics, culture it on a constant temperature shaker (200 rpm) at 28°C for about 24 hours until the OD 600 is 04-0.6, transfer it to a sterile centrifuge tube, and centrifuge at 3000rpm After 10 minutes, the supernatant was discarded, and the collected cells were washed once with MS culture medium and resuspended, diluted 50 times and then used for transformation of tomato.

将步骤1)制备的外植体Flamingo-Bill放入含步骤2)中活化的农杆菌的MS液体培养基中(另加终浓度为100μmol/L的乙酰丁香酮),不停地摇动10分钟,将外植体取出并用无菌水冲洗两次,然后一根根地放入倒有MS共培养培养基(在MS基本培养基的基础上添加了6-BA 2.0mg/L,吲哚乙酸0.1mg/L,AS 100μmol/L)的15cm直径的大培养皿中,封口,在光照培养箱中培养2天。Put the explant Flamingo-Bill prepared in step 1) into the MS liquid medium containing the Agrobacterium activated in step 2) (plus acetosyringone with a final concentration of 100 μmol/L), and shake it continuously for 10 minutes , the explants were taken out and rinsed twice with sterile water, and then one root was put into MS co-cultivation medium (adding 6-BA 2.0mg/L on the basis of MS basic medium, indole acetic acid 0.1mg/L, AS 100μmol/L) in a 15cm-diameter large petri dish, sealed, and cultivated in a light incubator for 2 days.

3)分化诱导3) Differentiation induction

培养2天后,将其转接入分化筛选培养基(在MS基本培养基的基础上添加了ZT1.0mg/L,IAA 0.1mg/L,Km 50mg/L和Cef 200mg/L)中,继续在光照培养箱中培养2-3个星期,培养条件为25-28℃,每天15小时光照/9小时黑暗。After cultivating for 2 days, it was transferred into the differentiation screening medium (added ZT1.0mg/L on the basis of MS basic medium, IAA 0.1mg/L, Km 50mg/L and Cef 200mg/L), and continued to Cultivate in a light incubator for 2-3 weeks, the culture condition is 25-28°C, 15 hours of light/9 hours of darkness per day.

4)转基因植株的生根、炼苗及移栽4) Rooting, hardening and transplanting of transgenic plants

将在分化筛选培养基中生长正常的植株(长到约2-3cm长)从愈伤组织上切下(注意不要连带愈伤组织)。切下后插入生根培养基中(在MS基本培养基的基础上添加了Km 50mg/L,Cef 150mg/L和NAA 0.2mg/L),继续培养使其生根。生根后,将培养瓶的盖子打开并补充水分,使植株逐渐适应外界环境,3-4天后将植株慢慢地拔出,洗净根部所带的琼脂,移植到土壤中,保持土壤的湿度,培养温度设为25-30℃。Plants growing normally (about 2-3 cm long) in the differentiation selection medium were excised from the callus (be careful not to attach the callus). Insert in the rooting medium after excising (on the basis of MS basic medium, added Km 50mg/L, Cef 150mg/L and NAA 0.2mg/L), continue to cultivate and make it take root. After rooting, open the lid of the culture bottle and add water to make the plant gradually adapt to the external environment. After 3-4 days, slowly pull out the plant, wash the agar on the root, transplant it into the soil, and keep the soil humidity. The culture temperature was set at 25-30°C.

三、转基因植株的分子鉴定3. Molecular identification of transgenic plants

将卡那霉素抗性植株盆栽于防虫网室中,一个月后取其叶片,按常规方法提取总DNA,并以此为模板,在引物Kam-R:5’-GATCTGGATCGTTTCGCATG-3’和引物Kam-F:5’-AAGGCGATAGAAGGCGATGC-3’的引导下,进行PCR检测,共获得26株可扩增出800bp的特异性条带的转基因植株,其中转反义RNA质粒pBIToT3-A的13株,转RNA干扰质粒pBIToT3R-A的10株,转pBIToT3-B的3株。以下用35S-F和相对应的特异性引物对这26株转基因植株进行进一步的PCR和Southern杂交检测。The kanamycin-resistant plants were potted in the insect-proof net room, and the leaves were taken after one month, and the total DNA was extracted according to the conventional method. Using this as a template, the primer Kam-R: 5'-GATCTGGATCGTTTCGCATG-3' and the primer Under the guidance of Kam-F: 5'-AAGGCGATAGAAGGCGATGC-3', PCR detection was carried out, and a total of 26 transgenic plants that could amplify a specific band of 800bp were obtained, of which 13 were transgenic antisense RNA plasmid pBIToT3-A, Ten strains were transformed into RNA interference plasmid pBIToT3R-A, and 3 strains were transformed into pBIToT3-B. The 26 transgenic plants were further detected by PCR and Southern hybridization using 35S-F and corresponding specific primers.

1、反义RNA转基因植株的分子鉴定1. Molecular identification of antisense RNA transgenic plants

提取13株转pBIToT3-A的转基因植株的总DNA,并以其为模板,在引物35S-F和引物ttom3-G(5’-CAATTGAATTCATTATTTCTCC-3’)的引导下,进行PCR检测,以非转基因番茄为对照,结果如图24所示(泳道M:pUCMix8 DNA Marker,泳道CK:非转基因番茄,泳道1-13:转基因番茄),扩增出长度约400bp特异性条带的为转基因植株。用限制性内切酶BamH I对转基因植株的总DNA进行酶切,用P32标记的RNAi(B)片段进行Southern杂交,杂交结果如图25所示(泳道M:1kb DNA Marker,泳道CK:非转基因番茄,泳道1-13:转pBIToT3(A)的转基因番茄),所有植株都有一条内源6.2kb的内源杂交带,而转基因植株除了内源杂交带外还可出现一条大小不同的杂交带,表明ToTOM3的反义RNA片段已整合到番茄基因组的不同位置上。The total DNA of 13 transgenic plants transgenic to pBIToT3-A was extracted and used as a template to carry out PCR detection under the guidance of primer 35S-F and primer ttom3-G (5'-CAATTGAATTCATTTTTTCTCC-3'). Tomato was used as a control, and the results are shown in Figure 24 (lane M: pUCMix8 DNA Marker, lane CK: non-transgenic tomato, lanes 1-13: transgenic tomato), and the amplified specific band with a length of about 400bp is the transgenic plant. The total DNA of the transgenic plants was digested with the restriction endonuclease BamH I, and the RNAi (B) fragment labeled with P32 was used for Southern hybridization. The hybridization results are shown in Figure 25 (swimming lane M: 1kb DNA Marker, swimming lane CK: Non-transgenic tomato, lanes 1-13: transgenic tomato transformed with pBIToT3(A), all plants have an endogenous 6.2kb endogenous hybridization band, while transgenic plants can also have a different size in addition to the endogenous hybridization band Hybridization bands, indicating that the antisense RNA fragments of ToTOM3 have been integrated into different positions of the tomato genome.

2、RNA干扰转基因植株的鉴定2. Identification of RNA interference transgenic plants

以转化有RNA干扰表达质粒pBIToT3R-A的转基因植株的总DNA为模板,在引物35S-F和引物ttom3-RNAi-1F的引导下,进行PCR检测,检测结果如图26所示(泳道M:pUCMix8 DNA Marker,泳道CK:非转基因番茄,泳道1-10:转基因番茄),可扩增出长度约600bp特异性条带的为转基因阳性植株;用上述同样方法在引物35S-F和引物ttom3-g的引导下对转化有pBIToT3R-B的转基因植株进行PCR检测,检测结果如图28所示(泳道M:1kb DNA Marker,泳道CK:非转基因番茄,泳道1-10:转pBIToT3(A)转基因番茄),可扩增出长度约400bp特异性条带的为转基因阳性植株。用限制性内切酶EcoRI对上述植株的总DNA进行酶切,将转pBIToT3R-A的与P32标记的RNAi(A)片段进行Southern杂交,杂交结果如图27所示(泳道M:1kb DNA Marker,泳道CK:非转基因番茄,泳道1-10:转pBIToT3(A)转基因番茄),将转pBIToT3R-B的与P32标记的RNAi(B)片段进行Southern杂交,杂交结果如图29所示(泳道M:1kb DNA Marker,泳道CK:非转基因番茄,泳道1-3:转基因番茄)。所有的植株都有一条内源5.8kb的内源杂交带,而转基因植株除了内源杂交带外,均出现一条大小不同的杂交带,表明两个RNA干扰片段已分别整合到番茄基因组的不同位置上。Using the total DNA of the transgenic plants transformed with the RNA interference expression plasmid pBIToT3R-A as a template, under the guidance of primer 35S-F and primer ttom3-RNAi-1F, PCR detection was performed, and the detection results are shown in Figure 26 (lane M: pUCMix8 DNA Marker, lane CK: non-transgenic tomato, lane 1-10: transgenic tomato), the transgene-positive plants that can amplify a specific band with a length of about 600bp; Under the guidance of g, PCR detection was performed on the transgenic plants transformed with pBIToT3R-B, and the detection results are shown in Figure 28 (lane M: 1kb DNA Marker, lane CK: non-transgenic tomato, lanes 1-10: transgenic pBIToT3(A) Tomato), the transgene-positive plants that can amplify a specific band with a length of about 400bp. The total DNA of the above-mentioned plants was digested with the restriction endonuclease EcoRI, and the RNAi (A) fragment transfected with pBIToT3R-A and P32 was subjected to Southern hybridization, and the hybridization results were shown in Figure 27 (swimming lane M: 1kb DNA Marker, lane CK: non-transgenic tomato, lanes 1-10: transgenic tomato with pBIToT3 (A), Southern hybridization was performed on the transgenic pBIToT3R-B and P32- labeled RNAi (B), and the hybridization results are shown in Figure 29 (Lane M: 1kb DNA Marker, Lane CK: Non-transgenic tomato, Lanes 1-3: Transgenic tomato). All plants have an endogenous 5.8kb endogenous hybridization band, and the transgenic plants have a hybridization band of different sizes except for the endogenous hybridization band, indicating that the two RNA interference fragments have been integrated into different positions of the tomato genome superior.

实施例4、转基因植株的抗病性检测Embodiment 4, detection of disease resistance of transgenic plants

采用摩擦接种法,分别用CMV和TMV对所有实施例3获得的5-6叶期的转基因番茄进行接种实验,以相同生长期的非转基因番茄为对照,定期进行症状观察,并在接种75天后用常规的生物学测定方法和DAS-ELISA法测定转基因番茄植株内的病毒含量。Adopt rubbing inoculation method, use CMV and TMV to carry out inoculation experiment to the transgenic tomato of all 5-6 leaf stage obtained in embodiment 3 respectively, take the non-transgenic tomato of the same growth period as contrast, carry out symptom observation regularly, and after inoculation 75 days The virus content in the transgenic tomato plants was determined by conventional biological assay methods and DAS-ELISA.

1、症状表现1. Symptoms

接种10天后,接种TMV的非转基因番茄苗表现斑驳的症状(图20B),接种CMV非转基因番茄苗表现出典型的花叶症状(图20D),转基因苗则无任何症状表现(图20A,图20C)。接种30天后,除少数转基因苗出现轻微的斑驳症状外,大部分转基因苗仍无任何症状表现。接种90天后,接种TMV非转基因植株仍表现为斑驳症状(图21B),转基因植株无任何症状表现(图21A)接种CMV非转基因番茄苗的叶片严重黄化,形成凹突不平的疱斑(图21D),转基因植株则表现出轻微的班驳症状,形成少量的疱斑(图21C)。10 days after inoculation, non-transgenic tomato seedlings inoculated with TMV showed mottled symptoms (Fig. 20B), non-transgenic tomato seedlings inoculated with CMV showed typical mosaic symptoms (Fig. 20D), and transgenic seedlings showed no symptoms (Fig. 20A, Fig. 20C). After 30 days of inoculation, except for a few transgenic seedlings showing slight mottled symptoms, most of the transgenic seedlings still had no symptoms. 90 days after inoculation, the non-transgenic plants inoculated with TMV still showed mottled symptoms (Fig. 21B), and the transgenic plants showed no symptoms (Fig. 21A). The leaves of tomato seedlings inoculated with CMV non-transgenic plants were severely yellowed, forming uneven blisters (Fig. 21D), the transgenic plants showed mild mottled symptoms and formed a small amount of blisters (Fig. 21C).

2、转基因植株内TMV相对含量2. Relative content of TMV in transgenic plants

接种TMV 75天后,分别取转基因植株和对照植株的新生叶(倒数第三张新生叶),剪取相同的面积(约2×2cm2),用1mL磷酸缓冲液(0.02M Na2HPO4,0.001M KH2PO4,pH7.2)磨成匀浆,用磷酸缓冲液将匀浆稀释100倍,接种接种到苋色藜叶片上,五天后统计枯斑数。统计结果如表1所示,以转基因番茄为接种源,在苋色藜上形成的枯斑数均显著低于对照实生番茄植株,其中转反义RNA表达质粒的单株简写为An(n为单株的编号),转RNA干扰质粒的单株分别简写为R(A)n及R(B)n。Seventy-five days after inoculation with TMV, take the new leaves (the penultimate new leaves) of the transgenic plants and the control plants respectively, cut the same area (about 2×2cm 2 ), and wash them with 1mL phosphate buffer solution (0.02M Na2HPO4 , 0.001M KH2PO4 , pH7.2) was ground into a homogenate, diluted 100 times with phosphate buffer, inoculated on the leaves of Amaranthus quinoa, and counted the number of dead spots after five days. The statistical results are shown in Table 1. With the transgenic tomato as the inoculation source, the number of dead spots formed on the amaranthus quinoa was significantly lower than that of the control tomato plants, and the abbreviation of the single plant transfected with the antisense RNA expression plasmid was An (n is The number of individual plants), and the individual plants transfected with RNA interference plasmids are abbreviated as R(A)n and R(B)n respectively.

另取0.1g叶片,加1mL包被缓冲液(0.015M Na2CO3,0.035M NaHCO3,pH9.6)磨成匀浆,稀释1000倍后用于DAS-ELISA检测,检测结果如表2所示,表明所有转基因植株内TMV的浓度均明显低于非转基因植株,与枯斑测定结果一致,所有转基因植株内TMV含量显著降低,对TMV具有较强的抗性。Take another 0.1g leaves, add 1mL coating buffer (0.015M Na 2 CO 3 , 0.035M NaHCO 3 , pH9.6) to grind into a homogenate, dilute 1000 times and use for DAS-ELISA detection, the detection results are shown in Table 2 As shown, it shows that the concentration of TMV in all transgenic plants is significantly lower than that in non-transgenic plants, which is consistent with the results of the scab test. The content of TMV in all transgenic plants is significantly reduced, and they have strong resistance to TMV.

表1转基因植株内TMV相对含量的生物学测定结果(接种75天)The biological assay result (inoculation 75 days) of TMV relative content in the transgenic plant of table 1

株系strain 平均枯斑数Average number of dead spots   标准差(S.D.)Standard Deviation (S.D.) 标准误(S.E.)Standard Error (S.E.) 显著性significant   非转基因植株(对照)Non-transgenic plants (control) 171.00171.00 3.613.61 2.082.08   A6A6   20.3320.33   3.223.22   1.861.86   极显著 significant   A25A25   25.6725.67   1.531.53   0.880.88   极显著 significant   A36A36   40.6740.67   7.027.02   4.064.06   极显著 significant   A52A52   52.6752.67   3.223.22   1.861.86   极显著 significant   A53A53   12.0012.00   2.652.65   1.531.53   极显著 significant   A59A59   51.6751.67   4.044.04   2.332.33   极显著 significant   A94A94   24.0024.00   3.613.61   2.082.08   极显著 significant   A99A99   24.3324.33   2.522.52   1.451.45   极显著 significant   A119A119   22.0022.00   3.613.61   2.082.08   极显著 significant   A121A121   34.3334.33   3.063.06   1.761.76   极显著 significant   A123A123   20.6720.67   2.522.52   1.451.45   极显著 significant   A134A134   90.6790.67   5.135.13   2.962.96   极显著 significant   A155A155   58.6758.67   4.514.51   2.602.60   极显著 significant   R(A)6R(A)6   31.0031.00   4.584.58   2.652.65   极显著 significant   R(A)8R(A)8   26.0026.00   2.652.65   1.531.53   极显著 significant   R(A)12R(A)12   37.0037.00   7.557.55   4.364.36   极显著 significant   R(A)55R(A)55   86.6786.67   5.865.86   3.383.38   极显著 significant   R(A)66R(A)66   22.3322.33   3.063.06   1.761.76   极显著 significant   R(A)69R(A)69   25.0025.00   2.652.65   1.531.53   极显著 significant   R(A)71R(A)71   38.3338.33   3.063.06   1.761.76   极显著 significant   R(A)111R(A)111   23.6723.67   2.312.31   1.331.33   极显著 significant   R(A)114R(A)114   90.6790.67   6.436.43   3.713.71   极显著 significant   R(A)139R(A)139   64.6764.67   3.793.79   2.192.19   极显著 significant   R(B)16R(B)16   17.0017.00   2.002.00   1.161.16   极显著 significant

  R(B)28R(B)28     25.3325.33     2.522.52     1.451.45     极显著 significant   R(B)46R(B)46     14.6714.67     3.063.06     1.761.76     极显著 significant

表2转基因植株内TMV相对含量的DAS-ELISA测定结果(接种75天)DAS-ELISA assay result of relative content of TMV in table 2 transgenic plants (inoculation 75 days)

株系strain 平均OD唯Average OD   标准差(S.D.)Standard Deviation (S.D.)   标准误(S.E.)Standard Error (S.E.) 显著性significant     非转基因植株(对照)  Non-transgenic plants (control) 1.9821.982 0.0030.003 0.0020.002     A6A6     0.2350.235     0.0020.002     0.0010.001     极显著 significant     A25A25     0.2290.229     0.0030.003     0.0010.001     极显著 significant     A36A36     0.3620.362     0.0030.003     0.0020.002     极显著 significant     A52A52     0.5270.527     0.0030.003     0.0020.002     极显著 significant     A53A53     0.2350.235     0.0040.004     0.0020.002     极显著 significant     A59A59     0.5120.512     0.0030.003     0.0010.001     极显著 significant     A94A94     0.2220.222     0.0030.003     0.0020.002     极显著 significant     A99A99     0.2200.220     0.0030.003     0.0020.002     极显著 significant     A119A119     0.2200.220     0.0010.001     0.0010.001     极显著 significant     A121A121     0.4050.405     0.0040.004     0.0020.002     极显著 significant     A123A123     0.2160.216     0.0030.003     0.0020.002     极显著 significant     A134A134     0.9480.948     0.0030.003     0.0020.002     极显著 significant     A155A155     0.6690.669     0.0020.002     0.0010.001     极显著 significant     R(A)6R(A)6     0.2750.275     0.0030.003     0.0020.002     极显著 significant     R(A)8R(A)8     0.2110.211     0.0030.003     0.0020.002     极显著 significant     R(A)12R(A)12     0.4330.433     0.0030.003     0.0020.002     极显著 significant     R(A)55R(A)55     0.7700.770     0.0020.002     0.0010.001     极显著 significant     R(A)66R(A)66     0.2130.213     0.0020.002     0.0010.001     极显著 significant     R(A)69R(A)69     0.2810.281     0.0030.003     0.0010.001     极显著 significant     R(A)71R(A)71     0.3810.381     0.0030.003     0.0010.001     极显著 significant     R(A)111R(A)111     0.2040.204     0.0030.003     0.0010.001     极显著 significant     R(A)114R(A)114     0.7480.748     0.0030.003     0.0020.002     极显著 significant     R(A)139R(A)139     0.5040.504     0.0030.003     0.0010.001     极显著 significant     R(B)16R(B)16     0.2540.254     0.0030.003     0.0020.002     极显著 significant     R(B)28R(B)28     0.3130.313     0.0030.003     0.0020.002     极显著 significant     R(B)46R(B)46     0.2150.215     0.0050.005     0.0030.003     极显著 significant

3、转基因植株内CMV的相对含量3. Relative content of CMV in transgenic plants

接种CMV 70天后,分别取转基因植株和对照植株的新生叶(倒数第三张新生叶),剪取相同的面积(约2×2cm2),用1mL磷酸缓冲液磨成匀浆,直接接种到苋色藜叶片上,五天后统计枯斑数。统计结果如表3所示,以转基因番茄为接种源,在苋色藜上形成的枯斑数均显著低于对照实非转基因植株。70 days after inoculation with CMV, take the new leaves (the third last new leaf) of the transgenic plants and the control plants respectively, cut out the same area (about 2×2cm 2 ), grind them into a homogenate with 1mL phosphate buffer solution, and inoculate them directly into amaranth On the leaves of quinoa quinoa, the number of dead spots was counted after five days. The statistical results are shown in Table 3. Using the transgenic tomato as the inoculation source, the number of dead spots formed on the amaranthus quinoa was significantly lower than that of the control non-transgenic plants.

另取0.1g叶片,加1mL包被缓冲液磨成匀浆,稀释10倍后用于DAS-ELISA检测,检测结果如表4所示,所有的转基因植株内TMV的浓度均明显低于非转基因植株,与枯斑测定结果一致,表明所有的转基因植株对CMV均有一定的抗性。Take another 0.1g leaf, add 1mL coating buffer to grind into a homogenate, dilute it 10 times and use it for DAS-ELISA detection. The detection results are shown in Table 4. The concentration of TMV in all transgenic plants was significantly lower than that of non-transgenic plants. Plants, consistent with the results of the dead spot assay, showed that all transgenic plants had certain resistance to CMV.

表3转基因植株内CMV相对含量的生物学测定结果(接种70天)The biological assay result (inoculation 70 days) of CMV relative content in the transgenic plant of table 3

株系strain 平均枯斑数Average number of dead spots 标准差(S.D.)Standard Deviation (S.D.)   标准误(S.E.)Standard Error (S.E.) 显著性significant   非转基因植株(对照)Non-transgenic plants (control) 148.00148.00 2.652.65 1.531.53   A6A6   22.0022.00   4.364.36   2.522.52   极显著 significant   A25A25   18.3318.33   2.082.08   1.201.20   极显著 significant   A36A36   22.6722.67   3.793.79   2.192.19   极显著 significant   A52A52   23.6723.67   8.028.02   4.634.63   极显著 significant   A53A53   28.3328.33   2.522.52   1.451.45   极显著 significant   A59A59   22.0022.00   2.652.65   1.531.53   极显著 significant   A94A94   21.3321.33   3.223.22   1.871.87   极显著 significant   A99A99   26.6726.67   3.793.79   2.192.19   极显著 significant   A119A119   30.6730.67   4.044.04   2.332.33   极显著 significant   A121A121   74.3374.33   5.135.13   2.962.96   极显著 significant   A123A123   31.0031.00   6.006.00   3.463.46   极显著 significant   A134A134   78.0078.00   2.652.65   1.531.53   极显著 significant   A155A155   60.0060.00   7.007.00   4.044.04   极显著 significant   R(A)6R(A)6   25.0025.00   4.004.00   2.312.31   极显著 significant   R(A)8R(A)8   85.6785.67   5.695.69   3.283.28   极显著 significant   R(A)12R(A)12   62.0062.00   5.575.57   3.223.22   极显著 significant   R(A)55R(A)55   76.0076.00   5.575.57   3.223.22   极显著 significant   R(A)66R(A)66   25.3325.33   4.514.51   2.602.60   极显著 significant   R(A)69R(A)69   28.3328.33   3.063.06   1.761.76   极显著 significant   R(A)71R(A)71   58.3358.33   5.515.51   3.183.18   极显著 significant   R(A)111R(A)111   28.0028.00   3.613.61   2.082.08   极显著 significant   R(A)114R(A)114   74.6774.67   5.695.69   3.283.28   极显著 significant   R(A)139R(A)139   46.3346.33   5.865.86   3.383.38   极显著 significant   R(B)16R(B)16   21.6721.67   3.063.06   1.761.76   极显著 significant   R(B)28R(B)28   29.0029.00   2.652.65   1.531.53   极显著 significant   R(B)46R(B)46   20.0020.00   2.652.65   1.531.53   极显著 significant

表4转基因植株内CMV相对含量的DAS-ELISA测定结果(接种70天)The DAS-ELISA assay result (inoculation 70 days) of CMV relative content in table 4 transgenic plants

株系strain 平均OD值Average OD value   标准差(S.D.)Standard Deviation (S.D.)   标准误(S.E.)Standard Error (S.E.) 显著性significant   非转基因植株(对照)Non-transgenic plants (control) 1.5121.512 0.0030.003 0.0010.001   A6A6   0.1920.192   0.0030.003   0.0020.002   极显著 significant   A25A25   0.2130.213   0.0030.003   0.0010.001   极显著 significant   A36A36   0.2310.231   0.0030.003   0.0020.002   极显著 significant   A52A52   0.2430.243   0.0030.003   0.0020.002   极显著 significant   A53A53   0.2240.224   0.0030.003   0.0010.001   极显著 significant   A59A59   0.2510.251   0.0030.003   0.0020.002   极显著 significant   A94A94   0.2130.213   0.0030.003   0.0020.002   极显著 significant   A99A99   0.2010.201   0.0020.002   0.0010.001   极显著 significant   A119A119   0.2090.209   0.0020.002   0.0010.001   极显著 significant   A121A121   0.3840.384   0.0020.002   0.0010.001   极显著 significant   A123A123   0.1950.195   0.0030.003   0.0020.002   极显著 significant   A134A134   0.8920.892   0.0030.003   0.0020.002   极显著 significant   A155A155   0.6250.625   0.0020.002   0.0010.001   极显著 significant

  R(A)6R(A)6   0.2090.209   0.0010.001   0.0010.001   极显著 significant   R(A)8R(A)8   0.6080.608   0.0030.003   0.0010.001   极显著 significant   R(A)12R(A)12   0.5030.503   0.0020.002   0.0010.001   极显著 significant   R(A)55R(A)55   0.5720.572   0.0010.001   0.0010.001   极显著 significant   R(A)66R(A)66   0.2010.201   0.0030.003   0.0020.002   极显著 significant   R(A)69R(A)69   0.2590.259   0.0020.002   0.0010.001   极显著 significant   R(A)71R(A)71   0.3630.363   0.0030.003   0.0020.002   极显著 significant   R(A)111R(A)111   0.1840.184   0.0020.002   0.0010.001   极显著 significant   R(A)114R(A)114   0.4030.403   0.0030.003   0.0010.001   极显著 significant   R(A)139R(A)139   0.3340.334   0.0030.003   0.0020.002   极显著 significant   R(B)16R(B)16   0.2030.203   0.0020.002   0.0010.001   极显著 significant   R(B)28R(B)28   0.2840.284   0.0030.003   0.0010.001   极显著 significant   R(B)46R(B)46   0.1950.195   0.0030.003   0.0020.002   极显著 significant

序列表sequence listing

<160>3<160>3

<210>1<210>1

<211>295<211>295

<212>PRT<212>PRT

<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller

<400>1<400>1

Met Gly Arg Ala Glu Met Val Val Gly Pro Ser Glu Lys Val Ala ValMet Gly Arg Ala Glu Met Val Val Gly Pro Ser Glu Lys Val Ala Val

1               5                   10                  151 5 10 15

Val Ala Tyr His Leu Asn Asp Ala Ile Asn Trp Trp Asp Asp Val AsnVal Ala Tyr His Leu Asn Asp Ala Ile Asn Trp Trp Asp Asp Val Asn

            20                  25                  3020 25 30

Arg Ser Leu Asp Trp Gln Asn Arg Ile Phe His Val Leu Ala Val LeuArg Ser Leu Asp Trp Gln Asn Arg Ile Phe His Val Leu Ala Val Leu

        35                  40                  4535 40 45

Tyr Gly Val Val Ala Val Val Ala Leu Val Gln Leu Ile Arg Ile GlnTyr Gly Val Val Ala Val Val Ala Leu Val Gln Leu Ile Arg Ile Gln

    50                  55                  6050 55 60

Met Arg Val Pro Glu Tyr Gly Trp Thr Thr Gln Lys Val Phe His PheMet Arg Val Pro Glu Tyr Gly Trp Thr Thr Gln Lys Val Phe His Phe

65                  70                  75                  8065 70 75 80

Leu Asn Phe Phe Val Asn Gly Val Arg Ser Leu Val Phe Thr Phe ArgLeu Asn Phe Phe Val Asn Gly Val Arg Ser Leu Val Phe Thr Phe Arg

                85                  90                  9585 90 95

Arg Asp Val Gln Lys Leu His Pro Glu Ile Val Gln His Ile Met LeuArg Asp Val Gln Lys Leu His Pro Glu Ile Val Gln His Ile Met Leu

            100                 105                 110100 105 110

Asp Met Pro Ser Leu Ala Phe Phe Thr Thr Tyr Ala Leu Leu Val LeuAsp Met Pro Ser Leu Ala Phe Phe Thr Thr Tyr Ala Leu Leu Val Leu

        115                 120                 125115 120 125

Phe Trp Ala Glu Ile Tyr Tyr Gln Ala Arg Ala Val Ser Thr Asp GlyPhe Trp Ala Glu Ile Tyr Tyr Gln Ala Arg Ala Val Ser Thr Asp Gly

    130                 135                 140130 135 140

Leu Arg Pro Ser Phe Phe Thr Ile Asn Gly Val Val Tyr Ala Ile GlnLeu Arg Pro Ser Phe Phe Thr Ile Asn Gly Val Val Tyr Ala Ile Gln

145                 150                 155                 160145 150 155 160

Ile Ile Leu Trp Leu Ile Met Trp Trp Lys Pro Ile Arg Val Leu PheIle Ile Leu Trp Leu Ile Met Trp Trp Lys Pro Ile Arg Val Leu Phe

                165                 170                 175165 170 175

lle Leu Ser Lys Met Phe Phe Ala Gly Val Ser Leu Phe Ala Ala Leulle Leu Ser Lys Met Phe Phe Ala Gly Val Ser Leu Phe Ala Ala Leu

            180                 185                 190180 185 190

Gly Phe Leu Leu Tyr Gly Gly Arg Leu Phe Leu Met Leu Gln Arg PheGly Phe Leu Leu Tyr Gly Gly Arg Leu Phe Leu Met Leu Gln Arg Phe

        195                 200                 205195 200 205

Pro Val Glu Ser Arg Gly Arg Arg Lys Lys Leu Gln Glu Val Gly TyrPro Val Glu Ser Arg Gly Arg Arg Lys Lys Leu Gln Glu Val Gly Tyr

    210                 215                 220210 215 220

Val Thr Thr Ile Cys Phe Ser Cys Phe Leu Ile Arg Cys Val Met MetVal Thr Thr Ile Cys Phe Ser Cys Phe Leu Ile Arg Cys Val Met Met

225                 230                 235                 240225 230 235 240

Cys Phe Asn Ala Phe Asp Lys Ala Ala Asp Leu Asp Val Leu Tyr HisCys Phe Asn Ala Phe Asp Lys Ala Ala Asp Leu Asp Val Leu Tyr His

                245                 250                 255245 250 255

Pro Ile Leu Asn Leu Ile Tyr Tyr Leu Leu Val Glu Ile Leu Pro SerPro Ile Leu Asn Leu Ile Tyr Tyr Leu Leu Val Glu Ile Leu Pro Ser

            260                 265                 270260 265 270

Ser Leu Val Leu Phe Ile Leu Arg Lys Leu Pro Pro Lys Arg Gly IleSer Leu Val Leu Phe Ile Leu Arg Lys Leu Pro Pro Lys Arg Gly Ile

        275                 280                 285275 280 285

Thr Gln Tyr His Pro Ile HisThr Gln Tyr His Pro Ile His

    290                 295290 295

<210>2<210>2

<211>8129<211>8129

<212>DNA<212>DNA

<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller

<400>2<400>2

aaatgttaga ggttttacca acatccgttc cccaaaagcc ccaaaaatcc aacaagacac   60aaatgttaga ggttttacca acatccgttc cccaaaagcc ccaaaaatcc aacaagacac 60

cacgtataac gtgatcttag aattattcat atgaacgttc aacattttct ttattataaa  120cacgtataac gtgatcttag aattattcat atgaacgttc aacattttct ttattataaa 120

gaaagatatt ttactctcta ctgtttctcg taatagaaaa tagctaaaga attatctata  180gaaagatatt ttactctcta ctgtttctcg taatagaaaa tagctaaaga attatctata 180

tttacaacaa tgcgaaatcc taatcctata ttattagact aaagttttta ttagttgatt  240tttacaacaa tgcgaaatcc taatcctata ttattatagact aaagttttta ttagttgatt 240

tcttctccta atgcatgaag gacatgggtt taaaaaaatc gaacataccg ataaatcgaa  300tcttctccta atgcatgaag gacatgggtt taaaaaaatc gaacataccg ataaatcgaa 300

tcgaaaaaat gttattgggg tattgttatt gtgttattga tttattgggg tttaatgagt  360tcgaaaaaat gttattgggg tattgttatt gtgttattga tttatgggg tttaatgagt 360

ttataaaaat aatttattag gttattggtt cggcatcagt ttttactatt ggattattgg  420ttataaaaat aatttattag gttattggtt cggcatcagt ttttactatt ggattattgg 420

taaatcgata acccaataaa atggtaataa tttattattt tgcccttcct aattattaat  480taaatcgata acccaataaa atggtaataa tttattatt tgcccttcct aattattaat 480

attaatactt taatatataa ttaaacacta taactatatc aaattattag aactctacca  540attaatactt taatatataa ttaaacacta taactatatc aaattattag aactctacca 540

acttcaccgt atgccatttt actagctttt actatttact caaaacctaa agattaaagt  600acttcaccgt atgccatttt actagctttt actatttact caaaacctaa agattaaagt 600

aaggggttca caattgaagc tatttgattt tagttttagt tttagcttta gtgttggact    660aaggggttca caattgaagc tatttgattt tagttttagt tttagcttta gtgttggact 660

agtttatttt agttttagtt tgtaattgta ggttgtagca tttgcaagtt tgtaaaggtt    720agtttatttt agttttagtt tgtaattgta ggttgtagca tttgcaagtt tgtaaaggtt 720

cataatttga ttaacataaa aaattacata ctatgttttg gcgataacat gtaattataa    780cataatttga ttaacataaa aaattacata ctatgttttg gcgataacat gtaattataa 780

ccttcgaact atatattctc ttattgatgt aatttctcat tatctttctt gtttcactat    840ccttcgaact atatattctc ttattgatgt aatttctcat tatctttctt gtttcactat 840

atcaaaacat ctagagaagt gaaaagacat ataatatttc acgggcattt tcttattgga    900atcaaaacat ctagagaagt gaaaagacat ataatatttc acgggcattt tcttattgga 900

taaatcgaaa tcgaactgat aatgattaaa aatcggtaca tcgaaaaccg ataaagaata    960taaatcgaaa tcgaactgat aatgattaaa aatcggtaca tcgaaaaccg ataaagaata 960

tcttattggt ttgttattgg attagcatat ttaaaaacca aaaaccgata atccgaaccg    1020tcttattggt ttgttattgg attagcatat ttaaaaacca aaaaccgata atccgaaccg 1020

aaccgaccgg tgcacacccc taatcaagga tatatatata tatcggacaa cattacccct    1080aaccgaccgg tgcacacccc taatcaagga tatatatata tatcggaca cattacccct 1080

ctaaacgttt tttttaatat tgtatttgtt tttatatata ataaaataat accttttttt    1140ctaaacgttt tttttaatat tgtatttgtt tttatatata ataaaataat accttttttt 1140

tctagccgtc cattttgaaa aacaaaagaa aaaaaagtac aaatttaaat aaacaaaaat    1200tctagccgtc cattttgaaa aacaaaagaa aaaaaagtac aaatttaaat aaacaaaaat 1200

agtaaatgaa tttttttaaa aattaatttc tgaaaaaggt agttgccgat tttggtgttt    1260agtaaatgaa tttttttaaa aattaatttc tgaaaaaggt agttgccgat tttggtgttt 1260

gatttttttt tggggggatt ttgaaattgg tgagtttgat tttggaatct ccggtgatgg    1320gatttttttt tggggggatt ttgaaattgg tgagtttgat tttggaatct ccggtgatgg 1320

gacgggcgga gatggttgta ggcccgtcgg agaaggtggc ggtggtggca tatcatctga    1380gacgggcgga gatggttgta ggcccgtcgg agaaggtggc ggtggtggca tatcatctga 1380

atgatgcaat caattggtgg gacgatgtga acagatctct tgattggcaa aaccgtatat    1440atgatgcaat caattggtgg gacgatgtga acagatctct tgattggcaa aaccgtatat 1440

tccatgtcct tgctgttctc tacggcgttg tcgccgtcgt tgctcttgta aattctgtct    1500tccatgtcct tgctgttctc tacggcgttg tcgccgtcgt tgctcttgta aattctgtct 1500

ctctatcttt acgtctcagc gtttgagttt tgaattttat gagttaattt taacataatt    1560ctctatcttt acgtctcagc gtttgagttt tgaattttat gagttaattt taacataatt 1560

gttatgttga ttgggataag agaggttcca tcaggtggta agcatccttc cttgtgaact    1620gttatgttga ttgggataag agaggttcca tcaggtggta agcatccttc cttgtgaact 1620

agaagaaagg aggtctagga ggtaagttgt tgtcatgtta gtatgatgtg acaggttcga    1680agaagaaagg aggtctagga ggtaagttgt tgtcatgtta gtatgatgtg acaggttcga 1680

gcggtgtaaa taggcttttt gcatccaata gaccaatgtg gttcagtgca tagtaggagc    1740gcggtgtaaa taggcttttt gcatccaata gaccaatgtg gttcagtgca tagtaggagc 1740

ttagtataga agaaaggagg tcgtctagac gggaaagatg ttgtcatgtt agtaggatgt    1800ttagtataga agaaaggagg tcgtctagac gggaaagatg ttgtcatgtt agtaggatgt 1800

gacaggtttg agctgtgtaa ataggctttt tgcatccaat agagctttgt ggttcagtgc    1860gacaggtttg agctgtgtaa ataggctttt tgcatccaat agagctttgt ggttcagtgc 1860

atagcaggag cttagtatac tgggctgctc tttttatatt gttatgttga ttggtaaagt    1920atagcaggag cttagtatac tgggctgctc tttttatatt gttatgttga ttggtaaagt 1920

aagattgggc tcatatatgt gttggagatg tatgaagaat ctgaatattt gttttatgtt    1980aagattgggc tcatatatgt gttggagatg tatgaagaat ctgaatattt gttttatgtt 1980

gcttgttagt tgtttgaatt gaatgtcatg tgcatcatgt aactccaaac tttgatgttt    2040gcttgttagt tgtttgaatt gaatgtcatg tgcatcatgt aactccaaac tttgatgttt 2040

tcgtcaaggg aagaattcta ggtggaactt ttgaatttga ggcattttag acttgttttt    2100tcgtcaaggg aagaattcta ggtggaactt ttgaatttga ggcattttag acttgttttt 2100

gatggtcctt gaaacgggga tagataactc atagagtatg catcaagctt tcaaggggcg    2160gatggtcctt gaaacgggga tagataactc atagagtatg catcaagctt tcaaggggcg 2160

cttactagaa ctatcactca gcagagcttt agtttcggct catatcagtg ttttagacgg    2220cttactagaa ctatcactca gcagagcttt agtttcggct catatcagtg ttttagacgg 2220

caaaaggcga caagggtctg ccttgccata aggcgaggcg accggcgagg cactcacctt    2280caaaaggcga caagggtctg ccttgccata aggcgaggcg accggcgagg cactcacctt 2280

tttgaagtgt ggcaccaatt aataccaaaa aattaaaata ttgaattgca tatgtaaata    2340tttgaagtgt ggcaccaatt aataccaaaa aattaaaata ttgaattgca tatgtaaata 2340

ataaaaatct caatagcaat aacatattag caaatagttt aattcaaaac taaaaataga    2400ataaaaatct caatagcaat aacatattag caaatagttt aattcaaaac taaaaataga 2400

tagtacatac tataattcta gaacatgaat gagaaaaaaa caaaacaaaa gtcaaaacag    2460tagtacatac tataattcta gaacatgaat gagaaaaaaa caaaacaaaa gtcaaaacag 2460

aggtagaagt gactctgaag tccgaagaag aaggaaaaag aaacccaaaa aagaagaagt    2520aggtagaagt gactctgaag tccgaagaag aaggaaaaag aaacccaaaa aagaagaagt 2520

ttgaagaaga aaagaagaaa catgtcttgg ttggactttc gagtagccgg aaaagtttgc    2580ttgaagaaga aaagaagaaa catgtcttgg ttggactttc gagtagccgg aaaagtttgc 2580

ctggtcgtcg aaggagtcta atcgtaagcc ctaaaattac cttttaactt ttaaaatcct    2640ctggtcgtcg aaggagtcta atcgtaagcc ctaaaattac cttttaactt ttaaaatcct 2640

aaattggtag tcttttttta agaatataca aaaggtgacg cctttcttgc ttttcttgca    2700aaattggtag tcttttttta agaatataca aaaggtgacg cctttcttgc ttttcttgca 2700

tctcacctct cgccttttgt cgccatggct cgcttcgcca caaagttaaa aggcgatgag    2760tctcacctct cgccttttgt cgccatggct cgcttcgcca caaagttaaa aggcgatgag 2760

gggtcgcctc gcctctcgcc cattggcgac gaggcgatcg cctttcgcaa cacttggctc    2820gggtcgcctc gcctctcgcc cattggcgac gaggcgatcg cctttcgcaa cacttggctc 2820

atatggatag ggataggaaa aagagagatt ttcgtcgttt tgggatcatt cggataaaca    2880atatggatag ggataggaaa aagagagatt ttcgtcgttt tgggatcatt cggataaaca 2880

cagtaatttg cggaagtgga gtattctata gttatagtag attaatacac aatttgttca    2940cagtaatttg cggaagtgga gtattctata gttatagtag attaatacac aatttgttca 2940

agagacaatt gcttcttaac cggaaaatac ttgcttaaat agatatatca aataggaatt    3000agagacaatt gcttcttaac cggaaaatac ttgcttaaat agatatatca aataggaatt 3000

gtctttatat gatttcatat agacacttga aagtgattaa aactgaaatt tgaaactaaa    3060gtctttat gatttcatat agacacttga aagtgattaa aactgaaatt tgaaactaaa 3060

aagggaagtt gttgaagtag gtaaaacttt taaaggattg catcttttcc tccctgaaag    3120aagggaagtt gttgaagtag gtaaaacttt taaaggattg catcttttcc tccctgaaag 3120

ttcatgatta ttatttccgg tatggcgggt gttgttgttg gtgttcaggt gtttagtcat    3180ttcatgatta ttaatttccgg tatggcgggt gttgttgttg gtgttcaggt gtttagtcat 3180

ggcaaaacta ttatatgttt ccagggagaa tatgcactta tagtatgtat atttttggca    3240ggcaaaacta ttatatgttt ccagggagaa tatgcactta tagtatgtat atttttggca 3240

aaagttgaaa ttgtctaatt tccactaatt ggtttatgta tgcaaaaaag agggggcaca    3300aaagttgaaa ttgtctaatt tccactaatt ggtttatgta tgcaaaaaag aggggggcaca 3300

tggcctggag tttgaaattt aaattttgcc aattggtttg tttgtgtctc attgattgat    3360tggcctggag tttgaaattt aaattttgcc aattggtttg tttgtgtctc attgattgat 3360

tttggtatac ttgtttaaat tttcatgcat gttcttgcgc attggatgat catattgtta    3420tttggtatac ttgtttaaat tttcatgcat gttcttgcgc attggatgat catattgtta 3420

ttcagttatt gctctacaaa attattatta ccagtaccaa tacttcaatt tatgtgcggc    3480ttcagttatt gctctacaaa atttattatta ccagtaccaa tacttcaatt tatgtgcggc 3480

tctggaattt gtttcttact ttgcaacttg gcaatcaggt acaattaatt cgcattcaaa    3540tctggaattt gtttcttact ttgcaacttg gcaatcaggt acaattaatt cgcattcaaa 3540

tgagagttcc tgaatatggc tggaccactc aaaaagtctt ccactttctc aatttctttg    3600tgagagttcc tgaatatggc tggaccactc aaaaagtctt ccactttctc aatttctttg 3600

tgaatggagg tcagtatctt tcttttcttt acttctaatt attttttgaa catcctgatg    3660tgaatggagg tcagtatctt tcttttcttt acttctaatt attttttgaa catcctgatg 3660

ggaagttcca ttacacatgc ttttcaaatg attgttcctg tacactccac tttgttttga    3720ggaagttcca ttacacatgc ttttcaaatg attgttcctg tacactccac tttgttttga 3720

cgtgttgtct ttgttattta actgtgtctt catgttcttg gcagttcgct cgctagtttt    3780cgtgttgtct ttgttattta actgtgtctt catgttcttg gcagttcgct cgctagtttt 3780

tacatttcgt cgggatgttc agaagttgca cccggaggtt aagcaacaga gtatcttgat    3840tacatttcgt cgggatgttc agaagttgca cccggaggtt aagcaacaga gtatcttgat 3840

gttttttgtc ttacactcct ttaattttta acgctttata ctacattttt gcagattgtg    3900gttttttgtc ttacactcct ttaattttta acgctttata ctacattttt gcagattgtg 3900

caacatatta tgcttgatat gccaagtctt gcattcttca caacttatgc tctgctagta    3960caacatatta tgcttgatat gccaagtctt gcattcttca caacttatgc tctgctagta 3960

ttattctggg ctgagatata ctaccaggtt cttgtggtct gtctcaattt ttgtgtagat    4020ttattctggg ctgagatata ctaccaggtt cttgtggtct gtctcaattt ttgtgtagat 4020

atatatcttc tcaaggttaa catatttgtt ttttccatga caaggcacgt gctgtgtcca    4080atatatcttc tcaaggttaa catatttgtt ttttccatga caaggcacgt gctgtgtcca 4080

cggatgggct tagacctagt ttcttcacaa tcaacggagt ggtttatgct attcaggtaa    4140cggatgggct tagaccctagt ttcttcacaa tcaacggagt ggtttatgct attcaggtaa 4140

atatgtgaca gttatgcaat acttatataa actgcttgtt tcaatttatt cgtctttctt    4200atatgtgaca gttatgcaat acttatataa actgcttgtt tcaatttatt cgtctttctt 4200

tcctttttgg tccatttcaa aagaatccct tggcaggcgc atcaatttat tttggtgctt    4260tcctttttgg tccatttcaa aagaatccct tggcaggcgc atcaatttat tttggtgctt 4260

gctagaaata aactctggtc tgggagtttt gacatcaata tatttctaaa agtgacaaca    4320gctagaaata aactctggtc tgggagtttt gacatcaata tatttctaaa agtgacaaca 4320

agtttcatct gatcagaatt tttctcaaca ttcttaaaca tgtcgttcat agggtacttc    4380agtttcatct gatcagaatt tttctcaaca ttcttaaaca tgtcgttcat agggtacttc 4380

actcagtacc ccggccatcc tctccaactc ccaaacgtta aggataccct ccacctgagc    4440actcagtacc ccggccatcc tctccaactc ccaaacgtta aggataccct ccacctgagc 4440

atcagcaatt actacaattt tcccttctta agggtattct attagcagaa atgagagcac    4500atcagcaatt actacaattt tcccttctta agggtattct attagcagaa atgagagcac 4500

agtgcctaat atttcacaaa atgctgagac cactcataaa tcttagggat atatcaaacg    4560agtgcctaat atttcacaaa atgctgagac cactcataaa tcttagggat atatcaaacg 4560

aagtgtcatt gataaggaaa tatgtttctg tcatttggag atactttatc aagactacat    4620aagtgtcatt gataaggaaa tatgtttctg tcatttggag atactttatc aagactacat 4620

tttgtttgga tgagatgttc agtgcccgca gttagacatg gtgactttta tgttttctca    4680tttgtttgga tgagatgttc agtgcccgca gttagacatg gtgactttta tgttttctca 4680

tggaaactgt tgcatgaaac atgtgagaca agggtttact cttttaaatt gctgtaccta    4740tggaaactgt tgcatgaaac atgtgagaca agggtttact cttttaaatt gctgtaccta 4740

tttggtggat gttcattgct gattttcttt gtttcttata tatcttgcag attatattat    4800tttggtggat gttcattgct gattttcttt gtttcttata tatcttgcag attatattat 4800

ggctgataat gtggtggaaa cctattcgag tactcttcat cttatccaag atgttttttg    4860ggctgataat gtggtggaaa cctattcgag tactcttcat cttatccaag atgttttttg 4860

caggttcttg ttttagattt aacttatttt tagtattgca tggatctgtt gcgaagtatt    4920caggttcttg ttttagattt aacttatttt tagtattgca tggatctgtt gcgaagtatt 4920

aacataatgt acttgcaggt gtatccctat ttgcagcatt gggatttctc ctctacggtg    4980aacataatgt acttgcaggt gtatccctat ttgcagcatt gggatttctc ctctacggtg 4980

gaaggtaaaa tcttgatttt tagtatcagt cactttgtca ccgacaggaa ttaccgaatg    5040gaaggtaaaa tcttgatttt tagtatcagt cactttgtca ccgacaggaa ttaccgaatg 5040

tacatttgtt aaatcgcata cagaatgggt ataaatcaag cacataagca taaagcttag    5100tacatttgtt aaatcgcata cagaatgggt aaaatcaag cacataagca taaagcttag 5100

cacttgtttc tatcgttcgt taaaggatgt tttatcttct gattcgttgc tattcttaac    5160cacttgtttc tatcgttcgt taaaggatgt tttatcttct gattcgttgc tattcttaac 5160

acttctttag aaggtagaga tggatatgta gtcaattgtt gtttgctttg atcaaaagcc    5220acttctttag aaggtagaga tggatatgta gtcaattgtt gtttgctttg atcaaaagcc 5220

aatttttttg gacgaaaagg tgatctgctt cctagcctat acatccacag atctaaacct    5280aatttttttg gacgaaaagg tgatctgctt cctagcctat acatccacag atctaaacct 5280

tcacgagatg acttctgttg tgtcctaagc gtcaccattt tctgaaatta agtatcttgt    5340tcacgagatg acttctgttg tgtcctaagc gtcaccattt tctgaaatta agtatcttgt 5340

atattggcat gtatcttatg cgatcatcgg ttactttcag taacctgtac ttcattagtt    5400atattggcat gtatcttatg cgatcatcgg ttactttcag taacctgtac ttcattagtt 5400

tgatatttga taccaggagc acacattgac aaagaggaca taagtaagaa gaagatgtag    5460tgatatttga taccaggagc acacattgac aaagaggaca taagtaagaa gaagatgtag 5460

aaggaaggag ggaaaagaag gagggggcgg gagtgaagaa ggaaaatgaa agaaacatac    5520aaggaaggag ggaaaagaag gagggggcgg gagtgaagaa ggaaaatgaa agaaacatac 5520

cctaatatgg tgaattagag aagagaggag caaaagattg aaaattggaa ccttcgagaa    5580cctaatatgg tgaattagag aagagaggag caaaagattg aaaattggaa ccttcgagaa 5580

atgaatggag agctcattag gaggagagat gagtggagga gtttcccatt cttgaccaac    5640atgaatggag agctcattag gaggagagat gagtggagga gtttcccatt cttgaccaac 5640

tattttgaca atgcaaccat taacctctgt tttgcccttg tcgcattcga cacctgctat    5700tattttgaca atgcaaccat taacctctgt tttgcccttg tcgcattcga cacctgctat 5700

atcgatcatt tttatcctcc tagctaaaaa gtggaagatt ccccattgaa gtcttccctc    5760atcgatcatt tttatcctcc tagctaaaaa gtggaagatt ccccattgaa gtcttccctc 5760

atctctaaag agtactctag agtgaagttc ctaatacata ggaaaagaaa ttggcaggtg    5820atctctaaag agtactctag agtgaagttc ctaatacata ggaaaagaaa ttggcaggtg 5820

ctagattgaa tgaacgcagc aaccacggca gtaatagatg acaaacatat aaaaaagtaa    5880ctagattgaa tgaacgcagc aaccacggca gtaatagatg acaaacatat aaaaaagtaa 5880

aatatcttca attacactta cttttagtga aagttcatgt gaccttttat tgccctgcct    5940aatatcttca attacactta cttttagtga aagttcatgt gaccttttat tgccctgcct 5940

aatgaaagtt caaaagtctt ctcaagcatt atcttagttt gtcggcacgg tcgtacaaag    6000aatgaaagtt caaaagtctt ctcaagcatt atcttagttt gtcggcacgg tcgtacaaag 6000

atgcatagtg ttgttgaacg tgctgcttaa aaataaaatt agtaatttaa atattaagat    6060atgcatagtg ttgttgaacg tgctgcttaa aaataaaatt agtaatttaa atattaagat 6060

actgcaaaaa aagttcttac agcactgcgt atagcacatg tttgtttagt ttgtggattg    6120actgcaaaaa aagttcttac agcactgcgt atagcacatg tttgtttagt ttgtggattg 6120

acctttgcta tatctcgctt gagtaccttg tgtactctta tgtttgaata attgggtcca    6180acctttgcta tatctcgctt gagtaccttg tgtactctta tgtttgaata attgggtcca 6180

tgcaacttgt atgtcattca tattcatcct tcaatatcac cttactgttt ggcttgatat    6240tgcaacttgt atgtcattca tattcatcct tcaatatcac cttactgttt ggcttgatat 6240

tctttcactt tcttccaggc tttttcttat gttacagcgg tttccagtag aatcaagagg    6300tctttcactt tcttccaggc tttttcttat gttacagcgg tttccagtag aatcaagagg 6300

gagacgcaag aagctgcagg aggtatgtta ttagtacttc tctttcttgg tatttcattc    6360gagacgcaag aagctgcagg aggtatgtta ttagtacttc tctttcttgg tatttcattc 6360

ttattaggtc ttttgacttc tccggcattt tggcttctgt aggttggtta tgtcacgaca    6420ttattagggtc ttttgacttc tccggcattt tggcttctgt aggttggtta tgtcacgaca 6420

atatgttttt catgcttcct cattagatgc gttatggtaa gtccatattc ctcgtgaact    6480atatgttttt catgcttcct cattagatgc gttatggtaa gtccatattc ctcgtgaact 6480

aaacattttt tagctgatca taactaaccc atgtttgtag tgtgtgaatg atatctatat    6540aaacattttt tagctgatca taactaaccc atgtttgtag tgtgtgaatg atatctatat 6540

tttgctttag atggtttctt ttttgtctaa aacctttctt gatacaataa gttactctta    6600tttgctttag atggtttctt ttttgtctaa aacctttctt gatacaataa gttactctta 6600

gctgagatgc gtgcaagctg ggtcagacac ccttttttcc ggaaaaaaaa agtcttagct    6660gctgagatgc gtgcaagctg ggtcagacac ccttttttcc ggaaaaaaaa agtcttagct 6660

gatgcattga ttttctttct atagggcatc tttctcaaat tttttccttt ctatctatag    6720gatgcattga ttttctttct atagggcatc tttctcaaat tttttccttt ctatctatag 6720

ggcataaagc ctctttggtt attctatatg gcttaatggt tagtcactct attattatct    6780ggcataaagc ctctttggtt attctatatg gcttaatggt tagtcactct attattatct 6780

ttgctacaga tgtgcttcaa tgcatttgat aaagctgcag atcttgatgt tttgtatcat    6840ttgctacaga tgtgcttcaa tgcatttgat aaagctgcag atcttgatgt tttgtatcat 6840

cctattttga atttgatata ttacctggtg agttccatat cactgaactt ctattagcac    6900cctattttga atttgatata ttacctggtg agttccatat cactgaactt ctatagcac 6900

ttctttaggt aaaatattgg ttgctgcgcc ataatcaaaa gaagtattgg cagtcagtat    6960ttctttaggt aaaatattgg ttgctgcgcc ataatcaaaa gaagtattgg cagtcagtat 6960

attttatata attattgcca aatcacgata aattggataa ttcacatgat atttcagctt    7020attttatata attattgcca aatcacgata aattggataa ttcacatgat atttcagctt 7020

gtggcatctt acaatcagtt ttatgcgcca aaattctgtt tggctccttt tctatgtagt    7080gtggcatctt acaatcagtt ttatgcgcca aaattctgtt tggctccttt tctatgtagt 7080

cttttgagtt gggatggggg tttcttactt gtgccatgaa ctcaggtttc tttctcttcg    7140cttttgagtt gggatggggg tttcttactt gtgccatgaa ctcaggtttc tttctcttcg 7140

tttgacattt tgtttaaatt gaaaattgga ttcaaaatct taagattatg gtgaaatatt    7200tttgacattt tgtttaaatt gaaaattgga ttcaaaatct taagattatg gtgaaatatt 7200

tgagacacag ggagtggaaa tcatgttctg aaattatagc atggttatta ttttggcaca    7260tgagacacag ggagtggaaa tcatgttctg aaattatagc atggttatta ttttggcaca 7260

tacataaaca gacacttaaa cttggcctca acgggcatat aagcattgca actttgagaa    7320tacataaaca gacacttaaa cttggcctca acgggcatat aagcattgca actttgagaa 7320

agcacatcta gacacctcaa ctaaacattc caactcatcc ccactctata tcttgtggac    7380agcacatcta gacacctcaa ctaaacattc caactcatcc ccactctata tcttgtggac 7380

actctgatgt ggctcataaa ttttggaggt gtctagatga tcactttgta agtcggagtg    7440actctgatgt ggctcataaa ttttggaggt gtctagatga tcactttgta agtcggagtg 7440

ttcaactgac acaatggaga cgagttgagg tgtcgtgtgt gcatactcaa agttggagtg    7500ttcaactgac acaatggaga cgagttgagg tgtcgtgtgt gcatactcaa agttggagtg 7500

gttacttgcc agttgaggcc gattttgagt gtctgtttat gtattatgcc tattatttca    7560gttacttgcc agttgaggcc gattttgagt gtctgtttat gtattatgcc tattatttca 7560

cttgatcgtg tcctatccaa accttagttt catccaaatt tcaaatcatg agtatatact    7620cttgatcgtg tcctatccaa accttagttt catccaaatt tcaaatcatg agtatatact 7620

tagacatggt gttttttact ttgcgctttg gggggtagaa agtggagaaa atggagtaat    7680tagacatggt gttttttact ttgcgctttg gggggtagaa agtggagaaa atggagtaat 7680

atttttctgt atgttttgag actaagcaaa ctttttaacc tcttcgcagt tagtggagat    7740attttctgt atgttttgag actaagcaaa ctttttaacc tcttcgcagt tagtggagat 7740

actgccttct tctcttgtcc tttttatttt aaggaagttg cctccaaagc gagggatcac    7800actgccttct tctcttgtcc tttttatttt aaggaagttg cctccaaagc gagggatcac 7800

ccaataccac cctattcact aatacattaa gagggtagat aatgatgaaa atcaggctcc    7860ccaataccac cctattcact aatacattaa gagggtagat aatgatgaaa atcaggctcc 7860

gggatcaggt attaagtaag ttggctttta cctggatgtg atttgcaagc aagaaatacg    7920gggatcaggt attaagtaag ttggctttta cctggatgtg atttgcaagc aagaaatacg 7920

agaggagtga taatgtaaat tgaagtatgg ttcgtctata ctgaaatatc cgtctgtcct    7980agaggagtga taatgtaaat tgaagtatgg ttcgtctata ctgaaatatc cgtctgtcct 7980

cacactaggc agattgtagc tctgttttgt accactagtt atagatggaa ttgtgaagta    8040caactaggc agattgtagc tctgttttgt accactagtt atagatggaa ttgtgaagta 8040

tcttacgacc tttagtgtat tatttcgcct ttgtatgtgt cagatttcaa ttgaattcat    8100tcttacgacc tttagtgtat tatttcgcct ttgtatgtgt cagatttcaa ttgaattcat 8100

tatttctcct gaaacttcac gttgttctc                                      8129tatttctcct gaaacttcac gttgttctc 8129

<210>3<210>3

<211>1282<211>1282

<212>DNA<212> DNA

<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller

<400>3<400>3

gccgattttg gtgtttgatt tttttttggg gggattttga aattggtgag tttgattttg     60gccgattttg gtgtttgatt tttttttggg gggattttga aattggtgag tttgattttg 60

gaatctccgg tgatgggacg ggcggagatg gttgtaggcc cgtcggagaa ggtggcggtg    120gaatctccgg tgatgggacg ggcggagatg gttgtaggcc cgtcggagaa ggtggcggtg 120

gtggcatatc atctgaatga tgcaatcaat tggtgggacg atgtgaacag atctcttgat    180gtggcatatc atctgaatga tgcaatcaat tggtgggacg atgtgaacag atctcttgat 180

tggcaaaacc gtatattcca tgtccttgct gttctctacg gcgttgtcgc cgtcgttgct    240tggcaaaacc gtatattcca tgtccttgct gttctctacg gcgttgtcgc cgtcgttgct 240

cttgtacaat taattcgcat tcaaatgaga gttcctgaat atggctggac cactcaaaaa    300cttgtacaat taattcgcat tcaaatgaga gttcctgaat atggctggac cactcaaaaa 300

gtcttccact ttctcaattt ctttgtgaat ggagttcgct cgctagtttt tacatttcgt    360gtcttccact ttctcaattt ctttgtgaat ggagttcgct cgctagtttt tacatttcgt 360

cgggatgttc agaagttgca cccggagatt gtgcaacata ttatgcttga tatgccaagt    420cgggatgttc agaagttgca cccggagatt gtgcaacata ttatgcttga tatgccaagt 420

cttgcattct tcacaactta tgctctgcta gtattattct gggctgagat atactaccag    480cttgcattct tcacaactta tgctctgcta gtattattct gggctgagat atactaccag 480

gcacgtgctg tgtccacgga tgggcttaga cctagtttct tcacaatcaa cggagtggtt    540gcacgtgctg tgtccacgga tgggcttaga cctagtttct tcacaatcaa cggagtggtt 540

tatgctattc agattatatt atggctgata atgtggtgga aacctattcg agtactcttc    600tatgctattc agattatatt atggctgata atgtggtgga aacctattcg agtactcttc 600

atcttatcca agatgttttt tgcaggtgta tccctatttg cagcattggg atttctcctc    660atcttatcca agatgttttt tgcaggtgta tccctatttg cagcattggg atttctcctc 660

tacggtggaa ggctttttct tatgttacag cggtttccag tagaatcaag agggagacgc    720tacggtggaa ggctttttct tatgttacag cggtttccag tagaatcaag agggagacgc 720

aagaagctgc aggaggttgg ttatgtcacg acaatatgtt tttcatgctt cctcattaga    780aagaagctgc aggaggttgg ttatgtcacg acaatatgtt tttcatgctt cctcattaga 780

tgcgttatga tgtgcttcaa tgcatttgat aaagctgcag atcttgatgt tttgtatcat    840tgcgttatga tgtgcttcaa tgcatttgat aaagctgcag atcttgatgt tttgtatcat 840

cctattttga atttgatata ttacctgtta gtggagatac tgccttcttc tcttgtcctt    900cctattttga atttgatata ttacctgtta gtggagatac tgccttcttc tcttgtcctt 900

tttattttaa ggaagttgcc tccaaagcga gggatcaccc aataccaccc tattcactaa    960tttattttaa ggaagttgcc tccaaagcga gggatcaccc aataccaccc tattcactaa 960

tacattaaga gggtagataa tgatgaaaat caggctccgg gatcaggtat  taagtaagtt   1020tacattaaga gggtagataa tgatgaaaat caggctccgg gatcaggtat taagtaagtt 1020

ggcttttacc tggatgtgat ttgcaagcaa gaaatacgag aggagtgata atgtaaattg    1080ggcttttacc tggatgtgat ttgcaagcaa gaaatacgag aggagtgata atgtaaattg 1080

aagtatggtt cgtctatact gaaatatccg tctgtcctca cactaggcag attgtagctc    1140aagtatggtt cgtctatact gaaatatccg tctgtcctca cactaggcag attgtagctc 1140

tgttttgtac cactagttat agatggaatt gtgaagtatc ttacgacctt tagtgtatta    1200tgttttgtac cactagttat agatggaatt gtgaagtatc ttacgacctt tagtgtatta 1200

tttcgccttt gtatgtgtca gatttcaatt gaattcatta tttctcctga aacttcacgt    1260tttcgccttt gtatgtgtca gatttcaatt gaattcatta tttctcctga aacttcacgt 1260

tgttctcaaa aaaaaaaaaa aa                                             1282tgttctcaaa aaaaaaaaa aa 1282

Claims (10)

1.一种番茄RNA病毒寄主因子,其氨基酸残基序列如SEQ ID NO:1所示。1. A tomato RNA virus host factor, its amino acid residue sequence is as shown in SEQ ID NO: 1. 2.权利要求1所述的番茄RNA病毒寄主因子的编码基因。2. the coding gene of the tomato RNA virus host factor described in claim 1. 3.根据权利要求2所述的编码基因,其特征在于:其基因组基因的碱基序列如SEQ ID NO:2所示。3. The coding gene according to claim 2, characterized in that: the base sequence of its genome gene is as shown in SEQ ID NO:2. 4.根据权利要求2所述的编码基因,其特征在于:其cDNA基因的碱基序列如SEQID NO:3所示。。4. The coding gene according to claim 2, characterized in that: the base sequence of its cDNA gene is as shown in SEQID NO:3. . 5.含有权利要求2或3或4所述编码基因的表达载体。5. An expression vector containing the coding gene of claim 2 or 3 or 4. 6.含有权利要求2或3或4所述编码基因的转基因细胞系。6. A transgenic cell line containing the coding gene of claim 2 or 3 or 4. 7.含有权利要求2或3或4所述编码基因的宿主菌。7. the host bacterium that contains the described coding gene of claim 2 or 3 or 4. 8.一种培育抗病毒植物的方法,是将权利要求2或3或4编码基因的反义RNA或其RNA干扰表达载体导入植物中,得到转基因植株。8. A method for cultivating anti-virus plants, comprising introducing the antisense RNA or RNA interference expression vector of the gene encoding the gene of claim 2 or 3 or 4 into the plant to obtain a transgenic plant. 9.根据权利要求8所述的方法,其特征在于:所述被转化的植物宿主为茄科的植物。9. The method according to claim 8, characterized in that: the transformed plant host is a plant of Solanaceae. 10.权利要求2或3或4所述编码基因在培育抗病毒植物中的应用。10. The application of the coding gene described in claim 2 or 3 or 4 in cultivating virus-resistant plants.
CNB2005100766543A 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and application Expired - Fee Related CN100368434C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100766543A CN100368434C (en) 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100766543A CN100368434C (en) 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and application

Publications (2)

Publication Number Publication Date
CN1721435A CN1721435A (en) 2006-01-18
CN100368434C true CN100368434C (en) 2008-02-13

Family

ID=35912086

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100766543A Expired - Fee Related CN100368434C (en) 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and application

Country Status (1)

Country Link
CN (1) CN100368434C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810946B1 (en) * 2020-02-12 2021-01-13 国立研究開発法人農業・食品産業技術総合研究機構 Tomatovirus-resistant tomato plant, method for producing tomatovirus-resistant tomato plant, method for imparting tomatovirus resistance in tomato plant, method for screening tomatovirus-resistant tomato plant, and method for detecting tomatovirus resistance in tomato plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661013A (en) * 2004-02-25 2005-08-31 中国科学院微生物研究所 The protein that interacts with the coat protein of tomato mosaic virus and its coding gene and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661013A (en) * 2004-02-25 2005-08-31 中国科学院微生物研究所 The protein that interacts with the coat protein of tomato mosaic virus and its coding gene and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中国番茄黄化曲叶病毒和烟草曲茎病毒AC2和AC4蛋白为RNA沉默的抑制子. 崔晓峰,周雪平.科学通报,第49卷第23期. 2004 *
病毒诱导的基因沉默及其在植物基因功能研究中的应用. 陶小荣,周雪平,崔晓峰,钱亚娟.生物化学与生物物理进展,第31卷第9期. 2004 *

Also Published As

Publication number Publication date
CN1721435A (en) 2006-01-18

Similar Documents

Publication Publication Date Title
Crane et al. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots
WO2018113702A1 (en) Plant grain trait-related protein, gene, promoter and snps and haplotypes
Hoff et al. A recombinase-mediated transcriptional induction system in transgenic plants
Tzfira et al. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity
CN106047889B (en) The application of soybean myb transcription factor gene raising isoflavones biosynthesis
CN110734482B (en) A Minjiang lily WRKY transcription factor gene LrWRKY4 and its application
PL211212B1 (en) Plant-derived resistance gene
CN111718914A (en) Application of protein ZmTIP1 in regulating plant drought resistance
CN114480431B (en) Application of corn ZmBES1/BZR1-10 gene in improving drought tolerance and yield of plants
CN110923253B (en) Application of OsPTP1 in Plant Phosphorus Efficient Breeding
CN100540665C (en) Gene for regulating plant branching, vector containing the gene, microorganism transformed by the vector, and method for regulating plant branching using the microorganism
BRPI0618134A2 (en) methods for increasing drought stress tolerance in plants by active areb1
Girijashankar et al. Genetic transformation of Sorghum bicolor
US20060288452A1 (en) Sucrose-inducible promoter from sweetpotato
CN103266130B (en) Soybean water channel protein gene GmPIP1; The application of 2
CN107325161B (en) Protein related to low-nitrogen stress and high-salt stress resistance as well as encoding gene and application thereof
Wu et al. Functional characterization of seed coat-specific members of the barley germin gene family
CN104945492B (en) Plant stress tolerance correlative protein TaAREB3 and its encoding gene and application
CN101883572B (en) Sorghum aluminum tolerance gene SBMATE
CN100368434C (en) Tomato RNA virus host factor and its coding gene and application
CN111394500B (en) A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny
CN115851783A (en) HvSRLP gene and its use in regulating plant tolerance to cadmium and cadmium accumulation
CN112239492B (en) Discovery and application of key component SLB1 for controlling size of plant organ
CN100432101C (en) Tomato RNA virus host factor and its coding gene and use thereof
US20100005540A1 (en) Constitutive promoter lip3

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080213

Termination date: 20130613