[go: up one dir, main page]

CN100367004C - A precise decoupling test method for gyroscope scale factor and input axis misalignment angle - Google Patents

A precise decoupling test method for gyroscope scale factor and input axis misalignment angle Download PDF

Info

Publication number
CN100367004C
CN100367004C CNB2006100115602A CN200610011560A CN100367004C CN 100367004 C CN100367004 C CN 100367004C CN B2006100115602 A CNB2006100115602 A CN B2006100115602A CN 200610011560 A CN200610011560 A CN 200610011560A CN 100367004 C CN100367004 C CN 100367004C
Authority
CN
China
Prior art keywords
gyroscope
turntable
axis
input
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100115602A
Other languages
Chinese (zh)
Other versions
CN1821721A (en
Inventor
房建成
张海鹏
盛蔚
刘百奇
全伟
曹娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2006100115602A priority Critical patent/CN100367004C/en
Publication of CN1821721A publication Critical patent/CN1821721A/en
Application granted granted Critical
Publication of CN100367004C publication Critical patent/CN100367004C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法,首先安装陀螺仪在状态一,即保持陀螺仪OY轴与转台面平行并调节OZ轴与转台轴成夹角θi,依次给定输入角速度,依次测试并记录转台转动前静止时、转台正转时、停转静止时、转台反转时、停转静止时陀螺仪输出的平均值,改变步骤(1)的θi,重复步骤(2);依次分别改变陀螺仪的安装状态为状态二、三、四,重复步骤(1)-(3);对测得的数据处理,实现陀螺仪标度因数和输入轴失准角的解耦。本发明保证了测试值的正确和精确,减少了参数误差,可用于标定各种陀螺仪以及其惯性测量单元,尤其适用于微小型、低成本、低精度的MEMS陀螺仪、光纤陀螺仪等。

Figure 200610011560

A precise decoupling test method for gyroscope scale factor and input axis misalignment angle. First, install the gyroscope in state one, that is, keep the gyroscope OY axis parallel to the turntable surface and adjust the OZ axis to form an angle θi with the turntable axis , give the input angular velocity in turn, test and record the average value of the gyroscope output when the turntable is stationary before turning, when the turntable is rotating forward, when it is stationary, when the turntable is reversed, and when it is stationary, change the θ of step (1) i , repeat step (2); change the installation state of the gyroscope to state two, three, and four in turn, repeat steps (1)-(3); process the measured data to realize the scale factor of the gyroscope and the input axis Decoupling of misalignment angles. The invention ensures the correctness and accuracy of test values, reduces parameter errors, can be used to calibrate various gyroscopes and their inertial measurement units, and is especially suitable for microminiature, low-cost, low-precision MEMS gyroscopes, fiber optic gyroscopes and the like.

Figure 200610011560

Description

一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法 A precise decoupling test method for gyroscope scale factor and input axis misalignment angle

技术领域technical field

本发明涉及一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法,属于导航、制导与控制领域。The invention relates to an accurate decoupling test method for a scale factor of a gyroscope and an input axis misalignment angle, and belongs to the field of navigation, guidance and control.

背景技术Background technique

在惯性导航过程中,惯性器件所引起的误差通常占整个制导误差的70%以上,这就导致对惯性器件提出了越来越高的要求。通过提高加工工艺,可以提高惯性器件的精度,但是成本巨大,而且给批量生产带来了很大困难。因此,人们更加关注惯性器件的测试、标定和补偿技术,其中,惯导测试技术是在惯性导航技术基础上发展起来的一门新兴学科,它包括惯导测试设备、测试方法、数据处理技术三个方面。通过惯导测试技术,人们力求准确评定陀螺仪性能及精度,精确测试出有关参数,并通过误差补偿措施来提高惯性器件的精度。In the process of inertial navigation, the error caused by inertial devices usually accounts for more than 70% of the entire guidance error, which leads to higher and higher requirements for inertial devices. By improving the processing technology, the precision of the inertial device can be improved, but the cost is huge, and it brings great difficulties to mass production. Therefore, people pay more attention to the testing, calibration and compensation technology of inertial devices. Among them, inertial navigation testing technology is a new discipline developed on the basis of inertial navigation technology. It includes inertial navigation testing equipment, testing methods, and data processing technology. aspect. Through the inertial navigation test technology, people strive to accurately evaluate the performance and accuracy of the gyroscope, accurately test the relevant parameters, and improve the accuracy of the inertial device through error compensation measures.

在陀螺中,陀螺标度因数和陀螺输入轴失准角正是提高精度需要测试的两个非常关键的参数。标度因数K是指陀螺仪输出电压量V与输入角速度ω的比值,通常把与陀螺仪安装基准面垂直的轴叫做输入基准轴IR,如图1所示,通常把陀螺的敏感轴叫做输入轴IA,当陀螺仪绕该轴旋转时,将引起最大输出电压量;输入轴失准角δ就是输入轴IA与输入基准轴IR之间的夹角。通常陀螺仪的轴规定为:OZ轴与输入基准轴IR重合,OX与OY在陀螺仪安装平面内相互垂直,且三个轴的正方向满足OX×OY=IA的规定。In the gyroscope, the gyroscope scale factor and the gyroscope input shaft misalignment angle are two very critical parameters that need to be tested to improve the accuracy. The scale factor K refers to the ratio of the output voltage V of the gyroscope to the input angular velocity ω. Usually, the axis perpendicular to the installation reference plane of the gyroscope is called the input reference axis IR. As shown in Figure 1, the sensitive axis of the gyroscope is usually called the input axis. Axis IA, when the gyroscope rotates around this axis, will cause the maximum output voltage; the input axis misalignment angle δ is the angle between the input axis IA and the input reference axis IR. Usually the axes of the gyroscope are defined as follows: the OZ axis coincides with the input reference axis IR, OX and OY are perpendicular to each other in the gyroscope installation plane, and the positive directions of the three axes meet the requirements of OX×OY=IA.

虽然目前对惯性器件(特别是陀螺)的测试方法,因所具备的测试条件不同而各异,但是,为了规范测试标准,业内人士通常参照IEEE陀螺的测试规范。在这些测试规范中,标度因数测试值由速率实验求得,此时,陀螺输入基准轴IR(与OZ轴重合)向上放置,与速率转台转轴(TI轴)平行,如图2所示;而求取陀螺输入轴失准角测试值时,陀螺输入抽(依然与OZ轴重合)水平放置,而与速率转台转轴(TI轴)垂直,如图3(TI轴)所示。由陀螺所涉及的力学和运动学原理可知,在如上所述的测试方法中,标度因数和输入轴失准角的数据处理模型分别为(以单自由度陀螺为例):Although the current test methods for inertial devices (especially gyroscopes) vary due to different test conditions, but in order to standardize the test standards, people in the industry usually refer to the IEEE gyroscope test specifications. In these test specifications, the scale factor test value is obtained from the rate experiment. At this time, the gyro input reference axis IR (coinciding with the OZ axis) is placed upwards, parallel to the rate turntable rotation axis (TI axis), as shown in Figure 2; When calculating the misalignment angle test value of the gyro input axis, the gyro input pump (still coincident with the OZ axis) is placed horizontally, and vertical to the rate turntable rotation axis (TI axis), as shown in Figure 3 (TI axis). It can be seen from the mechanics and kinematics principles involved in the gyroscope that in the above-mentioned test method, the data processing models of the scale factor and the misalignment angle of the input axis are respectively (taking the single-degree-of-freedom gyroscope as an example):

V=V0+K·ω·cosδ      (1)V=V 0 +K·ω·cosδ (1)

V′=K·ω′·sinδT    (2)V′=K·ω′· sinδT (2)

式中:In the formula:

V一测试标度因数时陀螺输出轴的输出电压值,单位为V;V is the output voltage value of the gyroscope output shaft when the scale factor is tested, the unit is V;

V′一测试输入轴失准角时陀螺输出轴的输出电压值,单位为V;V'—the output voltage value of the gyro output shaft when testing the misalignment angle of the input shaft, the unit is V;

V0一陀螺输出轴的常值漂移,单位为V;V 0— the constant value drift of the gyro output shaft, the unit is V;

K一陀螺输出轴的标度因数,单位为V/(°/S);K—the scale factor of the gyroscope output shaft, the unit is V/(°/S);

ω一测试标度因数时转台输入角速度;ω is the input angular velocity of the turntable when the scale factor is tested;

ω′一测试输入轴失准角时转台输入角速度;ω′—the input angular velocity of the turntable when testing the misalignment angle of the input shaft;

δ一陀螺输入轴失准角;δ—misalignment angle of gyroscope input shaft;

δT一陀螺输入轴失准角在当前测试平面内的投影,其中T=x或y;δ T —the projection of the misalignment angle of the gyro input axis in the current test plane, where T=x or y;

由此可见,陀螺标度因数和陀螺输入轴失准角这两个参数是互相耦合的,称 K · cos δ K · sin δ 为耦合系数,此系数为一个二维列向量,利用以上实验方法中得到的实验数据,无法在数据处理中将标度因数和输入轴失准角分离。考虑到传统的陀螺仪制作精密,价格昂贵,精度很高,失准角δ很小,上述测试标准中近似取:It can be seen that the two parameters of gyroscope scale factor and gyroscope input shaft misalignment angle are coupled with each other, called K &Center Dot; cos δ K &Center Dot; sin δ is the coupling coefficient, which is a two-dimensional column vector. Using the experimental data obtained in the above experimental method, the scaling factor and the misalignment angle of the input axis cannot be separated in data processing. Considering that the traditional gyroscope is precision-made, expensive, high-precision, and the misalignment angle δ is very small, the above-mentioned test standard is approximately taken as:

cosδ≈1,sinδT≈δT    (3)cosδ≈1, sinδT≈δT ( 3)

对传统陀螺仪,引进的近似误差不大,牺牲的导航精度较小,式(1)、(2)可简化为:For traditional gyroscopes, the introduced approximation error is not large, and the sacrificed navigation accuracy is small. Equations (1) and (2) can be simplified as:

V=V0+K·ω          (4)V=V 0 +K·ω (4)

V′=K·ω′·δT    (5)V′=K·ω′· δT (5)

实践证明,上述测试方法,虽然带来了近似误差,但是在精度较高的惯性导航系统中,误差值较小,在一定的应用环境和要求下,基本可以满足要求。Practice has proved that although the above test method brings approximate errors, in the inertial navigation system with high precision, the error value is small, and under certain application environments and requirements, it can basically meet the requirements.

但是,20世纪80年代以来,许多微小型、低成本、低精度惯性测量器件流行起来,尤其是随着光电子技术和微米/纳米技术的成功应用,MEMS技术、光电子技术与惯性技术结合,带来了惯性技术的一次巨大变革,一时间,光纤陀螺仪、MEMS陀螺仪受到了极大的重视,它们体积小、重量轻、成本低、结构简单、应用方便,具有极大的应用前途。但是,他们的输入轴失准角都比较大,例如MEMS陀螺仪一般都是贴片封装,应用时需要焊接到电路板上,配合其他电子元器件如电阻、电容等才能使用,电路板的安装精度远远低于传统陀螺仪的安装精度,特别是,在手工焊接过程中,会对器件敏感轴的平行度和垂直度造成很大的误差,有的甚至达到5°以上,因此MEMS陀螺仪的输入轴失准角很大。目前,对于微小型、低成本、低精度陀螺仪的测试,报道比较少,还没有一个统一和规范的测试方法,基本上还是参考应用了传统陀螺仪的测试标准,式(3)产生了不容忽视近的似误差值,对于提高陀螺仪的精度、后续的捷联解算和组合导航都会带来极大的误差,所以,根据式(4)和式(5)表示的数据处理模型来测试陀螺仪,就显得很不科学了,它存在以下缺点:However, since the 1980s, many tiny, low-cost, and low-precision inertial measurement devices have become popular, especially with the successful application of optoelectronic technology and micro/nano technology, the combination of MEMS technology, optoelectronic technology and inertial technology has brought A great change in inertial technology was brought about. For a time, fiber optic gyroscopes and MEMS gyroscopes received great attention. They are small in size, light in weight, low in cost, simple in structure, and convenient in application, and have great application prospects. However, their input axis misalignment angles are relatively large. For example, MEMS gyroscopes are generally packaged in patches, which need to be soldered to the circuit board in application, and can be used with other electronic components such as resistors and capacitors. The installation of the circuit board The accuracy is far lower than the installation accuracy of traditional gyroscopes. In particular, during the manual welding process, it will cause a large error in the parallelism and perpendicularity of the sensitive axis of the device, and some even reach more than 5°. Therefore, MEMS gyroscopes The input shaft misalignment angle is very large. At present, there are relatively few reports on the testing of micro-miniature, low-cost, and low-precision gyroscopes, and there is no unified and standardized testing method. Basically, the test standards for traditional gyroscopes are used in reference. Neglecting the approximate error value will bring great errors to the improvement of the accuracy of the gyroscope, the subsequent strapdown calculation and integrated navigation. Therefore, according to the data processing model represented by formula (4) and formula (5) to test Gyroscope, it seems very unscientific, it has the following disadvantages:

1、传统陀螺仪的测试标准标定出的陀螺仪标度因数K不准确,测试出的陀螺仪的K实际上是K·cosδ,尤其是对于低精度的光纤陀螺仪、石英陀螺仪、微硅MEMS陀螺仪等,δ一般为几度,甚至十几度,cosδ带来的误差很大;1. The scale factor K of the gyroscope calibrated by the traditional gyroscope test standard is not accurate. The K of the gyroscope tested is actually K cosδ, especially for low-precision fiber optic gyroscopes, quartz gyroscopes, and microsilicon gyroscopes. MEMS gyroscopes, etc., δ is generally a few degrees, or even a dozen degrees, and the error caused by cosδ is very large;

2、传统陀螺仪的测试标准标定出的陀螺仪输入轴失准角的值δ不准确,δ在当前测试平面内的投影δT的计算涉及到K的值,而缺点1表明K值不准确,所以,δT的计算值也不准确;同时δT值的计算涉及到sinδT≈δT,会带来近似误差,特别是对于低精度的光纤陀螺仪、石英陀螺仪、微硅MEMS陀螺仪等,一般失准角δ很大,产生的误差同样会很大;2. The value δ of the misalignment angle of the input axis of the gyroscope calibrated by the traditional gyroscope test standard is inaccurate, and the calculation of the projection δ T of δ in the current test plane involves the value of K, and the disadvantage 1 shows that the K value is inaccurate , therefore, the calculated value of δ T is also inaccurate; at the same time, the calculation of δ T value involves sin δ T ≈ δ T , which will bring approximate errors, especially for low-precision fiber optic gyroscopes, quartz gyroscopes, and microsilicon MEMS gyroscopes. Instruments, etc., generally the misalignment angle δ is very large, and the resulting error will also be large;

3、传统陀螺仪的测试标准中,需要分两步分别标定K值和δ值,陀螺仪标定过程一般比较长,K值与δ值的测试在不同时间下进行,其测试环境如温度、湿度、气压等的差异,也会影响实验结果。3. In the traditional gyroscope test standard, it is necessary to calibrate the K value and δ value in two steps. The gyroscope calibration process is generally relatively long, and the K value and δ value are tested at different times. The test environment is such as temperature and humidity. , air pressure, etc., will also affect the experimental results.

发明内容Contents of the invention

本发明的技术解决问题:克服传统方法测试陀螺仪标度因数和输入轴失准角的缺点,提供一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法,实现两个参数的分离,并保证测试值的正确和精确,减少参数误差对导航精度的影响。The technical problem of the present invention is to overcome the shortcomings of the traditional method of testing the gyroscope scale factor and the input axis misalignment angle, and provide an accurate decoupling test method for the gyroscope scale factor and the input axis misalignment angle, and realize the two parameters The separation, and to ensure the correctness and accuracy of the test value, reduce the impact of parameter errors on navigation accuracy.

本发明的技术解决方案为:一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法,其特点在于:测试过程包括如下步骤:The technical solution of the present invention is: an accurate decoupling test method for the scale factor of the gyroscope and the misalignment angle of the input shaft, which is characterized in that the test process includes the following steps:

(1)安装陀螺仪,使陀螺仪安装基准面与转台呈初始倾斜角θi,并使陀螺仪能相对于转台转轴依次以不同角度θi固定在转台上时,保持OY轴与转台面平行,此状态为安装状态一;(1) Install the gyroscope so that the reference plane of the gyroscope and the turntable have an initial inclination angle θ i , and when the gyroscope can be fixed on the turntable at different angles θ i relative to the rotation axis of the turntable, keep the OY axis parallel to the turntable surface , this state is installation state one;

(2)在所述的步骤(1)的初始θi角下,确定输入角速度,依次测试并记录转台转动前静止时、转台正转时、停转静止时、转台反转时、停转静止时陀螺仪输出的平均值;(2) Under the initial θi angle of the step (1), determine the input angular velocity, test and record the turntable in turn before it rotates, when it is stationary, when the turntable is rotating forward, when it is stationary, when the turntable is reversed, when it is stationary The average value of the gyroscope output at time;

(3)改变所述的步骤(1)的陀螺仪倾斜角θi值,重复上述步骤(2)的实验;(3) change the gyroscope inclination angle θ i value of described step (1), repeat the experiment of above-mentioned step (2);

(4)依次分别改变陀螺仪的安装状态为状态二,即将陀螺仪在其安装平面内顺时针旋转180°、状态三,即再顺时针旋转90°和状态四,即再顺时针旋转180°后,重复上述步骤(1)-(3)的实验;(4) Change the installation state of the gyroscope in sequence to state two, that is, rotate the gyroscope 180° clockwise in its installation plane, state three, that is, rotate 90° clockwise again, and state four, that is, rotate 180° clockwise again Afterwards, repeat the experiment of above-mentioned steps (1)-(3);

(5)对上述测得的数据进行处理,求出陀螺仪标度因数和输入轴失准角的值。(5) Process the above-mentioned measured data to obtain the values of the scale factor of the gyroscope and the misalignment angle of the input axis.

其中,上述步骤(5)中的数据处理所利用的参数模型,不含小角度近似误差,联合处理四个状态的数据,消除夹具误差,具体数据处理包括以下方法和步骤:Wherein, the parameter model utilized in the data processing in the above-mentioned step (5) does not contain a small angle approximation error, jointly processes the data of the four states, and eliminates the fixture error. The specific data processing includes the following methods and steps:

(1)收集上述四个安装状态下,每个陀螺仪倾斜角和输入角速度对应的输出数据;(1) Collect the output data corresponding to the tilt angle and input angular velocity of each gyroscope under the above four installation states;

(2)在每个输入角速度激励下,用转台转动时采集到的陀螺仪输出数据平均值,减去角速度输入前、后转台静止时的输出数据平均值,作为应用参数模型计算时陀螺仪的计算用输出值;(2) Under the excitation of each input angular velocity, use the average value of the output data of the gyroscope collected when the turntable is rotating, and subtract the average value of the output data when the turntable is stationary before and after the input of the angular velocity, and use it as the gyroscope when calculating the applied parameter model output value for calculation;

(3)根据建立陀螺仪输入输出关系模型,采用最小二乘法拟合出在各个倾斜角时,输出电压与输入角速度之间的斜率表示;(3) According to establishing the gyroscope input-output relationship model, adopting the least squares method to fit out at each tilt angle, the slope representation between the output voltage and the input angular velocity;

(4)建立关于各个陀螺仪倾斜角、耦合系数、斜率表示三者之间的线性矩阵模型,拟合出在整个实验中的耦合系数值;(4) Establish a linear matrix model about each gyroscope inclination angle, coupling coefficient and slope to represent the three, and fit the coupling coefficient value in the whole experiment;

(5)解耦计算,分离出标度因数和输入轴失准角;(5) Decoupling calculation, separating the scale factor and input axis misalignment angle;

(6)联合四个状态的计算结果,消除夹具误差,计算出实际的参数值。(6) Combine the calculation results of the four states to eliminate the fixture error and calculate the actual parameter value.

本发明的原理是:陀螺仪标度因数K和输入轴失准角δ之间关系式的严格满足式(1),由此可知标度因数K和输入轴失准角δ相互耦合,由式(1)变换可推出:The principle of the present invention is: the relational expression between the gyroscope scale factor K and the input shaft misalignment angle δ strictly satisfies the formula (1), thus it can be known that the scale factor K and the input shaft misalignment angle δ are coupled to each other, by the formula (1) Transformation can be introduced:

K·cosδ=(V-V0)/ω    (6)K·cosδ=(VV 0 )/ω (6)

如果人为的在输入轴失准角δ的基础上,再给陀螺仪施加一组不同的倾斜角θi,并在保持此倾斜角θi不变的情况下,给予角速度ωj激励,可得:If we artificially apply a set of different inclination angles θ i to the gyroscope on the basis of the misalignment angle δ of the input axis, and give the angular velocity ω j excitation while keeping the inclination angle θ i unchanged, we can get :

K·cos(δ+θi)=(Vij-V0i)/ωj    (7)K·cos(δ+θ i )=(V ij -V 0i )/ω j (7)

式(7)中等号右边的值(Vij-V0ij可以由实验数据处理得到,其中Vij为陀螺倾斜角为θi、转台角速度为ωj时,陀螺输出轴的输出电压值, V 0 i = 1 J Σ j = 1 J V ij - K J Σ j = 1 J ω ij , 为对应陀螺仪倾斜角θi的拟合零位,此时,把对应的输出电压量Vij与输入角速度ωj之间的斜率表示用字母“Ki”表示,则Ki为:The value (V ij -V 0ij on the right side of the equal sign in formula (7) can be obtained by processing experimental data, where V ij is the output voltage value of the gyro output shaft when the gyro tilt angle is θ i and the turntable angular velocity is ω j , V 0 i = 1 J Σ j = 1 J V ij - K J Σ j = 1 J ω ij , It is the fitting zero position corresponding to the tilt angle θ i of the gyroscope. At this time, the slope between the corresponding output voltage V ij and the input angular velocity ω j is represented by the letter "K i ", then K i is:

KK ii == (( VV ijij -- VV 00 ii )) // ωω jj

== KK ·&Center Dot; coscos (( δδ ++ θθ ii ))

== KK ·&Center Dot; coscos δδ ·&Center Dot; coscos θθ ii -- KK ·&Center Dot; sinsin δδ ·&Center Dot; sinsin θθ ii

== coscos θθ ii -- sinsin θθ ii ·&Center Dot; KK ·&Center Dot; coscos δδ KK ·· sinsin δδ

其中, K · cos δ K · sin δ 为陀螺仪标度因数K和输入轴失准角δ之间的耦合系数,综合所有施加倾斜角θi的情况,设有n个,得:in, K · cos δ K &Center Dot; sin δ is the coupling coefficient between the scale factor K of the gyroscope and the misalignment angle δ of the input axis, considering all the cases of applying the tilt angle θi , there are n, and we get:

coscos θθ 11 -- sinsin θθ 11 coscos θθ 22 -- sinsin θθ 22 Mm Mm coscos θθ nno -- sinsin θθ nno ·· KK ·&Center Dot; coscos δδ KK ·&Center Dot; sinsin δδ == KK 11 KK 22 Mm KK nno -- -- -- (( 99 ))

令:make:

Hh == hh 1111 hh 1212 hh 1212 hh 22twenty two Mm Mm hh nno 11 hh nno 22 == coscos θθ 11 -- sinsin θθ 11 coscos θθ 22 -- sinsin θθ 22 Mm Mm coscos θθ nno -- sinsin θθ nno

Xx == xx 11 xx 22 == KK ·&Center Dot; coscos δδ KK ·&Center Dot; sinsin δδ

ZZ == KK 11 KK 22 Mm KK nno

but

HX=Z    (10)HX=Z (10)

以最小二乘法拟合得:Fitting by least square method:

X=(HTH)-1HTZ    (11)X=(H T H) -1 H T Z (11)

至此,可以将标度因数K和输入轴失准角δ解耦,确定K、δ的值:So far, the scale factor K and the input shaft misalignment angle δ can be decoupled to determine the values of K and δ:

δδ == arctanarctan (( KK ·&Center Dot; sinsin δδ KK ·&Center Dot; coscos δδ )) == arctanarctan (( xx 22 xx 11 )) -- -- -- (( 1212 ))

KK == (( KK ·· coscos δδ )) 22 ++ (( KK ·· sinsin δδ )) 22 == xx 11 22 ++ xx 22 22 -- -- -- (( 1313 ))

以上所述,是标度因数K和输入轴失准角δ两个参数解耦的数学原理,也是设计实验的理论基础。The above is the mathematical principle of the decoupling of the two parameters, the scaling factor K and the input shaft misalignment angle δ, and is also the theoretical basis for designing experiments.

但是在实际应用中,如图4所示,实验前并不知道实际的输入轴失准角δ相对于输入基准轴偏向哪个方向,很难使陀螺仪倾斜角θi正好沿着输入轴失准角δ的方向叠加。因此,在实际实验中,在陀螺仪上任意选定一个坐标系,一般建议取陀螺仪的轴组成坐标系:OZ轴与输入基准轴IR重合,OX与OY在陀螺仪安装平面内相互垂直,且三个轴的正方向满足OX×OY=IA。然后,如图4所示,将陀螺仪输入轴失准角δ投影到两个垂直的坐标面XOZ,YOZ中,分别得到投影角δx和δy,由坐标系可以确定出两个投影角δx和δy的方向,根据标度因数和输入轴失准角的解耦原理,分别在两个投影角δx和δy的方向上叠加陀螺仪倾斜角θi,可以分别将标度因数K和投影角δx、标度因数K和投影角δy解耦,最后根据两个投影角δx和δy计算出陀螺仪输入轴失准角δ;同时,为了有效消除夹具误差,在测试出投影角后,都需要将陀螺仪旋转180°重复测试,将两次结果相加,即可消除夹具误差。However, in practical applications, as shown in Figure 4, it is not known which direction the actual input axis misalignment angle δ deviates relative to the input reference axis before the experiment, and it is difficult to make the gyroscope tilt angle θ i just misalign along the input axis The direction of the angle δ is superimposed. Therefore, in the actual experiment, arbitrarily select a coordinate system on the gyroscope, it is generally recommended to take the axes of the gyroscope to form a coordinate system: the OZ axis coincides with the input reference axis IR, OX and OY are perpendicular to each other in the gyroscope installation plane, And the positive directions of the three axes satisfy OX×OY=IA. Then, as shown in Figure 4, project the misalignment angle δ of the input axis of the gyroscope onto two vertical coordinate planes XOZ and YOZ to obtain the projection angles δ x and δ y respectively, and the two projection angles can be determined from the coordinate system The directions of δ x and δ y , according to the decoupling principle of the scale factor and the misalignment angle of the input axis, superimpose the gyroscope tilt angle θ i on the directions of the two projection angles δ x and δ y respectively, and the scale can be respectively The factor K is decoupled from the projection angle δ x , the scale factor K is decoupled from the projection angle δ y , and finally the gyro input axis misalignment angle δ is calculated according to the two projection angles δ x and δ y ; meanwhile, in order to effectively eliminate the fixture error, After testing the projection angle, it is necessary to rotate the gyroscope 180° to repeat the test, and add the two results to eliminate the fixture error.

所以,本发明中一般需要测试四个状态,定义陀螺仪安装基准面与转台面成某倾斜角,保持OY轴与转台面平行,为状态一,将陀螺仪在其安装平面内顺时针旋转180°为状态二,然后再顺时针旋转90°为状态三,再顺时针旋转180°为状态四,设对应于第一、二、三、四状态的标度因数分别为Kone、Ktwo、Kthree、Kfour输入轴失准角为δone、δtwo、δthree、δfout,则最终计算陀螺仪标度因数K的值:Therefore, in the present invention, it is generally necessary to test four states, define the gyroscope installation reference plane to form a certain inclination angle with the turntable surface, and keep the OY axis parallel to the turntable surface, which is state one, and rotate the gyroscope 180 degrees clockwise in its installation plane ° is state two, then rotate 90° clockwise to be state three, and then rotate 180° clockwise to be state four, and set the scaling factors corresponding to the first, second, third, and fourth states to be K one , K two , K three , K four input axis misalignment angles are δ one , δ two , δ three , δ fout , then finally calculate the value of the gyroscope scale factor K:

KK == KK oneone ++ KK twotwo ++ KK threethree ++ KK fourfour 44 -- -- -- (( 1414 ))

计算陀螺仪输入轴失准角δ的值:如图4所示,陀螺仪输入轴失准角δ在XOZ平面中的投影为δx,在YOZ平面中的投影为δy,则:Calculate the value of the gyroscope input axis misalignment angle δ: as shown in Figure 4, the projection of the gyroscope input axis misalignment angle δ in the XOZ plane is δ x , and the projection in the YOZ plane is δ y , then:

δδ xx == (( δδ oneone ++ δδ twotwo )) 22 -- -- -- (( 1515 ))

δδ ythe y (( δδ therethere ++ δδ fourfour )) 22 -- -- -- (( 1616 ))

则最终可得陀螺仪输入轴失准角δ的值为:Then the final value of the misalignment angle δ of the gyroscope input axis can be obtained as:

δδ == arctanarctan (( (( tanthe tan δδ xx )) 22 ++ (( tanthe tan δδ ythe y )) 22 )) -- -- -- (( 1717 ))

本发明与现有测试技术相比的优点在于:The advantages of the present invention compared with existing testing technology are:

(1)本发明应用的数据处理模型,没有经过小角度近似,参数之间关系严格,不含近似误差,避免了cosδ≈1,sinδ≈δ时带来的误差,测试出的参数精度很高。尤其适用于精度较低的陀螺仪,例如微小型、低成本硅微陀螺仪、石英陀螺仪、低精度光纤陀螺仪等。(1) The data processing model used in the present invention has not undergone small-angle approximation, the relationship between parameters is strict, and does not contain approximation errors, which avoids the errors caused by cosδ≈1 and sinδ≈δ, and the parameters tested have high precision . It is especially suitable for gyroscopes with low precision, such as micro-miniature, low-cost silicon micro-gyroscopes, quartz gyroscopes, low-precision fiber optic gyroscopes, etc.

(2)实验利用陀螺仪的四个安装状态,可以有效的消除夹具定位误差。(2) The experiment uses the four installation states of the gyroscope, which can effectively eliminate the positioning error of the fixture.

(3)本方法操作性强,可以在一个实验中同时解耦计算出标度因数K和输入轴失准角δ两个参数,节省了实验准备工作和准备时间,并保证了K值与δ值的测试环境如温度、气压、湿度等相同。(3) This method is highly operable, and can simultaneously decouple and calculate the two parameters of the scale factor K and the input shaft misalignment angle δ in one experiment, which saves the preparation work and time for the experiment, and ensures that the K value and δ The test environment of the value such as temperature, air pressure, humidity, etc. is the same.

附图说明Description of drawings

图1为本发明测试中陀螺仪各轴以及输入轴失准角的规定示意图;Fig. 1 is the stipulation schematic diagram of each axis of gyroscope and input axis misalignment angle in the test of the present invention;

图2为IEEE标准测试标度因数时陀螺仪的安装示意图;Figure 2 is a schematic diagram of the installation of the gyroscope when the IEEE standard tests the scale factor;

图3为IEEE标准测试输入轴失准角时陀螺仪的安装示意图;Figure 3 is a schematic diagram of the installation of the gyroscope when the IEEE standard tests the input shaft misalignment angle;

图4为本发明测试标度因数和输入轴失准角时陀螺仪的安装示意图;Fig. 4 is the installation schematic diagram of gyroscope when testing scale factor and input shaft misalignment angle of the present invention;

图5为本发明测试流程图。Fig. 5 is a test flow chart of the present invention.

具体实施方式Detailed ways

本发明的具体实施方法,结合图4、图5详细说明如下:Concrete implementation method of the present invention, in conjunction with Fig. 4, Fig. 5, describe in detail as follows:

本测试方法包括转台实验和数据处理两部分。陀螺仪的轴规定为:OZ轴与输入基准轴IR重合,OX与OY在陀螺仪安装平面内相互垂直,一般取OX与输出轴平行,且三个轴的正方向满足OX×OY=IA的规定;This test method includes two parts: turntable experiment and data processing. The axes of the gyroscope are specified as follows: the OZ axis coincides with the input reference axis IR, and OX and OY are perpendicular to each other in the gyroscope installation plane. Generally, OX is parallel to the output axis, and the positive directions of the three axes satisfy the requirement of OX×OY=IA Regulation;

本测试方法的转台实验可以利用三轴转台,也可以利用单轴速率转台配合可提供倾斜角的设备,准备工作包括以下内容:要求环境温度在15~35℃内,并保持相对稳定,温度变化不超过±2℃,相对湿度在20%~80%内,大气压力无异常;测试工作台要求安装在独立的地基上,具备精确的地理纬度角,以及地理北向基准;基座振动的频率和幅值、环境的磁场应符合所测试的规范的要求。陀螺仪安装在测试转台上的夹具中,各项测试中的定位精度,由测试工作台及安装夹具的精度来保证。转台轴平行于地垂线,对准精度在若干角分之内,陀螺仪可以通过安装夹具固定在转台上。如果所说的转台是单轴转台,则需要安装夹具具有以下功能:①能够使陀螺仪在转台上固定,②能够在相当大的范围内,比如90°角内,调节相对于转台转轴的夹角θi,③夹具能够在陀螺仪安装平面内旋转90°角,重复其①、②两步的功能;如果转台是双轴或三轴转台,则只需要夹具将陀螺仪固定在转台上即可,倾斜角θi的调节由转台内框架实现。转台实验的具体步骤如下:The turntable experiment of this test method can use a three-axis turntable or a single-axis rate turntable with equipment that can provide an inclination angle. The preparation work includes the following: The ambient temperature is required to be within 15-35°C and kept relatively stable. No more than ±2°C, relative humidity between 20% and 80%, and no abnormal atmospheric pressure; the test bench is required to be installed on an independent foundation, with precise geographic latitude angle and geographic north reference; the vibration frequency and The amplitude and the magnetic field of the environment should meet the requirements of the tested specifications. The gyroscope is installed in the jig on the test turntable, and the positioning accuracy in each test is guaranteed by the accuracy of the test workbench and the installation jig. The axis of the turntable is parallel to the vertical line of the ground, the alignment accuracy is within several angular minutes, and the gyroscope can be fixed on the turntable by a mounting fixture. If the turntable is a single-axis turntable, the installation fixture has the following functions: ① It can fix the gyroscope on the turntable; ② It can adjust the clamp relative to the turntable shaft within a considerable range, such as 90°. angle θ i , ③ the fixture can rotate 90° in the gyroscope installation plane, repeating the functions of the ① and ② steps; if the turntable is a two-axis or three-axis turntable, only the fixture is needed to fix the gyroscope on the turntable Yes, the adjustment of the inclination angle θ i is realized by the inner frame of the turntable. The specific steps of the turntable experiment are as follows:

(1)安装陀螺仪,利用单轴转台和夹具或三轴转台,使陀螺仪安装基准面与转台面成θi=5°倾斜角,并使陀螺仪能相对于转台转轴依次以不同角度θi固定在转台上,当θi变化时,保持OY轴与转台面平行,定义此状态为状态一;(1) To install the gyroscope, use a single-axis turntable and a fixture or a three-axis turntable to make the gyroscope installation reference plane and the turntable surface form an inclination angle of θi = 5°, and make the gyroscope rotate at different angles θ with respect to the turntable rotation axis. i is fixed on the turntable, when θ i changes, keep the OY axis parallel to the turntable surface, and define this state as state one;

(2)设定采样间隔时间及采样次数,接通陀螺仪电源,预热20分钟,待陀螺仪工作状态稳定后才能开始测试数据,在整个实验过程中保持陀螺仪出于工作状态,直到实验结束后才能断电;(2) Set the sampling interval time and sampling times, turn on the power of the gyroscope, and warm up for 20 minutes. The test data can only be started after the working state of the gyroscope is stable. Keep the gyroscope in the working state throughout the experiment until the experiment Power off only after the end;

(3)选取θi的值,θi一般应大于5°小于75°,当θi较小时,取的θi应该密一些,即θi间隔小一些,当θi较大时,取的θi应该疏一些,即θi间隔大一些,通常取9个θi的值;(3) Select the value of θ i . Generally, θ i should be greater than 5° and less than 75°. When θ i is small, the value of θ i should be denser, that is, the interval of θ i should be smaller. θ i should be sparser, that is, the interval of θ i is larger, usually take 9 values of θ i ;

(4)计算陀螺仪可承受的最大输入角速度ωmax=ωm/cosθi,其中ωm为陀螺仪的量程范围。在负的最大输入角速度(-ωmax)到正的最大输入角速度(+ωmax)之间选取输入角速度ωj,一般在速度较低的时候,选取的密一些,在速度较高的时候,选取的疏一些,在正转、反转方向输入角速度范围内,分别一般选用不少于11个角速度档,包括陀螺仪可承受的最大输入角速度;(4) Calculate the maximum input angular velocity ω max that the gyroscope can withstand = ω m /cosθ i , where ω m is the measuring range of the gyroscope. Select the input angular velocity ω j between the negative maximum input angular velocity (-ω max ) and the positive maximum input angular velocity (+ω max ). Generally, when the speed is low, the selection is denser, and when the speed is high, The selection should be sparse. Within the range of input angular velocity in forward rotation and reverse rotation direction, generally no less than 11 angular velocity gears are selected, including the maximum input angular velocity that the gyroscope can withstand;

(5)转台转动前,测试转台静止时陀螺仪输出的平均值;转台正转,测试并记录陀螺仪输出,停转,测试静止时输出的平均值;转台反转,测试并记录陀螺仪输出,停转,测试静止时输出的平均值。转台输入角速度按从小到大的顺序改变;(5) Before the turntable rotates, test the average value of the gyroscope output when the turntable is stationary; when the turntable rotates forward, test and record the output of the gyroscope, stop rotating, and test the average value of the output when the turntable is stationary; when the turntable is reversed, test and record the output of the gyroscope , stop, and test the average value of the output at rest. The input angular velocity of the turntable changes from small to large;

(6)求出测试每个输入角速度开始前和结束后,转台静止时陀螺仪输出的平均值,并从对应此输入角速度的陀螺仪实测输出平均值中剔除,作为数据处理时应用的陀螺仪输出值并保存;(6) Calculate the average value of the output of the gyroscope when the turntable is stationary before and after the test of each input angular velocity, and remove it from the average output value of the gyroscope corresponding to the input angular velocity, and use it as the gyroscope used in data processing output the value and save it;

(7)改变θi的值,重复步骤4到步骤8;(7) Change the value of θ i , repeat step 4 to step 8;

(8)将陀螺仪在其安装平面内顺时针旋转180°,并使陀螺仪能相对于转台转轴依次以不同角度θi固定在转台上,同时保持OX轴与转台面平行,定义此状态为状态二,重复步骤4到步骤9;(8) Rotate the gyroscope 180° clockwise in its installation plane, and fix the gyroscope on the turntable at different angles θi relative to the rotation axis of the turntable, while keeping the OX axis parallel to the turntable surface, define this state as State 2, repeat steps 4 to 9;

(9)将陀螺仪在其安装平面内顺时针旋转90°,并使陀螺仪能相对于转台转轴依次以不同角度θi固定在转台上,同时保持OY轴与转台面平行,定义此状态为状态三,重复步骤4到步骤9;(9) Rotate the gyroscope 90° clockwise in its installation plane, and make the gyroscope fixed on the turntable at different angles θi relative to the turntable rotation axis, while keeping the OY axis parallel to the turntable surface, define this state as State three, repeat steps 4 to 9;

(10)将陀螺仪在其安装平面内顺时针旋转180°,并使陀螺仪能相对于转台转轴依次以不同角度θi固定在转台上,同时保持OX轴与转台面平行,定义此状态为状态四,重复步骤4到步骤9;(10) Rotate the gyroscope 180° clockwise in its installation plane, and fix the gyroscope on the turntable at different angles θi relative to the rotation axis of the turntable, while keeping the OX axis parallel to the turntable surface, define this state as State four, repeat steps 4 to 9;

(11)进行数据处理,根据记录的陀螺仪的不同倾斜角θi、输出电压量Vij与输入角速度ωj精确解算出陀螺仪标度因数K和输入轴失准角δ的值。(11) Carry out data processing, and accurately calculate the values of the gyroscope scale factor K and input axis misalignment angle δ according to the recorded gyroscope's different inclination angles θ i , output voltage V ij and input angular velocity ω j .

数据采集后利用计算机实现数据处理算法的具体实施方法,结合图4、图5,详细说明数据处理的步骤如下:After data collection, use computer to realize the specific implementation method of data processing algorithm. In combination with Fig. 4 and Fig. 5, the steps of data processing are described in detail as follows:

(1)收集对应于第一状态的数据;(1) collecting data corresponding to the first state;

(2)收集对应于当前状态第一个倾斜角θi的数据包;(3)计算出当前倾斜角θi下第j个输入角速度ωij时陀螺仪输出的平均值

Figure C20061001156000131
(2) Collect data packets corresponding to the first inclination angle θ i in the current state; (3) Calculate the average value of the gyroscope output at the jth input angular velocity ω ij under the current inclination angle θ i
Figure C20061001156000131

VV ijij ‾‾ == 11 nno ΣΣ PP == 11 nno VV jPjP -- -- -- (( 1818 ))

式中:In the formula:

Vjp--陀螺仪第P个输出值;V jp -- the Pth output value of the gyroscope;

n--采样次数。n - the number of samples.

(4)把测试开始时陀螺仪输出的平均值,和测试结束时陀螺仪输出的平均值相加取平均,确定出转台静止时,陀螺仪输出的平均值:(4) Add the average value of the gyroscope output at the beginning of the test to the average value of the gyroscope output at the end of the test to determine the average value of the gyroscope output when the turntable is stationary:

VV rr ‾‾ == 11 22 (( VV sthe s ‾‾ ++ VV ee ‾‾ )) -- -- -- (( 1919 ))

式中:In the formula:

Figure C20061001156000141
--转台静止时,陀螺仪输出的平均值;
Figure C20061001156000141
--When the turntable is stationary, the average value of the output of the gyroscope;

Figure C20061001156000142
--转台转动之前静止时,陀螺仪输出的平均值;
Figure C20061001156000142
--The average value of the output of the gyroscope when the turntable is at rest before turning;

--转台转动之后静止时,陀螺仪输出的平均值; --The average value of the output of the gyroscope when the turntable is stationary after rotation;

(5)用输出的平均值,减去转台静止时陀螺仪输出的平均值,计算出陀螺仪在倾斜角θi下,敏感第j个输入角速度ωij时的输出值Vij(5) Use the average value of the output to subtract the average value of the gyroscope output when the turntable is stationary, and calculate the output value V ij of the gyroscope when it is sensitive to the jth input angular velocity ω ij under the inclination angle θ i ;

VV ijij == VV ijij ‾‾ -- VV rr ‾‾ -- -- -- (( 2020 ))

式中:In the formula:

Figure C20061001156000145
--为第j个输入角速度ωj时陀螺仪的输出值(6)建立的陀螺仪输入输出关系模型如下:
Figure C20061001156000145
--The gyroscope input-output relationship model established for the output value (6) of the gyroscope when the jth input angular velocity ω j is as follows:

Vij=Ki·ωij+V0i    (21)V ij =K i ·ω ij +V 0i (21)

式中:In the formula:

Ki--倾斜角θi对应的输出电压与输入角速度的斜率表示K i -- the slope of the output voltage corresponding to the inclination angle θ i and the input angular velocity

V0i--对应陀螺仪倾斜角θi的拟合零位V 0i -- the fitting zero position corresponding to the tilt angle θ i of the gyroscope

用最小二乘法拟合出在当前倾斜角θi下,对应的输出电压量Vij与输入角速度ωij之间的的斜率表示Ki,即比值大小。用最小二乘法求Ki、V0i得:The least square method is used to fit the slope K i between the corresponding output voltage V ij and the input angular velocity ω ij at the current inclination angle θ i, that is, the ratio. Calculate K i and V 0i by least square method:

KK ii == ΣΣ jj == 11 JJ ωω ijij ·· VV ijij -- 11 JJ ΣΣ jj == 11 JJ ωω ijij ·&Center Dot; ΣΣ jj == 11 JJ VV ijij ΣΣ jj == 11 JJ ωω ijij 22 -- 11 JJ (( ΣΣ jj == 11 JJ ωω ijij )) 22 -- -- -- (( 22twenty two ))

VV 00 ii == 11 JJ ΣΣ jj == 11 JJ VV ijij -- KK JJ ΣΣ jj == 11 JJ ωω ijij -- -- -- (( 23twenty three ))

式中:In the formula:

J--输入角速度个数J--Input the number of angular velocities

(7)收集对应于其他倾斜角θi的数据包,重复步骤3到步骤6,用最小二乘法拟合出在每一个倾斜角θi,对应的输出电压量Vij与输入角速度ωj之间的的斜率表示Ki(7) Collect data packets corresponding to other inclination angles θ i , repeat steps 3 to 6, and use the least square method to fit the relationship between the corresponding output voltage V ij and input angular velocity ω j at each inclination angle θ i . The slope between represents K i ;

(8)认为陀螺仪本身真实的标度因数K和输入轴失准角δ的值稳定不变,根据推导计算公式:Ki=k·cosδ·cosθi-k·sinδ·sinθi,由步骤7得出的各个斜率表示Ki,建立关于利用各个倾斜角θi的三角函数对[cosθi  -sinθi]组成的矩阵 H = h 11 h 12 h 12 h 22 M M h n 1 h n 2 = cos θ 1 - sin θ 1 cos θ 2 - sin θ 2 M M cos θ n - sin θ n , 标度因数与输入轴失准角耦合系数 X = x 1 x 2 = K · cos δ K · sin δ , 斜率表示组成的矩阵 Z = K 1 K 2 M K n 三者之间的线性矩阵模型,用最小二乘法拟合出在整个实验过程中表现出来的 X = x 1 x 2 = K · cos δ K · sin δ 的稳定值;(9)由 K · cos δ K · sin δ 的值,解方程计算出对应于第一状态的标度因数Kone和输入轴失准角δone的值;(8) It is considered that the real scale factor K of the gyroscope itself and the value of the misalignment angle δ of the input axis are stable. According to the derivation calculation formula: K i = k·cosδ· cosθi -k·sinδ· sinθi , by the steps 7 Each slope obtained represents K i , and a matrix composed of trigonometric function pairs [cosθ i -sinθ i ] using each inclination angle θ i is established h = h 11 h 12 h 12 h twenty two m m h no 1 h no 2 = cos θ 1 - sin θ 1 cos θ 2 - sin θ 2 m m cos θ no - sin θ no , Scale factor and input shaft misalignment angle coupling coefficient x = x 1 x 2 = K &Center Dot; cos δ K · sin δ , The slope indicates the matrix composed of Z = K 1 K 2 m K no The linear matrix model between the three was fitted by the least squares method to show the x = x 1 x 2 = K · cos δ K &Center Dot; sin δ The stable value of ; (9) by K &Center Dot; cos δ K &Center Dot; sin δ The value of , solve the equation to calculate the value of the scaling factor K one and the input shaft misalignment angle δ one corresponding to the first state;

(10)收集状态二的数据,重复步骤2到步骤9,解方程计算出对应于第一状态的标度因数Ktwo和输入轴失准角δtwo的值;(10) Collect the data of state two, repeat step 2 to step 9, solve the equation and calculate the value corresponding to the scaling factor K two of the first state and the input shaft misalignment angle δ two ;

(11)收集状态三的数据,重复步骤2到步骤9,解方程计算出对应于第一状态的标度因数Kthree和输入轴失准角δthree的值;(11) collect the data of state three, repeat step 2 to step 9, solve the equation and calculate the value corresponding to the scaling factor K three of the first state and the input shaft misalignment angle δ three ;

(12)收集状态四的数据,重复步骤2到步骤9,解方程计算出对应于第一状态的标度因数Kfour和输入轴失准角δfour的值;(12) Collect the data of state four, repeat step 2 to step 9, solve the equation and calculate the value corresponding to the scale factor K four of the first state and the input shaft misalignment angle δ four ;

(13)计算陀螺仪标度因数K的值:(13) Calculate the value of the gyroscope scale factor K:

KK == KK oneone ++ KK twotwo ++ KK threethree ++ KK fourfour 44 -- -- -- (( 1414 ))

(14)计算陀螺仪输入轴失准角δ的值:如图4所示,陀螺仪输入轴失准角δ在XOZ平面中的投影为δx,在YOZ平面中的投影为δy,则(14) Calculate the value of the gyroscope input axis misalignment angle δ: as shown in Figure 4, the projection of the gyroscope input axis misalignment angle δ in the XOZ plane is δ x , and the projection in the YOZ plane is δ y , then

δδ xx == (( δδ oneone ++ δδ twotwo )) 22 -- -- -- (( 1515 ))

δδ ythe y == (( δδ threethree ++ δδ fourfour )) 22 -- -- -- (( 1616 ))

则最终得陀螺仪输入轴失准角δ的值为:Then the final value of the gyroscope input axis misalignment angle δ is:

δδ == arctanarctan (( (( tanthe tan δδ xx )) 22 ++ (( tanthe tan δδ ythe y )) 22 )) -- -- -- (( 1717 ))

Claims (2)

1.一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法,其特征在于:测试过程包括如下步骤:1. a kind of accurate decoupling test method of gyroscope scale factor and input shaft misalignment angle, it is characterized in that: test process comprises the steps: (1)安装陀螺仪,使陀螺仪安装基准面与转台呈初始倾斜角θi,并使陀螺仪能相对于转台转轴依次以不同角度θi固定在转台上时,保持OY轴与转台面平行,此状态为安装状态一;(1) Install the gyroscope so that the reference plane of the gyroscope and the turntable have an initial inclination angle θ i , and when the gyroscope can be fixed on the turntable at different angles θ i relative to the rotation axis of the turntable, keep the OY axis parallel to the turntable surface , this state is installation state one; (2)在所述的步骤(1)的初始θi角下,确定输入角速度,依次测试并记录转台转动前静止时、转台正转时、停转静止时、转台反转时、停转静止时陀螺仪输出的平均值;(2) Under the initial θi angle of the step (1), determine the input angular velocity, test and record the turntable in turn before it rotates, when it is stationary, when the turntable is rotating forward, when it is stationary, when the turntable is reversed, when it is stationary The average value of the gyroscope output at time; (3)改变所述的步骤(1)的陀螺仪倾斜角θi值,重复上述步骤(2)的实验;(3) change the gyroscope inclination angle θ i value of described step (1), repeat the experiment of above-mentioned step (2); (4)依次分别改变陀螺仪的安装状态为状态二,即将陀螺仪在其安装平面内顺时针旋转180°、状态三,即再顺时针旋转90°和状态四,即再顺时针旋转180°后,重复上述步骤(1)-(3)的实验;(4) Change the installation state of the gyroscope in sequence to state two, that is, rotate the gyroscope 180° clockwise in its installation plane, state three, that is, rotate 90° clockwise again, and state four, that is, rotate 180° clockwise again Afterwards, repeat the experiment of above-mentioned steps (1)-(3); (5)对上述测得的数据进行处理,求出陀螺仪标度因数和输入轴失准角的值;(5) process the above-mentioned measured data, and obtain the value of the scale factor of the gyroscope and the misalignment angle of the input shaft; 其中,步骤(5)中的数据处理所利用的参数模型,不含小角度近似误差,联合处理四个状态的数据,可以消除夹具误差,数据处理具体包括如下步骤:Wherein, the parameter model utilized in the data processing in step (5) does not contain small angle approximation errors, and joint processing of the data of the four states can eliminate fixture errors. The data processing specifically includes the following steps: (a)收集上述四个安装状态下,每个陀螺仪倾斜角和输入角速度对应的输出数据;(a) Collect the output data corresponding to the tilt angle and input angular velocity of each gyroscope under the above four installation states; (b)在每个输入角速度激励下,用转台转动时采集到的陀螺仪输出数据平均值,减去角速度输入前、后转台静止时的输出数据平均值,作为应用参数模型计算时陀螺仪的计算用输出值;(b) Under the excitation of each input angular velocity, use the average value of the output data of the gyroscope collected when the turntable is rotating, and subtract the average value of the output data when the turntable is stationary before and after the input of the angular velocity, and use it as the gyroscope when calculating the parameter model output value for calculation; (c)根据陀螺仪输入输出关系模型,采用最小二乘法拟合出在各个倾斜角时,输出电压与输入角速度之间的斜率表示;(c) According to the gyroscope input-output relationship model, the slope between the output voltage and the input angular velocity is expressed at each tilt angle by using the least squares method; (d)建立关于各个陀螺仪倾斜角、耦合系数、斜率表示三者之间的线性矩阵模型,拟合出在整个实验中的耦合系数值;(d) Establish a linear matrix model about each gyroscope tilt angle, coupling coefficient, and slope representation among the three, and fit the coupling coefficient value in the whole experiment; (e)解耦计算,分离出标度因数和输入轴失准角;(e) Decoupling calculations to separate the scale factor and input axis misalignment angle; (f)联合四个状态的计算结果,消除夹具误差,计算出实际的参数值。(f) Combining the calculation results of the four states, eliminating the fixture error, and calculating the actual parameter value. 2.根据权利要求1所述的一种陀螺仪标度因数和输入轴失准角的精确解耦测试方法,其特征在于:所述的陀螺仪倾斜固定方法为:利用斜面夹具,使陀螺仪倾斜并固定在单轴转台上转动;或将陀螺仪固定在三轴转台上,然后利用三轴转台内框架使陀螺仪倾斜并围绕三轴转台外框架转轴转动。2. The accurate decoupling test method of a kind of gyroscope scale factor and input axis misalignment angle according to claim 1, it is characterized in that: described gyroscope tilt fixing method is: utilize inclined-plane fixture, make gyroscope Tilt and fix on a single-axis turntable to rotate; or fix the gyroscope on a three-axis turntable, and then use the inner frame of the three-axis turntable to tilt the gyroscope and rotate around the rotation axis of the outer frame of the three-axis turntable.
CNB2006100115602A 2006-03-27 2006-03-27 A precise decoupling test method for gyroscope scale factor and input axis misalignment angle Expired - Fee Related CN100367004C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100115602A CN100367004C (en) 2006-03-27 2006-03-27 A precise decoupling test method for gyroscope scale factor and input axis misalignment angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100115602A CN100367004C (en) 2006-03-27 2006-03-27 A precise decoupling test method for gyroscope scale factor and input axis misalignment angle

Publications (2)

Publication Number Publication Date
CN1821721A CN1821721A (en) 2006-08-23
CN100367004C true CN100367004C (en) 2008-02-06

Family

ID=36923198

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100115602A Expired - Fee Related CN100367004C (en) 2006-03-27 2006-03-27 A precise decoupling test method for gyroscope scale factor and input axis misalignment angle

Country Status (1)

Country Link
CN (1) CN100367004C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975585A (en) * 2010-09-08 2011-02-16 北京航空航天大学 Strap-down inertial navigation system large azimuth misalignment angle initial alignment method based on MRUPF (Multi-resolution Unscented Particle Filter)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910615B1 (en) * 2006-12-20 2009-02-06 Sagem Defense Securite METHOD OF CALIBRATING THE SCALE FACTOR OF AN AXISYMETRIC VIBRATION GYROMETER
CN101256078B (en) * 2008-03-25 2010-07-14 浙江大学 The Method of Eliminating the Acceleration Effect of Scale Factor of Fiber Optic Gyroscope
CN101246024B (en) * 2008-03-26 2010-09-01 北京航空航天大学 Method for external field fast calibrating miniature multi-sensor combined navigation system
CN101424543B (en) * 2008-12-09 2011-04-20 中国科学院长春光学精密机械与物理研究所 Measuring set and method of gyroscope phase response
CN102003968B (en) * 2010-09-03 2012-03-14 哈尔滨工程大学 Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN102062589B (en) * 2010-12-16 2012-11-14 浙江省计量科学研究院 Fiber-optic gyroscope based angular displacement measuring device and method
CN102353384B (en) * 2011-05-24 2013-06-26 北京大学 METHOD AND SYSTEM FOR MEASURING BANDWIDTH AND SCALE FACTOR OF MEMS GYRO
CN102393210B (en) * 2011-08-23 2014-07-02 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102538822B (en) * 2011-12-20 2014-09-10 东南大学 Method for fast testing and calibrating dynamic characteristic of fiber optic gyroscope
CN102564456B (en) * 2011-12-29 2014-12-03 深迪半导体(上海)有限公司 Device and method for testing three-axis micro gyroscope
CN102749477B (en) * 2012-07-11 2014-04-16 浙江大学 Method for measuring angular deviation between surface and rotating shaft of turntable by utilizing fiber-optic gyroscope
CN103091662B (en) * 2013-01-09 2015-08-05 上海大唐移动通信设备有限公司 Localization method, drive test terminal and handheld terminal
CN103389112B (en) * 2013-07-16 2016-06-01 安徽北方芯动联科微系统技术有限公司 Three axle minisize gyroscopes test set and testing method thereof
CN104713572B (en) * 2013-12-11 2017-10-27 中国航空工业第六一八研究所 A kind of inertial navigation system dynamic testing method
CN103925930B (en) * 2014-04-17 2016-08-17 哈尔滨工程大学 A kind of compensation method of gravimeter biax gyrostabilized platform course error effect
CN105841715B (en) * 2016-03-18 2017-06-16 北京信息科技大学 A kind of high dynamic twin shaft angular rate gyroscope zero is compensated with scale factor error partially
CN105588583B (en) * 2016-03-18 2017-06-16 北京信息科技大学 A Dual-Axis Angular Rate Gyro Coupling Error Compensation Method
CN108168574B (en) * 2017-11-23 2022-02-11 东南大学 An 8-Position Strapdown Inertial Navigation System-Level Calibration Method Based on Velocity Observation
CN109813296B (en) * 2019-03-24 2020-12-15 浙江大学 An angle measurement device and method for eliminating the error of the scale factor of a fiber optic gyroscope
CN111230817A (en) * 2019-12-25 2020-06-05 中国航空工业集团公司北京航空精密机械研究所 Lock mechanism for single-shaft temperature control rotary table
CN111486871A (en) * 2020-04-27 2020-08-04 新石器慧通(北京)科技有限公司 Sensor detection method, sensor detection device, detection equipment and readable storage medium
CN114061617B (en) * 2020-08-05 2024-04-09 上海傲世控制科技股份有限公司 Non-orthogonal dynamic calibration method for fiber-optic gyroscope
CN112325901B (en) * 2020-09-28 2022-09-16 中国船舶重工集团公司第七0七研究所 Method for calculating azimuth gyroscope scale in platform type inertial navigation mooring state
CN112697168B (en) * 2020-11-27 2022-05-20 浙江大学 Measuring device and method for measuring scale factor and misalignment angle of fiber optic gyroscope at the same time
CN112762964B (en) * 2021-01-27 2024-03-15 广州小马智行科技有限公司 Calibration method, device and system of inertia measurement unit of automatic driving vehicle
CN113984088B (en) * 2021-10-11 2024-01-26 北京信息科技大学 Multi-position automatic calibration method, device and system for MEMS inertial sensor
CN113899324B (en) * 2021-11-08 2023-09-05 中国计量科学研究院 Multi-axis turntable perpendicularity error detection method based on single-axis laser gyro goniometer
CN115451932B (en) * 2022-09-16 2024-05-24 湖南航天机电设备与特种材料研究所 Multichannel gyroscope data synchronous acquisition and calculation method and system
WO2025017795A1 (en) * 2023-07-14 2025-01-23 日立Astemo株式会社 Inspecting device and inspecting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076694A (en) * 1991-02-11 1991-12-31 Rockwell International Corporation In-flight scale factor calibration of ring laser gyro systems
US5367898A (en) * 1991-01-23 1994-11-29 Sumitomo Electric Industries, Ltd. Method of calculating scale factor of gyro
US6778924B2 (en) * 2001-11-06 2004-08-17 Honeywell International Inc. Self-calibrating inertial measurement system method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367898A (en) * 1991-01-23 1994-11-29 Sumitomo Electric Industries, Ltd. Method of calculating scale factor of gyro
US5076694A (en) * 1991-02-11 1991-12-31 Rockwell International Corporation In-flight scale factor calibration of ring laser gyro systems
US6778924B2 (en) * 2001-11-06 2004-08-17 Honeywell International Inc. Self-calibrating inertial measurement system method and apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
光学陀螺仪测试、标定方法探讨与实现. 张树侠,危志英.光电惯性技术论文集. 2002 *
激光陀螺仪测试方法的研究和误差模型的建立. 王纪南,鲁浩.航空兵器,第4期. 2004 *
激光陀螺仪组合非精确柔性三位置测漂. 赵忠等.西北工业大学大学,第19卷第4期. 2001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975585A (en) * 2010-09-08 2011-02-16 北京航空航天大学 Strap-down inertial navigation system large azimuth misalignment angle initial alignment method based on MRUPF (Multi-resolution Unscented Particle Filter)

Also Published As

Publication number Publication date
CN1821721A (en) 2006-08-23

Similar Documents

Publication Publication Date Title
CN100367004C (en) A precise decoupling test method for gyroscope scale factor and input axis misalignment angle
CN1330935C (en) Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling
CN100559189C (en) A non-directional multi-position high-precision calibration method for an inertial measurement unit
CN103808331B (en) A kind of MEMS three-axis gyroscope error calibrating method
CN102003968B (en) Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN100559188C (en) A Field Calibration Method for Fiber Optic Gyro Inertial Measurement Unit
CN106525073B (en) A kind of inertial space Gyro Calibration test method based on three-axle table
CN104165638B (en) Multi-position self-calibration method for biaxial rotating inertial navigation system
CN101290326B (en) Parameter Identification and Calibration Method for Measurement Components of Quartz Flexible Accelerometer
CN101216321A (en) A Fast and Fine Alignment Method for Strapdown Inertial Navigation System
CN101975872A (en) Method for calibrating zero offset of quartz flexible accelerometer component
CN102879832B (en) Non-alignment error correction method used for geomagnetic element measuring system
CN110672131B (en) UKF (unscented Kalman Filter) alignment method for inertial/polarized light integrated navigation system under large misalignment angle
CN102393210A (en) Temperature calibration method of laser gyro inertia measurement unit
CN102692239B (en) Fiber optic gyroscope eight-position calibration method based on rotating mechanism
CN101059384A (en) MEMS inertia measuring unit and mounting error calibration method
CN101246023A (en) Closed-loop Calibration Method of Micromachined Gyro Inertial Measurement Components
CN102636183B (en) Quadratic overload term test method for flexible gyroscope based on optical fiber monitoring and centrifuge with two-axis turntable
CN103616035B (en) A kind of performance parameter calibration method of laser strapdown inertial navigation system
CN102564452A (en) On-line self-calibrating method based on inertial navigation system
CN106969783A (en) A kind of single-shaft-rotation Rapid Calibration Technique based on optical fibre gyro inertial navigation
CN104197958B (en) Speedometer calibration method based on laser velocimeter dead reckoning system
CN103940445B (en) A kind of single-shaft-rotation inertial navigation system inertial device error compensation method
CN102788596A (en) Spot calibration method of rotary strap-down inertial navigation system with unknown carrier attitude
CN101907638A (en) A Calibration Method of Accelerometer in Unsupported State

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080206