CN100364094C - A chip integrated with a FinFET circuit and a nanoelectromechanical beam and its manufacturing method - Google Patents
A chip integrated with a FinFET circuit and a nanoelectromechanical beam and its manufacturing method Download PDFInfo
- Publication number
- CN100364094C CN100364094C CNB2005100050317A CN200510005031A CN100364094C CN 100364094 C CN100364094 C CN 100364094C CN B2005100050317 A CNB2005100050317 A CN B2005100050317A CN 200510005031 A CN200510005031 A CN 200510005031A CN 100364094 C CN100364094 C CN 100364094C
- Authority
- CN
- China
- Prior art keywords
- electromechanical
- circuit
- finfet
- area
- nanoelectromechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种芯片及其制作方法,特别是关于一种FinFET(Fin Field EffectTransistor鳍形场效应管)电路与纳机电梁集成的芯片及其制作方法。本发明方法使得深亚微米高速集成电路与纳机电系统(Nano-Electromechanical Systems,以下简称NEMS)器件有机地结合起来,可以较好地解决NEMS器件的信号引出与处理问题,并大大提高系统的集成度和生产效率。The invention relates to a chip and a manufacturing method thereof, in particular to a chip integrated with a FinFET (Fin Field Effect Transistor) circuit and a nanoelectromechanical beam and a manufacturing method thereof. The method of the present invention organically combines deep submicron high-speed integrated circuits with nano-electromechanical systems (Nano-Electromechanical Systems, hereinafter referred to as NEMS) devices, can better solve the problem of signal extraction and processing of NEMS devices, and greatly improves the integration of the system degree and production efficiency.
背景技术 Background technique
进入深亚微米尺度后,一种性能优良的新型MOS晶体管结构FinFET日益受到重视,已成为晶体管的重要发展方向,前景广阔。基于NEMS技术可以实现全新概念的传感、计算、通信、存储、执行等器件,其性能能够突破现行常规器件如MEMS(微机电系统)器件的极限,成数量级的提高,包括我国在内,NEMS已成为世界范围的一个重要研究热点。纳机电梁是一种基本的NEMS器件结构,由于其尺度效应和表面效应,具有非常高的谐振频率,且运动或状态对环境中的微小变化非常灵敏。也就是说,纳机电梁可用于产生高频振动,也可用于敏感、检测环境的微小变化等,因此其在传感、射频、检测等领域有重要应用。但是发展NEMS面临的挑战之一是信号引出与处理比较困难。After entering the deep submicron scale, FinFET, a new type of MOS transistor structure with excellent performance, has been paid more and more attention, and has become an important development direction of transistors with broad prospects. Based on NEMS technology, new concepts of sensing, computing, communication, storage, execution and other devices can be realized, and its performance can break through the limits of existing conventional devices such as MEMS (micro-electromechanical systems) devices, and it has been improved by orders of magnitude. Including my country, NEMS It has become an important research hotspot worldwide. Nanoelectromechanical beams, a basic NEMS device structure, have very high resonance frequencies due to their scale effects and surface effects, and their motion or state is very sensitive to small changes in the environment. That is to say, nanoelectromechanical beams can be used to generate high-frequency vibrations, and can also be used for sensitivity and detection of small changes in the environment, so they have important applications in the fields of sensing, radio frequency, and detection. But one of the challenges in the development of NEMS is that it is difficult to extract and process signals.
发明内容 Contents of the invention
针对上述NEMS器件的信号引出与处理问题,本发明的目的是提供一种FinFET电路与纳机电梁集成的芯片及其制作方法。In view of the above-mentioned signal extraction and processing problems of NEMS devices, the purpose of the present invention is to provide a chip integrating FinFET circuit and nano-electromechanical beam and its manufacturing method.
为了实现上述目的,本发明采取以下技术方案:一种FinFET电路与纳机电梁集成的芯片,它包括一芯片本体,其特征在于:所述芯片本体上包括机电区和电路区,所述机电区包括设置在所述芯片本体上的固定端,单端或双端固定的纳机电梁和机电区电极;所述电路区包括以FinFET为单元构建的电路系统,所述FinFET单元中包括源、漏、Fin和栅,所述栅跨越所述Fin,所述电路区和机电区之间通过金属引线连接,所述金属引线连接所述机电区的所述固定端或所述机电区电极与所述电路区的所述电路系统中FinFET单元的栅或源或漏,所述电路区和机电区的外接端口分别连通外接布线。In order to achieve the above object, the present invention adopts the following technical solutions: a chip integrated with a FinFET circuit and a nanoelectromechanical beam, which includes a chip body, characterized in that: the chip body includes an electromechanical area and a circuit area, and the electromechanical area It includes a fixed end arranged on the chip body, a single-ended or double-ended fixed nanoelectromechanical beam and an electromechanical area electrode; the circuit area includes a circuit system constructed with FinFET as a unit, and the FinFET unit includes source and drain , Fin and gate, the gate spans the Fin, the circuit area and the electromechanical area are connected by metal leads, and the metal leads connect the fixed end of the electromechanical area or the electrodes of the electromechanical area and the The gate or source or drain of the FinFET unit in the circuit system in the circuit area, the external ports of the circuit area and the electromechanical area are respectively connected to external wiring.
一种FinFET电路与纳机电梁集成芯片的制作方法,其特征在于:它包括以下步骤:(1)选择并清洗芯片衬底;(2)在所述衬底表面涂光刻胶,光刻出电路区,并对所述电路区进行掺杂;(3)在所述衬底表面涂光刻胶,光刻出机电区,并对所述机电区进行掺杂;(4)在所述电路区形成FinFET的源、漏和Fin,在所述机电区形成纳机电梁、固定端和机电区电极;(5)整体热氧化形成二氧化硅,在所述二氧化硅表面淀积栅材料,并制作出栅图形;(6)整体涂光刻胶,光刻出电路区,并对所述电路区进行掺杂;(7)整体淀积二氧化硅,并在所述二氧化硅层开通孔,露出FinFET电路与纳机电梁的外接端,以及电路区与机电区连接的引线端;(8)整体淀积金属,光刻出金属引线图形,完成FinFET电路与纳机电梁之间的电连接,以及电路的布线;(9)腐蚀包裹纳机电梁的全部二氧化硅,释放纳机电梁结构,得到芯片产品。A method for manufacturing a FinFET circuit and nanoelectromechanical beam integrated chip is characterized in that it includes the following steps: (1) selecting and cleaning the chip substrate; (2) coating photoresist on the surface of the substrate, and photoetching out circuit area, and doping the circuit area; (3) coating photoresist on the surface of the substrate, photoetching out the electromechanical area, and doping the electromechanical area; (4) doping the electromechanical area in the circuit The source, drain and Fin of the FinFET are formed in the electromechanical region, and the nanoelectromechanical beam, the fixed terminal and the electrode of the electromechanical region are formed in the electromechanical region; (5) silicon dioxide is formed by the overall thermal oxidation, and gate material is deposited on the surface of the silicon dioxide, and make a gate pattern; (6) apply photoresist on the whole, photoetch out the circuit area, and dope the circuit area; (7) deposit silicon dioxide on the whole, and open the silicon dioxide layer holes, exposing the external terminal of the FinFET circuit and the nanoelectromechanical beam, and the lead terminal connecting the circuit area and the electromechanical area; (8) depositing metal as a whole, and photoetching the metal lead pattern to complete the electrical connection between the FinFET circuit and the nanoelectromechanical beam. connection, and circuit wiring; (9) corroding all the silicon dioxide covering the nanoelectromechanical beam, releasing the nanoelectromechanical beam structure, and obtaining a chip product.
在所述电路区形成FinFET的源、漏和Fin,在所述机电区形成纳机电梁、固定端和机电区电极的过程中,采用光刻胶灰化技术,具体步骤如下:(1)采用光刻胶灰化技术形成纳机电梁和Fin的微掩膜;(2)用光刻胶光刻形成包括纳米梁固定端,机电区电极掩膜和FinFET的源和漏的掩膜的掩膜图形;(3)通过所述掩膜图形和微掩膜构成复合掩膜,进行刻蚀,形成电路区FinFET的源、漏、Fin,以及机电区电极,固定端和未释放的纳机电梁。The source, drain and Fin of the FinFET are formed in the circuit area, and the photoresist ashing technology is adopted in the process of forming the nano-electromechanical beam, the fixed terminal and the electrode of the electromechanical area in the electromechanical area. The specific steps are as follows: (1) adopt Photoresist ashing technology forms nano-electromechanical beams and Fin micro-masks; (2) photoresist photolithography is used to form a mask including the fixed end of the nano-beams, the electrode mask of the electromechanical area, and the mask of the source and drain of the FinFET (3) form a composite mask through the mask pattern and the micromask, etch to form the source, drain and Fin of the FinFET in the circuit area, as well as electrodes in the electromechanical area, fixed terminals and unreleased nanoelectromechanical beams.
在所述电路区形成FinFET的源、漏和Fin,在所述机电区形成纳机电梁、固定端和机电区电极过程中采用侧墙技术,具体步骤如下:(1)先后淀积一层二氧化硅和一层多晶硅,光刻后得到多晶硅图形;(2)淀积一层二氧化硅,干法刻蚀所述二氧化硅,从而形成二氧化硅构成的侧墙结构;(3)刻蚀多晶硅,留下侧墙结构;(4)干法刻蚀下面的二氧化硅层,露出硅表面;(5)用光刻胶光刻,将不需要的侧墙结构腐蚀掉;(6)用光刻胶光刻,形成单晶硅器件层上的掩膜图形,以所述掩膜图形和所述侧墙结构构成复合掩膜,进行刻蚀,形成所述电路区FinFET的源、漏、Fin,以及机电区电极、固定端和未释放的纳机电梁;(7)用干法刻蚀去除二氧化硅侧墙结构。The source, drain and Fin of the FinFET are formed in the circuit area, and the side wall technology is used in the process of forming the nano-electromechanical beam, the fixed terminal and the electrode of the electromechanical area in the electromechanical area. The specific steps are as follows: (1) Deposit a layer of two Silicon oxide and a layer of polysilicon, polysilicon patterns are obtained after photolithography; (2) deposit a layer of silicon dioxide, and dry etch the silicon dioxide, thereby forming a sidewall structure composed of silicon dioxide; (3) engraving Etch polysilicon, leaving the side wall structure; (4) dry etching the silicon dioxide layer below to expose the silicon surface; (5) use photoresist photolithography to etch away the unnecessary side wall structure; (6) Use photoresist photolithography to form a mask pattern on the single crystal silicon device layer, use the mask pattern and the sidewall structure to form a composite mask, and perform etching to form the source and drain of the FinFET in the circuit region , Fin, and electromechanical region electrodes, fixed ends and unreleased nanoelectromechanical beams; (7) remove the silicon dioxide sidewall structure by dry etching.
在所述电路区形成FinFET的Fin,以及在所述机电区形成的纳机电梁的过程中采用电子束曝光或普通光刻技术之一,在所述电路区形成FinFET的源和漏,以及在机电区形成的固定端和机电区电极过程中采用普通光刻技术。In the process of forming the Fin of the FinFET in the circuit region and the nanoelectromechanical beam formed in the electromechanical region, one of electron beam exposure or common photolithography techniques is used to form the source and drain of the FinFET in the circuit region, and in the Common photolithography technology is used in the process of forming the fixed end of the electromechanical area and the electrode of the electromechanical area.
所述栅图形采用电子束曝光、光刻胶灰化、普通光刻技术中的一种形成。The grid pattern is formed by one of electron beam exposure, photoresist ashing and common photolithography.
所述栅图形采用侧墙技术形成,具体步骤如下:(1)采用离子注入对多晶硅进行栅掺杂;(2)先后淀积一层二氧化硅和一层多晶硅,光刻后得到多晶硅图形;(3)淀积一层二氧化硅,干法刻蚀所述二氧化硅,从而形成二氧化硅构成的侧墙结构;(4)刻蚀多晶硅,留下侧墙结构;(5)干法刻蚀下面的二氧化硅层,露出硅表面;(6)用光刻胶光刻,将不需要的侧墙结构腐蚀掉;(7)光刻形成栅的掩膜图形,以所述掩膜图形和所述侧墙结构构成复合掩膜,对多晶硅层进行刻蚀,形成栅图形。The gate pattern is formed by sidewall technology, and the specific steps are as follows: (1) gate doping is performed on polysilicon by ion implantation; (2) a layer of silicon dioxide and a layer of polysilicon are deposited successively, and the polysilicon pattern is obtained after photolithography; (3) Deposit a layer of silicon dioxide, and dry-etch the silicon dioxide to form a sidewall structure made of silicon dioxide; (4) etch polysilicon, leaving a sidewall structure; (5) dry method Etch the silicon dioxide layer below to expose the silicon surface; (6) use photoresist photolithography to etch away unnecessary side wall structures; (7) photolithography forms the mask pattern of the gate, with the mask The pattern and the sidewall structure constitute a compound mask, and the polysilicon layer is etched to form a gate pattern.
在腐蚀包裹纳机电梁的全部二氧化硅时,采用干法、升华法或湿法中的一种。One of the dry, sublimation, or wet methods is used to etch all of the silicon dioxide surrounding the nanoelectromechanical beams.
本发明由于采取以上技术方案,其具有以下优点:1、本发明将FinFET电路与纳机电梁集成在一张芯片上,使深亚微米高速集成电路与纳机电系统器件有机地结合起来,使本发明产品集两项技术的全部优点于一身,具有极高的谐振频率、灵敏度等高性能指标,其应用前景广阔。2、本发明通过工艺整合,创造性地提出了采用同一流程将FinFET电路与纳机电梁进行集成化并行加工的一整套工艺方法,实现了纳机电梁与外围信号引出电路、信号放大处理电路的单片集成制造,由此较好解决了NEMS器件信号引出与处理难的问题,方便了NEMS的设计、生产和测试,将对NEMS的发展起到积极的推动作用。3、本发明不仅对制作出更高性能NEMS潜力很大,而且大大提高了系统的集成度和生产效率,降低了工业化生产成本。本发明在各种传感、射频、检测环境微小变化等领域有重要应用。Because the present invention adopts the above technical scheme, it has the following advantages: 1. The present invention integrates the FinFET circuit and the nano-electromechanical beam on one chip, so that the deep submicron high-speed integrated circuit and the nano-electromechanical system device are organically combined, making the present invention The invented product integrates all the advantages of the two technologies, has extremely high performance indicators such as extremely high resonance frequency and sensitivity, and has broad application prospects. 2. Through process integration, the present invention creatively proposes a complete set of process methods for integrating FinFET circuits and nano-electromechanical beams in parallel processing using the same process, and realizes the integration of nano-electromechanical beams and peripheral signal lead-out circuits and signal amplification processing circuits. Chip integrated manufacturing, which better solves the difficult problem of NEMS device signal extraction and processing, facilitates the design, production and testing of NEMS, and will play a positive role in promoting the development of NEMS. 3. The present invention not only has great potential for producing higher-performance NEMS, but also greatly improves the integration degree and production efficiency of the system, and reduces the cost of industrial production. The invention has important applications in the fields of various sensing, radio frequency, detection of small changes in the environment, and the like.
附图说明 Description of drawings
图1~图22是本发明工艺流程的俯视图与截面图Fig. 1~Fig. 22 is the top view and cross-sectional view of technological process of the present invention
图23是本发明加工得到的器件的三维示意图(未画出二氧化硅保护层)。Fig. 23 is a three-dimensional schematic diagram of a device processed by the present invention (the silicon dioxide protective layer is not drawn).
图24~36是本发明工艺流程的另一实施例(采用侧墙技术形成纳机电梁和Fin)。24 to 36 are another embodiment of the process flow of the present invention (using sidewall technology to form nanoelectromechanical beams and Fin).
图37~43是本发明工艺流程的再一实施例(采用侧墙技术形成纳机电梁、Fin和栅图形)Figures 37 to 43 are yet another embodiment of the process flow of the present invention (using sidewall technology to form nanoelectromechanical beams, Fin and gate patterns)
具体实施方式 Detailed ways
实施例1:Example 1:
采用SOI(两层硅中间夹一层氧化硅)芯片衬底,通过采用光刻胶灰化技术制作Fin和纳机电梁,采用普通光刻技术制作栅图形,具体步骤如下:Using SOI (a layer of silicon oxide sandwiched between two layers of silicon) chip substrates, using photoresist ashing technology to make Fin and nano-electromechanical beams, using ordinary photolithography technology to make gate patterns, the specific steps are as follows:
1、选择SOI硅片作为芯片衬底1,并清洗;1. Select SOI silicon wafer as the
2、如图1、图2所示,用光刻胶3光刻(即通常的光刻腐蚀方法,以下相同)出电路区2,以光刻胶3为掩膜,用离子注入法(以下相同)对电路区2进行掺杂4,然后去除光刻胶3;2. As shown in Figure 1 and Figure 2, use photoresist 3 photolithography (i.e. the usual photoetching method, hereinafter the same) to go out the
3、如图3、图4所示,用光刻胶5光刻出机电区6,然后以光刻胶5为掩膜,对机电区6进行掺杂7,然后去除光刻胶5;3. As shown in Fig. 3 and Fig. 4, use the
4、如图5、图6所示,采用光刻胶灰化技术形成纳机电梁和Fin的微掩膜8;4. As shown in Fig. 5 and Fig. 6, the photoresist ashing technology is used to form the
5、用光刻胶光刻形成纳机电梁固定端,机电区电极,FinFET的源、漏的掩膜图形;5. Use photoresist photolithography to form the fixed end of the nano-electromechanical beam, the electrode of the electromechanical area, and the mask pattern of the source and drain of the FinFET;
6、如图7、图8所示,通过上述掩膜图形和微掩膜8构成复合掩膜,干法对单晶硅器件层进行刻蚀,形成电路区FinFET的源9、漏10、Fin11,以及机电区的固定端12,未释放的纳机电梁13和机械区电极14,然后去除光刻胶和微掩膜8;6. As shown in Fig. 7 and Fig. 8, through the above-mentioned mask pattern and
7、如图9、图10所示,整体热氧化,生长二氧化硅15作为FinFET的栅介质;7. As shown in FIG. 9 and FIG. 10, the whole is thermally oxidized, and silicon dioxide 15 is grown as the gate dielectric of the FinFET;
8、在二氧化硅15表面淀积一层栅材料16,例如多晶硅、金属硅化物或金属;8. Deposit a layer of gate material 16 on the surface of silicon dioxide 15, such as polysilicon, metal silicide or metal;
9、如图11、图12所示,用光刻胶光刻,干法刻蚀出栅17的图形,然后去除光刻胶;9. As shown in Fig. 11 and Fig. 12, use photoresist photolithography to etch the pattern of
10、如图13、图14所示,用光刻胶18光刻出电路区19,用光刻胶18为掩膜对电路区19进行掺杂20,然后去除光刻胶18;10. As shown in Fig. 13 and Fig. 14, use photoresist 18 to photoetch out circuit region 19, use photoresist 18 as a mask to dope 20 to circuit region 19, and then remove photoresist 18;
11、如图15、图16所示,整体淀积二氧化硅21,形成电路保护层;11. As shown in FIG. 15 and FIG. 16 ,
12、如图17、图18所示,在二氧化硅21上光刻腐蚀开出通孔,露出FinFET电路与纳机电梁的外接端22、23、24、25,以及电路区与机电区连接的引线端26、27,然后去除光刻胶;12. As shown in Fig. 17 and Fig. 18, through-holes are etched on the
13、如图19、图20所示,淀积金属,光刻出金属引线图形28,从而实现FinFET电路与纳机电梁之间的电连接,以及电路的布线;13. As shown in Fig. 19 and Fig. 20, metal is deposited, and the
14、如图21、图22所示,用光刻胶29在二氧化硅21上光刻,开出机电区30,露出纳机电梁13的区域,用湿法腐蚀包裹纳机电梁13的全部二氧化硅21,将结构释放。14. As shown in FIG. 21 and FIG. 22 , use
15、去除残余光刻胶29,便得到本发明集成有FinFET电路与纳机电梁的芯片(如图23所示)。15. Removing the
上述实施例中,步骤1和步骤2由于掺杂的要求不同,因此分别进行掺杂,但掺杂顺序可以变化。掺杂杂质的种类(如磷,砷等)和掺杂剂量都是可以变化的。In the above embodiments,
实施例2:Example 2:
本实施例采用SOI芯片衬底,采用侧墙技术形成Fin和纳机电梁,采用电子束曝光形成多晶硅栅图形,具体步骤如下:In this embodiment, an SOI chip substrate is used, Fin and nanoelectromechanical beams are formed by using sidewall technology, and polysilicon gate patterns are formed by electron beam exposure. The specific steps are as follows:
1、如图24所示,选择SOI芯片衬底31,并对衬底进行清洗;1. As shown in FIG. 24, select the
2、与实施例1相同(如图1、图2所示),光刻出电路区,并以光刻胶为掩膜,对电路区进行掺杂后去除光刻胶;2, same as embodiment 1 (as shown in Fig. 1, Fig. 2), photolithography goes out circuit region, and take photoresist as mask, remove photoresist after the circuit region is doped;
3、与实施例1相同(如图3、图4所示),光刻出机电区,并以光刻胶为掩膜,对机电区进行掺杂后去除光刻胶;3, same as embodiment 1 (as shown in Fig. 3, Fig. 4), photolithography goes out electromechanical region, and take photoresist as mask, remove photoresist after electromechanical region is doped;
4、如图25所示,先后淀积一层二氧化硅32和一层多晶硅33,光刻腐蚀得到多晶硅图形,然后去除光刻胶;4. As shown in FIG. 25, deposit a layer of
5、如图26所示,淀积一层二氧化硅,干法刻蚀该层二氧化硅,从而形成二氧化硅构成的侧墙结构34;5. As shown in FIG. 26, deposit a layer of silicon dioxide, and dry etch the layer of silicon dioxide, thereby forming a sidewall structure 34 made of silicon dioxide;
6、如图27所示,干法或湿法腐蚀多晶硅33,留下侧墙结构34;6. As shown in FIG. 27 , etch the
7、如图28所示,干法刻蚀下面的二氧化硅层32,露出SOI衬底31表面;7. As shown in FIG. 28, dry etch the
8、如图29所示,用光刻胶光刻,将不需要的侧墙结构34通过湿法腐蚀掉,留下需要的侧墙结构34,然后去除光刻胶;8. As shown in FIG. 29, use photoresist photolithography to etch away the unnecessary sidewall structure 34 by wet method, leaving the required sidewall structure 34, and then remove the photoresist;
9、如图30所示,用光刻胶光刻形成单晶硅器件层上的掩膜图形,以该图形和上述侧墙结构构成复合掩膜,对单晶硅器件层进行干法刻蚀,形成FinFET的源、漏、Fin35和包括纳机电梁固定端的未释放的纳机电梁36及机械区电极37等;9. As shown in Figure 30, use photoresist photolithography to form a mask pattern on the single crystal silicon device layer, use this pattern and the above-mentioned side wall structure to form a composite mask, and perform dry etching on the single crystal silicon device layer , forming the source, drain, Fin35 of the FinFET and the
10、如图31所示,用干法刻蚀去除二氧化硅侧墙结构34;10. As shown in FIG. 31 , remove the silicon dioxide sidewall structure 34 by dry etching;
11、如图32所示,整体热氧化,生长二氧化硅38作为FinFET的栅介质;11. As shown in FIG. 32, the whole is thermally oxidized, and
12、如图33所示,在二氧化硅38表面淀积一层多晶硅39作为栅材料;12. As shown in FIG. 33 , deposit a layer of
13、如图34所示,采用电子束曝光形成FinFET的多晶硅栅图形40,并干法刻蚀多晶硅39,然后去除电子束曝光的光刻胶;13. As shown in FIG. 34 , the
14、与实施例1相同(如图13~20所示),用光刻胶光刻出电路区,并对电路区进行掺杂;整体淀积二氧化硅21,形成电路保护层;在二氧化硅21上光刻腐蚀开出通孔22、23、24、25、26、27,露出FinFET电路与纳机电梁的外接端,以及电路区与机电区连接的引线端;14. Same as in Embodiment 1 (as shown in Figures 13 to 20), use photoresist to photoetch out the circuit area, and dope the circuit area;
15、如图35所示,淀积金属,光刻出金属引线图形41,从而实现FinFET电路与纳机电梁之间的电连接和电路的布线;15. As shown in FIG. 35, metal is deposited, and the
16、如图36所示,在二氧化硅上光刻,开出机电区,用干法腐蚀包裹纳机电梁36的全部二氧化硅,将结构释放,并去除光刻胶,便得到本发明产品。16. As shown in Figure 36, photolithography is carried out on the silicon dioxide, the electromechanical area is opened, all the silicon dioxide covering the
实施例3:Example 3:
本实施例中,如果将Fin、纳机电梁以及多晶硅栅图形均采用侧墙技术形成的方式制作,则步骤1~12与实施例2相同(如图24~图33所示),余下的步骤为:In this embodiment, if Fin, nanoelectromechanical beams, and polysilicon gate patterns are all formed by sidewall technology, steps 1 to 12 are the same as in embodiment 2 (as shown in Figures 24 to 33), and the remaining steps for:
13、如图37所示,采用离子注入对作为栅材料的多晶硅39表面进行掺杂,即完成栅掺杂;13. As shown in FIG. 37 , the surface of the
14、如图38所示,与实施例2步骤4相同,先后淀积一层二二氧化硅42和一层多晶硅43,光刻后得到多晶硅图形,图中还标出了二氧化硅和多晶硅下的图形44作为参考;14. As shown in Figure 38, it is the same as
15、如图39所示(图39是图38虚线处的剖视侧视图),淀积一层二氧化硅,干法刻蚀该层二氧化硅,从而形成二氧化硅构成的侧墙结构45;15. As shown in Figure 39 (Figure 39 is a cross-sectional side view at the dotted line in Figure 38), deposit a layer of silicon dioxide, dry-etch this layer of silicon dioxide, thereby forming a sidewall structure made of
16、如图40所示,干法或湿法刻蚀多晶硅43,留下侧墙结构45;16. As shown in FIG. 40 , dry or wet etch the
17、如图41所示,干法刻蚀下面的二氧化硅层42,露出多晶硅39表面;17. As shown in FIG. 41 , dry-etch the underlying
18、如图42所示,用光刻胶光刻,将不需要的侧墙掩膜45腐蚀掉,去除光刻胶;18. As shown in FIG. 42, use photoresist photolithography to etch away the unnecessary
19、如图43所示,光刻形成栅的掩膜图形,并以该图形和上述侧墙结构构成复合掩膜,对多晶硅层39进行干法刻蚀,形成栅图形46;19. As shown in FIG. 43, form a mask pattern of the gate by photolithography, and use the pattern and the above-mentioned side wall structure to form a composite mask, and perform dry etching on the
20、如图44所示,光刻出电路区,以多晶硅栅图形46上的侧墙45为掩膜,对电路区进行掺杂,图中还标出了侧墙45下的图形46,栅氧化层下的图形44作为参考;20. As shown in Figure 44, the circuit area is etched out by photolithography, and the circuit area is doped with the
21、与实施例1步骤11~13相同(如图15~图20所示)整体淀积二氧化硅,形成电路保护层;在二氧化硅上光刻腐蚀开出通孔,露出FinFET电路与纳机电梁的外接端,以及电路与机电区连接的引线端;淀积金属,刻出金属引线图形,从而实现FinFET电路与纳机电梁之间的电连接和电路的布线;21. Same as
22、在二氧化硅上光刻,开出机电区,采用升华法腐蚀包裹纳机电梁的全部二氧化硅,将结构释放,去除光刻胶,得到本发明产品。22. Photolithography is carried out on the silicon dioxide, the electromechanical area is opened, all the silicon dioxide covering the nanoelectromechanical beam is etched by sublimation method, the structure is released, the photoresist is removed, and the product of the present invention is obtained.
上述各实施例中,SOI衬底可以采用薄膜淀积等效SOI衬底代替,如硅衬底+二氧化硅+多晶硅结构等;在Fin、纳机电梁以及栅图形的形成方面,可以采用电子束曝光技术、侧墙技术、光刻胶灰化法、普通光刻等多种技术方法和手段;在栅材料的选择上,可以用多晶硅、金属硅化物或金属栅;在腐蚀包裹纳机电梁的全部二氧化硅将结构释放时,可以采用干法、升华法或湿法等各种常规的腐蚀技术。In the above-mentioned embodiments, the SOI substrate can be replaced by an equivalent SOI substrate deposited by film, such as a silicon substrate+silicon dioxide+polysilicon structure, etc.; Beam exposure technology, sidewall technology, photoresist ashing method, ordinary photolithography and other technical methods and means; in the selection of gate materials, polysilicon, metal silicide or metal gates can be used; When all the silica is released from the structure, various conventional etching techniques such as dry, sublimation or wet methods can be used.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100050317A CN100364094C (en) | 2005-01-31 | 2005-01-31 | A chip integrated with a FinFET circuit and a nanoelectromechanical beam and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100050317A CN100364094C (en) | 2005-01-31 | 2005-01-31 | A chip integrated with a FinFET circuit and a nanoelectromechanical beam and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1815735A CN1815735A (en) | 2006-08-09 |
CN100364094C true CN100364094C (en) | 2008-01-23 |
Family
ID=36907808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100050317A Expired - Fee Related CN100364094C (en) | 2005-01-31 | 2005-01-31 | A chip integrated with a FinFET circuit and a nanoelectromechanical beam and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100364094C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086019B (en) * | 2010-11-02 | 2013-04-17 | 中国电子科技集团公司第二十四研究所 | Method for manufacturing monolithic polysilicon cantilever structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040100306A1 (en) * | 2002-11-22 | 2004-05-27 | Zoran Krivokapic | Two transistor nor device |
CN1507064A (en) * | 2002-12-13 | 2004-06-23 | ̨������·����ɷ�����˾ | Integrated transistor and manufacturing method thereof |
CN1542930A (en) * | 2003-04-29 | 2004-11-03 | ̨������·����ɷ�����˾ | Semiconductor element with fin structure and manufacturing method thereof |
WO2005004206A2 (en) * | 2003-07-01 | 2005-01-13 | International Business Machines Corporation | Integrated circuit having pairs of parallel complementary finfets |
-
2005
- 2005-01-31 CN CNB2005100050317A patent/CN100364094C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040100306A1 (en) * | 2002-11-22 | 2004-05-27 | Zoran Krivokapic | Two transistor nor device |
CN1507064A (en) * | 2002-12-13 | 2004-06-23 | ̨������·����ɷ�����˾ | Integrated transistor and manufacturing method thereof |
CN1542930A (en) * | 2003-04-29 | 2004-11-03 | ̨������·����ɷ�����˾ | Semiconductor element with fin structure and manufacturing method thereof |
WO2005004206A2 (en) * | 2003-07-01 | 2005-01-13 | International Business Machines Corporation | Integrated circuit having pairs of parallel complementary finfets |
Also Published As
Publication number | Publication date |
---|---|
CN1815735A (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5763629B2 (en) | Method for producing passivated silicon nanowires and device obtained thereby | |
TW200304211A (en) | Semiconductor device, method of manufacturing the same, and phase shift mask | |
CN107683528B (en) | High-density capacitors formed from thin vertical semiconductor structures such as FINFETs | |
CN110752207B (en) | A backside capacitor structure and manufacturing method | |
CN102354669B (en) | Fabrication method of silicon nanowire device | |
CN112573477B (en) | Preparation process flow of miniature electric field sensing device based on electrostatic force and piezoresistive effect | |
CN100364094C (en) | A chip integrated with a FinFET circuit and a nanoelectromechanical beam and its manufacturing method | |
KR100317488B1 (en) | Method of manufacturing a flash memory device | |
CN101236899A (en) | Method for manufacturing grid | |
JP3164208B2 (en) | Method of manufacturing single electronic device | |
JPH01253956A (en) | Semiconductor memory device and its manufacture | |
US8796058B2 (en) | Semiconductor structure | |
US8766381B2 (en) | Integrated circuit comprising a device with a vertical mobile element integrated in a support substrate and method for producing the device with a mobile element | |
CN100533768C (en) | A method for fabricating a silicon-based side-gate single-electron transistor | |
JP2003297951A5 (en) | ||
TWI798920B (en) | Manufacturing method of pad | |
JPH08298314A (en) | Nonvolatile semiconductor memory and its manufacture | |
KR100588737B1 (en) | Semiconductor device and manufacturing method thereof | |
CN103626120B (en) | A kind of preparation method of non-sensitive area protection film for sensor | |
JP2003158183A (en) | Manufacturing method for semiconductor device and reticle pattern forming method | |
JPS63313866A (en) | Manufacture of semiconductor device | |
CN118588552A (en) | Semiconductor device and method for manufacturing the same | |
KR100557224B1 (en) | Manufacturing Method of Semiconductor Device | |
KR100236072B1 (en) | Capacitor Structure and Manufacturing Method of Semiconductor Device | |
TW536757B (en) | Manufacturing method of composite devices having gate electrodes with different dimensions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080123 |