CN100363255C - Purification method of special nano-silica sol for VLSI - Google Patents
Purification method of special nano-silica sol for VLSI Download PDFInfo
- Publication number
- CN100363255C CN100363255C CNB2006100139700A CN200610013970A CN100363255C CN 100363255 C CN100363255 C CN 100363255C CN B2006100139700 A CNB2006100139700 A CN B2006100139700A CN 200610013970 A CN200610013970 A CN 200610013970A CN 100363255 C CN100363255 C CN 100363255C
- Authority
- CN
- China
- Prior art keywords
- exchange resin
- silica sol
- acidic
- cation exchange
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000000746 purification Methods 0.000 title claims abstract description 11
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 100
- 230000002378 acidificating effect Effects 0.000 claims abstract description 58
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 47
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 39
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims description 59
- 229910021645 metal ion Inorganic materials 0.000 claims description 42
- 150000001768 cations Chemical class 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000013517 stratification Methods 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- 238000005341 cation exchange Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 239000002738 chelating agent Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- HYGWNUKOUCZBND-UHFFFAOYSA-N azanide Chemical group [NH2-] HYGWNUKOUCZBND-UHFFFAOYSA-N 0.000 claims description 2
- 150000001455 metallic ions Chemical class 0.000 abstract 3
- 239000003513 alkali Substances 0.000 abstract 2
- 239000000243 solution Substances 0.000 description 33
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000011734 sodium Substances 0.000 description 20
- 239000002184 metal Substances 0.000 description 19
- 238000009792 diffusion process Methods 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 11
- 239000000693 micelle Substances 0.000 description 9
- 230000036571 hydration Effects 0.000 description 8
- 238000006703 hydration reaction Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000005498 polishing Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 230000003460 anti-nuclear Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- -1 copper and nickel Chemical class 0.000 description 1
- 229910021360 copper silicide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
技术领域 technical field
本发明属于纳米磨料的纯化方法,尤其是涉及一种用于微电子加工领域CMP专用研磨抛光的硅溶胶的纯化方法。The invention belongs to a method for purifying nano-abrasives, in particular to a method for purifying silica sol used for CMP special grinding and polishing in the field of microelectronic processing.
背景技术 Background technique
随着大规模集成电路的发展,集成度的不断提高,线宽的不断减小,集成电路工艺发展的高密度、细线条、浅结已经成为主流。如果在加工过程中硅衬底片表面被有害重金属杂质沾污,则会影响器件的界面态,使器件静态功耗电流增大,SiO2介质击穿强度降低,抗静电能力减弱,阈值电压漂移,器件功率老化出现早期失效,在CMOS、CCD等敏感器件中尤其突出,还可导致军用器件抗核辐射能力减弱,产品性能、可靠性指标和器件成品率下降。金属沾污还会破坏薄氧化层的完整性、增加漏电流密度、减少少子寿命;活动离子如钠会在氧化层中引起移动电荷,影响MOS器件的稳定性;重金属离子会增加暗电流;快扩散离子,如铜、镍,易沉积于硅表面,形成微结构缺陷;铁沉淀会使栅氧化层变薄。另外铜会在硅二氧化硅界面形成富铜沉淀,在高温(1200℃/20s)时过饱和铜硅化物会使氧化层弯曲、破裂,直至穿透,在低温(900℃/20s)时形成透镜状沉淀,使氧化层变薄。当金属沾污严重时,还会形成雾状缺陷(Haze)。碱金属离子(尤其是Na+)是目前微电子技术中危害极大的可动离子,在CMP过程中会进入衬底或介质层内,引起器件的局部穿通、漏电流增大等效应,使芯片工作可靠性降低、器件寿命缩短。因此,微电子产业必须控制有害金属杂质含量等。当前,对于线宽为0.35μm的64兆DRAM器件,影响电路的临界颗粒尺寸为0.06μm,抛光片的表面金属杂质沾污应全部小于5×1015at/cm2,一般的ULSI工艺要求在提供的衬底片上金属污染小于1010atom/cm2。With the development of large-scale integrated circuits, the continuous improvement of integration and the continuous reduction of line width, high density, thin lines, and shallow junctions in the development of integrated circuit technology have become the mainstream. If the surface of the silicon substrate is contaminated by harmful heavy metal impurities during processing, it will affect the interface state of the device, increase the static power consumption current of the device, reduce the breakdown strength of the SiO2 dielectric, weaken the antistatic ability, and drift the threshold voltage. Early failure occurs due to device power aging, especially in sensitive devices such as CMOS and CCD. It can also lead to weakened anti-nuclear radiation capabilities of military devices, product performance, reliability indicators, and device yields. Metal contamination will also destroy the integrity of the thin oxide layer, increase the leakage current density, and reduce the minority carrier lifetime; active ions such as sodium will cause mobile charges in the oxide layer, affecting the stability of MOS devices; heavy metal ions will increase the dark current; Diffused ions, such as copper and nickel, are easy to deposit on the silicon surface and form microstructural defects; iron precipitation will thin the gate oxide layer. In addition, copper will form copper-rich precipitates at the silicon dioxide interface. At high temperatures (1200°C/20s), supersaturated copper silicides will bend and crack the oxide layer until it penetrates, and form at low temperatures (900°C/20s). Lenticular precipitation, thinning the oxide layer. When the metal is seriously contaminated, haze defects (Haze) will also be formed. Alkali metal ions (especially Na + ) are the most harmful mobile ions in the current microelectronics technology. They will enter the substrate or dielectric layer during the CMP process, causing partial punch-through of the device and increasing the leakage current. The working reliability of the chip is reduced and the life of the device is shortened. Therefore, the microelectronics industry must control the content of harmful metal impurities and the like. At present, for a 64M DRAM device with a line width of 0.35 μm, the critical particle size affecting the circuit is 0.06 μm, and the metal impurities on the surface of the polished sheet should all be less than 5×10 15 at/cm 2 . The general ULSI process requires The metal contamination on the provided substrate is less than 10 10 atom/cm 2 .
在硅片加工及器件制造过程中,所有与硅片接触的外部媒介都可能使硅片被有害金属沾污,抛光工艺是晶片加工过程中最终的、也是最重要的一道加工工序,而SiO2溶胶是ULSI制程中CMP用的最多、效果最好的纳米磨料,新抛光的晶片会自发吸附各种杂质,对金属离子的吸附尤为严重,如果抛光液中金属离子的含量较高,在抛光后大量的金属离子残留在晶片表面,不仅增加了清洗工序的负担,同时,在抛光过程中,加大进入到晶片内部的金属离子,这些进入到晶片内部的金属离子则很难再清洗下来。随着IC技术的发展,对CMP专用纳米SiO2纯化要求将会越来越严格。目前硅溶胶的生产主要采用水玻璃作为原料,致使硅溶胶产品中含有大量金属离子(尤其是Na+)。因此,清除硅溶胶中的杂质,对硅溶胶进行纯化十分必要。In the silicon wafer processing and device manufacturing process, all external media in contact with the silicon wafer may cause the silicon wafer to be contaminated by harmful metals. The polishing process is the final and most important process in the wafer processing process, and SiO 2 Colloidal sol is the most widely used nano-abrasive in CMP with the best effect in the ULSI process. The newly polished wafer will spontaneously absorb various impurities, especially the adsorption of metal ions. If the content of metal ions in the polishing solution is high, after polishing A large number of metal ions remain on the surface of the wafer, which not only increases the burden of the cleaning process, but also increases the metal ions entering the wafer during the polishing process, and these metal ions entering the wafer are difficult to clean. With the development of IC technology, the requirements for the purification of nano- SiO2 for CMP will become more and more stringent. At present, the production of silica sol mainly uses water glass as a raw material, resulting in a large amount of metal ions (especially Na + ) contained in silica sol products. Therefore, to remove impurities in silica sol, it is very necessary to purify silica sol.
目前硅溶胶的纯化工艺并没有形成自己的技术,相当多的文献仅以“后处理”一笔带过,只有极少量文献提到采用阳离子树脂交换处理的方法。硅溶胶的胶团结构及其示意图如附图1所示,硅溶胶的双电层结构如附图2所示,硅溶胶的胶团是由一个无定形的mSiO2为核心,表面吸附了硅酸及硅酸负离子(H2SiO4、H3SiO4 -),反离子的一部分zNa+吸附在紧密层内,另一部分(y-z)Na+分布在扩散层内,构成双电层结构。电荷y称作总电位,电荷(y-z)称作电动电位或称Zeta电位、ζ电位。由于存在溶剂化作用,胶粒周围的离子都以溶剂化形式存在,以致形成一层高粘度水化膜,其厚度和扩散双电层的厚度相当。采用阳离子交换初期,胶团外水相中的金属离子为游离状态的自由离子,而且胶团扩散层外围的金属离子与胶粒之间的静电力很弱,极易被吸附力较强的物质所捕获,故强酸性阳离子交换树脂能迅速吸附并交换这两部分的金属离子,并同时释放等电荷的H+,进而中和水相中全部的OH-,由于H+的量远大于OH-,大量过剩的H+使溶液的pH值迅速越过中性区进入酸性区,从而使交换后硅溶胶呈酸性,金属离子含量降低,Zeta电位绝对值增大。At present, the purification process of silica sol has not formed its own technology. Quite a few literatures only mention "post-treatment", and only a few literatures mention the method of cationic resin exchange treatment. The micelle structure of silica sol and its schematic diagram are shown in accompanying
硅溶胶进行阳离子交换后,硅溶胶扩散层外围的Na+及其它金属阳离子已经被除去,剩余的Na+和其它金属阳离子主要存在于扩散层内围及紧密层中,此范围内离子受胶核吸引作用强烈,而且胶粒表面附有一层较高粘度的水化膜,这层水化膜减缓了H+扩散进入紧密层内替换Na+和其它金属阳离子的速度。H+缓慢进入紧密层,使胶粒表面的pH值变化缓慢,硅溶胶中大量Na+和其它金属阳离子被H+所取代,H+的水化能力比Na+和其它金属阳离子强,这些H+导致胶粒周围的水化膜增厚,严重阻碍了Na+和其它金属阳离子与H+相互置换的速度。因此,单纯采用阳离子交换树脂来提纯硅溶胶,虽然能去除部分硅溶胶的金属离子,但其内部仍有大量金属离子的存在,纯化效果不佳,并且随阳离子交换树脂处理次数的增多金属离子含量不会有太大改变。After the silica sol undergoes cation exchange, Na + and other metal cations on the periphery of the silica sol diffusion layer have been removed, and the remaining Na + and other metal cations mainly exist in the inner periphery of the diffusion layer and the tight layer. The attraction is strong, and a layer of high viscosity hydration film is attached to the surface of the colloidal particles. This layer of hydration film slows down the speed of H + diffusion into the tight layer to replace Na + and other metal cations. H + slowly enters the compact layer, so that the pH value on the surface of the colloidal particles changes slowly. A large number of Na + and other metal cations in the silica sol are replaced by H + , and the hydration ability of H + is stronger than that of Na + and other metal cations. These H + leads to the thickening of the hydration film around the colloidal particles, which seriously hinders the mutual replacement speed of Na + and other metal cations and H + . Therefore, purely using cation exchange resin to purify silica sol, although part of the metal ions of silica sol can be removed, there are still a large amount of metal ions inside, the purification effect is not good, and the metal ion content increases with the increase in the number of cation exchange resin treatments. Not much will change.
发明内容 Contents of the invention
本发明是为了克服现有技术中的不足之处,提供一种有效的降低硅溶胶产品中金属离子的含量,以提高晶片质量的硅溶胶的纯化方法。The present invention aims to overcome the deficiencies in the prior art and provide a method for purifying silica sol that can effectively reduce the content of metal ions in silica sol products to improve wafer quality.
本发明通过下述技术方案实现:The present invention realizes through following technical scheme:
一种超大规模集成电路专用纳米硅溶胶的纯化方法,其特征在于包括以下步骤:A method for purifying special nano-silica sol for VLSI, characterized in that it comprises the following steps:
(1)首先将3%-10%的盐酸溶液注入阳离子交换树脂中进行搅拌,使阳离子交换树脂再生完全,其中盐酸与湿阳离子交换树脂的体积交换容量为1.4-1.8毫克当量/毫升,静置分层后将上层溶液去除,用去离子水冲洗剩余的阳离子交换树脂至其pH值在2-4范围内,得酸性阳离子交换树脂;(1) At first, 3%-10% hydrochloric acid solution is injected into the cation exchange resin and stirred, so that the cation exchange resin regeneration is complete, wherein the volume exchange capacity of hydrochloric acid and wet cation exchange resin is 1.4-1.8 milliequivalents/ml, leave standstill After layering, the upper layer solution is removed, and the remaining cation exchange resin is rinsed with deionized water until its pH value is in the range of 2-4 to obtain an acidic cation exchange resin;
(2)然后将金属离子含量高于100ppm的碱性硅溶胶在连续搅拌的情况下加入到上述步骤(1)中制得的酸性阳离子交换树脂中,其中,碱性硅溶胶与酸性阳离子交换树脂的物质的量的比为1∶2-1∶5,在搅拌的情况下交换10-60min,同时测定交换溶液的Zeta电位,使其绝对值在30mv-60mv后停止搅拌,静置分层后出料得显酸性的硅溶胶;(2) Then the alkaline silica sol with metal ion content higher than 100ppm is added in the acidic cation exchange resin prepared in the above step (1) under continuous stirring, wherein, the alkaline silica sol and the acidic cation exchange resin The ratio of the amount of the substance is 1:2-1:5, exchange for 10-60min under stirring, and measure the Zeta potential of the exchange solution at the same time, stop stirring after the absolute value is 30mv-60mv, and let it stand for stratification Acidic silica sol is discharged;
(3)将3%-10%的氢氧化钠溶液注入阴离子交换树脂中进行搅拌,使阴离子交换树脂再生完全,其中氢氧化钠与湿阴离子交换树脂的体积交换容量为1.2-1.6毫克当量/毫升,静置分层后将上层溶液去除,用去离子水冲洗剩余的阴离子交换树脂至其pH值在9-10之间,得到碱性阴离子交换树脂;(3) inject 3%-10% sodium hydroxide solution into the anion exchange resin and stir to make the anion exchange resin regenerate completely, wherein the volume exchange capacity of sodium hydroxide and wet anion exchange resin is 1.2-1.6 mg equivalent/ml , after static stratification, the upper layer solution is removed, and the remaining anion exchange resin is rinsed with deionized water until its pH value is between 9-10 to obtain a basic anion exchange resin;
(4)然后将上述步骤(2)中制得的酸性硅溶胶加入到上述步骤(3)中制得的碱性阴离子交换树脂中,其中,酸性硅溶胶与碱性阴离子交换树脂的物质的量的比为1∶2-1∶5,在搅拌的情况下交换10-60min,同时测定交换溶液的Zeta电位,使其绝对值在30mv-60mv后停止搅拌,静置分层后出料得到显碱性的硅溶胶;(4) Then the acidic silica sol prepared in the above step (2) is added to the basic anion exchange resin prepared in the above step (3), wherein the amount of substance of the acidic silica sol and the basic anion exchange resin The ratio is 1:2-1:5, exchanged for 10-60min while stirring, and at the same time measure the Zeta potential of the exchanged solution so that the absolute value is 30mv-60mv, then stop stirring, and after standing for stratification, the material is discharged to obtain a significant Alkaline silica sol;
(5)再将步骤(4)中制得的交换后的碱性硅溶胶在搅拌的情况下加入到步骤(1)中制得的酸性阳离子交换树脂中,其中,碱性硅溶胶与酸性阳离子交换树脂的物质的量的比为1∶2-1∶5,在搅拌的情况下交换10-60min,同时测定交换溶液的Zeta电位,使其绝对值在30mv-60mv后停止搅拌,静置分层后出料,得到金属离子达到几个ppm的显酸性的硅溶胶。(5) Add the exchanged alkaline silica sol prepared in step (4) into the acidic cation exchange resin prepared in step (1) while stirring, wherein the alkaline silica sol and the acidic cation The ratio of the amount of substances in the exchange resin is 1:2-1:5, exchange for 10-60min under the condition of stirring, measure the Zeta potential of the exchange solution at the same time, stop stirring after making its absolute value 30mv-60mv, let it stand and divide After layering, the material is discharged to obtain acidic silica sol with metal ions reaching several ppm.
为了使主要成分为硅溶胶的抛光液在抛光过程中更好的去除金属离子,同时使酸性硅溶胶转化为碱性硅溶胶,在阳-阴-阳离子交换后,要将上述阳-阴-阳离子交换后制得的酸性硅溶胶在搅拌的情况下加入到FA/O螯合剂中,制得最终的碱性硅溶胶产品,其中酸性硅溶胶与螯合剂的体积比为1000∶2-10。In order to make the polishing solution whose main component is silica sol better remove metal ions during the polishing process, and at the same time convert the acidic silica sol into alkaline silica sol, after the cation-anion-cation exchange, the above-mentioned cation-anion-cation The acidic silica sol obtained after the exchange is added to the FA/O chelating agent under stirring to obtain the final alkaline silica sol product, wherein the volume ratio of the acidic silica sol to the chelating agent is 1000:2-10.
所用的阳离子交换树脂为强酸性苯乙烯型阳离子交换树脂,所用的阴离子交换树脂为强碱性季胺阴离子交换树脂。The used cation exchange resin is strongly acidic styrene type cation exchange resin, and the used anion exchange resin is strongly basic quaternary ammonium anion exchange resin.
所述纯化的硅溶胶的粒径为20nm-60nm。The particle size of the purified silica sol is 20nm-60nm.
本发明的作用原理如下:Principle of action of the present invention is as follows:
首先,采用阳离子交换树脂交换硅溶胶胶团外水相中的金属离子和胶团扩散层外围的金属离子。当硅溶胶进行阳离子交换后,硅溶胶扩散层外围的Na+及其它金属阳离子已经被除去,剩余的Na+和其它金属阳离子主要存在于扩散层内围及紧密层中,此时由于水化膜增厚,严重阻碍了Na+和其它金属阳离子和H+相互置换的速度。因此,采用阴离子交换树脂来进行交换,阴离子交换树脂交换水相中游离的阴离子(Cl-、硅酸负离子),释放出OH-并与水相原有的H+中和生成水,使pH值逐渐上升,使交换后的硅溶胶呈碱性,离子交换平衡后,水相中主要存在未被中和的H+,溶液中电解质浓度大大下降。而胶体的双电层厚度与电解质的浓度呈反比,因此阴离子树脂交换后,胶体的双电层厚度变为原来的数十倍,大量构成双电层结构的阳离子(Na+、H+)被推送到远离胶核的位置,与胶核之间的吸引力大大减弱,水化膜的粘度也相应减小,扩散层和紧密层内Na+和其它金属阳离子大量扩散进入水相,然后再采用阳离子交换,吸附水相中的Na+和其它金属阳离子,继续降低硅溶胶中的金属离子含量。如此循环,水化膜对离子扩散作用的控制被有效解除,可获得杂质含量少的硅溶胶。但因为多次重复增加成本,降低生产效率,综合考虑各项因素,选择阳-阴-阳三次离子交换来纯化硅溶胶。Firstly, the metal ions in the outer water phase of the silica sol micelles and the metal ions on the periphery of the micelles diffusion layer are exchanged with a cation exchange resin. After the silica sol undergoes cation exchange, the Na + and other metal cations on the periphery of the silica sol diffusion layer have been removed, and the remaining Na + and other metal cations mainly exist in the inner periphery of the diffusion layer and the tight layer. Thickening seriously hinders the mutual replacement speed of Na + and other metal cations and H + . Therefore, anion exchange resin is used for exchange. Anion exchange resin exchanges free anions (Cl - , silicate negative ions) in the water phase, releases OH - and neutralizes with the original H + of the water phase to generate water, and gradually makes the pH value Rising, so that the exchanged silica sol is alkaline, after the ion exchange balance, there are mainly unneutralized H + in the water phase, and the electrolyte concentration in the solution is greatly reduced. The thickness of the electric double layer of the colloid is inversely proportional to the concentration of the electrolyte. Therefore, after anion resin exchange, the thickness of the electric double layer of the colloid becomes tens of times of the original, and a large number of cations (Na + , H + ) that constitute the electric double layer structure are destroyed. Pushed to a position away from the glue core, the attraction between the glue core and the glue core is greatly weakened, and the viscosity of the hydration film is correspondingly reduced. A large amount of Na + and other metal cations in the diffusion layer and the tight layer diffuse into the water phase, and then use Cation exchange, adsorbing Na + and other metal cations in the aqueous phase, continues to reduce the metal ion content in the silica sol. In such a cycle, the control of the hydration film on ion diffusion is effectively released, and silica sol with less impurity content can be obtained. However, due to repeated repetitions to increase costs and reduce production efficiency, considering various factors, three ion exchanges of cation-yin-yang were selected to purify silica sol.
本发明具有下述技术效果:The present invention has following technical effect:
1.本发明根据离子交换树脂的交换机理以及硅溶胶本身的双电子层结构,运用阳-阴-阳离子交换树脂交替交换的方法纯化硅溶胶。强酸性阳离子交换树脂一些常见离子的选择性顺序为:Fe3+ Al3+ Ca2+ Mg2+ K+ Na+ H+,强碱性阴离子交换树脂一些常见离子的选择性顺序为:SO4 2- NO3 - Cl- OH-F- HCO3 - HSiO3 -。第一次阳离子交换去除了硅溶胶胶团外水相中的金属离子和胶团扩散层外围的金属离子。然后引入阴离子交换树脂进行交换,有效解除水化膜对离子扩散作用的控制,使扩散层和紧密层内Na+和其它金属阳离子大量扩散进入水相,然后再采用阳离子交换,吸附水相中的Na+和其它金属阳离子,极大地提高了阳离子交换树脂的交换效果,大大降低了硅溶胶产品中金属离子的含量,纯化效果显著,提高了晶片的质量。本方法获得的硅溶胶金属离子含量可以达到几个ppm级,能够满足超大规模集成电路加工工艺CMP对研磨料的纯度要求,使生产的芯片工作可靠性高,器件的使用寿命长。1. According to the exchange mechanism of ion exchange resin and the double electron layer structure of silica sol itself, the present invention utilizes the method of cation-anion-cation exchange resin to purify silica sol alternately. The selectivity order of some common ions in strong acidic cation exchange resins is: Fe 3+ Al 3+ Ca 2+ Mg 2+ K + Na + H + , and the selectivity order of some common ions in strongly basic anion exchange resins is: SO 4 2- NO3 - Cl - OH - F - HCO3 - HSiO3- . The first cation exchange removes the metal ions in the aqueous phase outside the silica sol micelles and the metal ions outside the micelles diffusion layer. Then introduce anion exchange resin for exchange, effectively release the control of hydration membrane on ion diffusion, make Na + and other metal cations in the diffusion layer and tight layer diffuse into the water phase in large quantities, and then use cation exchange to absorb the ions in the water phase Na + and other metal cations can greatly improve the exchange effect of cation exchange resin, greatly reduce the content of metal ions in silica sol products, and the purification effect is remarkable, which improves the quality of the wafer. The metal ion content of the silica sol obtained by the method can reach several ppm levels, which can meet the purity requirements of the ultra-large-scale integrated circuit processing technology CMP for the grinding material, so that the produced chips have high operating reliability and long service life of the device.
2.本发明采用FA/O螯合剂调节pH值,FA/O螯合剂具有特殊结构,其结构示意图如附图3所示,此物质螯合环多,不含有金属离子,易溶于水,极具螯合能力,在调节pH值的同时,还可以在化学机械抛光过程中有效螯合残余的金属离子,进一步降低金属离子的含量,减少金属离子对抛光片的污染。2. The present invention adopts FA/O chelating agent to regulate pH value, and FA/O chelating agent has special structure, and its structural representation is as shown in accompanying drawing 3, and this material chelating ring is many, does not contain metal ion, is soluble in water, It has great chelating ability. While adjusting the pH value, it can also effectively chelate residual metal ions during chemical mechanical polishing, further reduce the content of metal ions, and reduce the pollution of metal ions to the polishing sheet.
3.Zeta电位大于30mv,溶液越稳定。交换时间越长,金属离子含量越小。本发明由Zeta电位监控和离子交换时间两方面控制交换时间,既保证了金属离子含量的要求,又考虑到金属离子含量对Zeta电位的影响,保证了硅溶胶的稳定性,为实行产业化提供了必要的监控条件,保证实际生产中硅溶胶质量的稳定及产品的重复性,使生产能够实现自动化。综合考虑质量的要求和生产效率,选择Zeta电位为30-60mv,交换时间为10-60min。3. If the Zeta potential is greater than 30mv, the solution is more stable. The longer the exchange time, the smaller the metal ion content. The present invention controls the exchange time from two aspects of Zeta potential monitoring and ion exchange time, which not only guarantees the requirement of metal ion content, but also takes into account the influence of metal ion content on Zeta potential, ensures the stability of silica sol, and provides industrialization Necessary monitoring conditions are established to ensure the stability of silica sol quality and product repeatability in actual production, so that production can be automated. Considering the quality requirements and production efficiency comprehensively, the Zeta potential is selected to be 30-60mv, and the exchange time is 10-60min.
4.采用本发明的方法设备成本低、纯化时间短、能耗低。4. Adopting the method of the present invention has low equipment cost, short purification time and low energy consumption.
附图说明 Description of drawings
附图1硅溶胶的胶团结构及其示意图;The micelle structure and schematic diagram thereof of accompanying drawing 1 silica sol;
附图2硅溶胶的双电层结构;The electric double layer structure of accompanying drawing 2 silica sols;
附图3螯合剂的结构示意图;The structural representation of accompanying drawing 3 chelating agents;
附图4Zeta电位测试结果。Accompanying drawing 4 Zeta potential test results.
具体实施方式 Detailed ways
以下结合具体实施例对本发明详细说明。The present invention will be described in detail below in conjunction with specific examples.
本发明中所用的阳离子交换树脂为强酸性苯乙烯型阳离子交换树脂,如南开牌001×7型、美国Amber jet 1200Na、德国Lewatit-100、日本DiaionSK-1等,所用的阴离子交换树脂为强碱性季胺阴离子交换树脂,如南开牌201×7型、美国Amberlite IRA-400、德国LewatitM500、英国Eerolite FF等,离子交换时间要考虑硅溶胶的Zeta电位因素。调节硅溶胶pH值时,采用了既具有调节pH值功能,又具有螯合金属离子功能FA/O螯合剂。The cation exchange resin used in the present invention is strongly acidic styrene type cation exchange resin, such as Nankai brand 001 × 7 type, U.S. Amber jet 1200Na, Germany Lewatit-100, Japan DiaionSK-1 etc., used anion exchange resin is strong base Non-toxic quaternary amine anion exchange resins, such as Nankai brand 201×7, American Amberlite IRA-400, German Lewatit M500, British Eerolite FF, etc. The ion exchange time should consider the Zeta potential factor of silica sol. When adjusting the pH value of the silica sol, the FA/O chelating agent, which not only has the function of adjusting the pH value, but also has the function of chelating metal ions, is used.
实施例1Example 1
将1752ml、3%的盐酸溶液注入装有800ml南开牌001×7型阳离子交换树脂的离子交换柱中进行搅拌,搅拌3min后静置分层,将上层溶液去除,用去离子水冲洗剩余的阳离子交换树脂至其pH值在2-2.5之间,得酸性阳离子交换树脂。Inject 1752ml, 3% hydrochloric acid solution into an ion exchange column equipped with 800ml Nankai brand 001×7 type cation exchange resin and stir. After stirring for 3 minutes, let it stand for stratification, remove the upper layer solution, and rinse the remaining cations with deionized water. Exchange the resin until its pH value is between 2-2.5 to obtain an acidic cation exchange resin.
然后将浓度为30%,粒径为22nm,金属离子含量高于100ppm的碱性硅溶胶536g在连续搅拌的情况下加入到400ml上述酸性阳离子交换树脂中,在搅拌的情况下交换15min,同时测定交换溶液的Zeta电位,使其绝对值在30mv以上后停止搅拌,静置分层后出料得显酸性的硅溶胶。Then the concentration is 30%, the particle diameter is 22nm, the alkaline silica sol 536g that metal ion content is higher than 100ppm joins in the above-mentioned acidic cation exchange resin of 400ml under the situation of continuous stirring, exchange 15min under the situation of stirring, measure simultaneously Exchange the Zeta potential of the solution so that its absolute value is above 30mv, then stop stirring, leave to stand for stratification, and discharge to obtain acidic silica sol.
然后取834ml、3%的氢氧化钠溶液注入装有400ml南开牌201×7型湿阴离子交换树脂的离子交换柱中进行搅拌,搅拌3min后静置分层,将上层溶液去除,用去离子水冲洗剩余的阴离子交换树脂至其pH值在9-9.5之间,得到碱性阴离子交换树脂。然后将上述阳离子树脂交换后的酸性硅溶胶536g加入到上述400ml碱性阴离子交换树脂中,在搅拌的情况下交换15min,同时测定交换溶液的Zeta电位,其绝对值在30mv以上后停止搅拌,静置分层后出料得到显碱性的硅溶胶。Then get 834ml, 3% sodium hydroxide solution and inject in the ion exchange column that 400ml Nankai brand 201 * 7 type wet anion exchange resins are housed and stir, leave standstill layering after stirring for 3min, remove the supernatant solution, use deionized water Rinse the remaining anion exchange resin until its pH value is between 9-9.5 to obtain a basic anion exchange resin. Then the acidic silica sol 536g after the above-mentioned cation resin exchange is added in the above-mentioned 400ml basic anion-exchange resin, exchange 15min under the situation of stirring, measure the Zeta potential of exchange solution simultaneously, stop stirring after its absolute value is more than 30mv, static After layering, the material is discharged to obtain alkaline silica sol.
再将上述阴离子树脂交换后的碱性硅溶胶536g在搅拌的情况下加入到上述400ml酸性阳离子交换树脂中,在搅拌的情况下交换15min,同时测定交换溶液的Zeta电位,其绝对值在30mv以上后停止搅拌,静置分层后出料,得到金属离子达到几个ppm的显酸性的硅溶胶。Add 536g of the above-mentioned alkaline silica sol exchanged by the anion resin into the above-mentioned 400ml acidic cation exchange resin under the condition of stirring, exchange for 15min under the condition of stirring, and measure the Zeta potential of the exchange solution at the same time, and its absolute value is above 30mv Finally, the stirring was stopped, and the material was discharged after standing for stratification to obtain an acidic silica sol with metal ions reaching several ppm.
对于采用酸性抛光液的用户,上述酸性硅溶胶即可。For users who use acidic polishing liquid, the above-mentioned acidic silica sol is sufficient.
对于采用碱性并且要求严格的抛光液,最后将536g的经过阳-阴-阳离子交换后的酸性硅溶胶在搅拌的情况下加入到0.8ml的FA/O螯合剂中,制得最终的硅溶胶产品。For the alkaline and strict polishing solution, finally add 536g of acidic silica sol after cation-anion-cation exchange into 0.8ml of FA/O chelating agent under stirring to obtain the final silica sol product.
实施例2Example 2
将2102.2ml、5%的盐酸溶液注入装有1600ml美国Amberjet 1200Na型阳离子交换树脂的离子交换柱中进行搅拌,搅拌5min后静置分层,将上层溶液去除,用去离子水冲洗剩余的阳离子交换树脂至其pH值在2.5-3之间,得酸性阳离子交换树脂。Inject 2102.2ml, 5% hydrochloric acid solution into an ion exchange column equipped with 1600ml American Amberjet 1200Na cation exchange resin for stirring, after stirring for 5min, let it stand for stratification, remove the upper layer solution, and rinse the remaining cation exchange resin with deionized water Resin until its pH value is between 2.5-3 to obtain acidic cation exchange resin.
然后将浓度为32%,粒径为47nm,金属离子含量高于100ppm的碱性硅溶胶536g在连续搅拌的情况下加入到800ml上述酸性阳离子交换树脂中,在搅拌的情况下交换30min,同时测定交换溶液的Zeta电位,使其绝对值在40mv以上后停止搅拌,静置分层后出料得显酸性的硅溶胶。Then the concentration is 32%, the particle diameter is 47nm, the alkaline silica sol 536g that metal ion content is higher than 100ppm joins in the above-mentioned acidic cation exchange resin of 800ml under the situation of continuous stirring, exchange 30min under the situation of stirring, measure simultaneously Exchange the Zeta potential of the solution so that its absolute value is above 40mv, then stop stirring, leave to stand for stratification, and discharge to obtain acidic silica sol.
然后取1000ml、5%的氢氧化钠溶液注入装有800ml美国AmberliteIRA-400型湿阴离子交换树脂的离子交换柱中进行搅拌,搅拌5min后静置分层,将上层溶液去除,用去离子水冲洗剩余的阴离子交换树脂至其pH值在9.5-10之间,得到碱性阴离子交换树脂。然后将上述阳离子树脂交换后的酸性硅溶胶536g加入到上述800ml碱性阴离子交换树脂中,在搅拌的情况下交换30min,同时测定交换溶液的Zeta电位,其绝对值在40mv以上后停止搅拌,静置分层后出料得到显碱性的硅溶胶。Then get 1000ml, 5% sodium hydroxide solution and inject in the ion-exchange column that 800ml American AmberliteIRA-400 type wet anion exchange resin is housed and stir, after stirring for 5min, let it stand for stratification, remove the upper layer solution, rinse with deionized water The remaining anion exchange resin is adjusted to a pH value between 9.5-10 to obtain a basic anion exchange resin. Then the acidic silica sol 536g after the above-mentioned cation resin exchange is added in the above-mentioned 800ml basic anion-exchange resin, exchange 30min under the situation of stirring, measure the Zeta potential of exchange solution simultaneously, stop stirring after its absolute value is more than 40mv, static After layering, the material is discharged to obtain alkaline silica sol.
再将上述阴离子树脂交换后的碱性硅溶胶536g在搅拌的情况下加入到上述800ml酸性阳离子交换树脂中,在搅拌的情况下交换30min,同时测定交换溶液的Zeta电位,其绝对值在40mv以上后停止搅拌,静置分层后出料,得到金属离子达到几个ppm的显酸性的硅溶胶。Add 536g of the above-mentioned alkaline silica sol exchanged by the anion resin into the above-mentioned 800ml acidic cation exchange resin under the condition of stirring, exchange for 30min under the condition of stirring, measure the Zeta potential of the exchange solution at the same time, and its absolute value is above 40mv Finally, the stirring was stopped, and the material was discharged after standing for stratification to obtain an acidic silica sol with metal ions reaching several ppm.
最后将536g的经过阳-阴-阳离子交换后的酸性硅溶胶在搅拌的情况下加入到2.4ml的FA/O螯合剂中,制得最终的硅溶胶产品。Finally, 536 g of acidic silica sol after cation-anion-cation exchange was added into 2.4 ml of FA/O chelating agent under stirring to obtain the final silica sol product.
实施例3Example 3
将1325ml、10%的盐酸溶液注入装有2000ml德国Lewatit-100型阳离子交换树脂的离子交换柱中进行搅拌,搅拌10min后静置分层,将上层溶液去除,用去离子水冲洗剩余的阳离子交换树脂至其pH值在3-3.5之间,得酸性阳离子交换树脂。Inject 1325ml, 10% hydrochloric acid solution into an ion exchange column equipped with 2000ml German Lewatit-100 cation exchange resin for stirring. After stirring for 10 minutes, let it stand for stratification, remove the upper layer solution, and rinse the remaining cation exchange resin with deionized water. Resin until its pH value is between 3-3.5 to obtain acidic cation exchange resin.
然后将浓度为42%,粒径为60nm,金属离子含量高于100ppm的碱性硅溶胶536g在连续搅拌的情况下加入到1000ml上述酸性阳离子交换树脂中,在搅拌的情况下交换60min,同时测定交换溶液的Zeta电位,使其绝对值在60mV以上后停止搅拌,静置分层后出料得显酸性的硅溶胶。Then the concentration is 42%, the particle diameter is 60nm, the alkaline silica sol 536g that metal ion content is higher than 100ppm joins in the above-mentioned acidic cation exchange resin of 1000ml under the situation of continuous stirring, exchange 60min under the situation of stirring, measure simultaneously Exchange the Zeta potential of the solution so that its absolute value is above 60mV, then stop stirring, leave to stand for stratification, and discharge to obtain acidic silica sol.
然后取625ml、10%的氢氧化钠溶液注入装有1000ml德国Lewatit M500型湿阴离子交换树脂的离子交换柱中进行搅拌,搅拌10min后静置分层,将上层溶液去除,用去离子水冲洗剩余的阴离子交换树脂至其pH值在9.5-10之间,得到碱性阴离子交换树脂。然后将上述阳离子树脂交换后的酸性硅溶胶536g加入到上述1000ml碱性阴离子交换树脂中,在搅拌的情况下交换60min,同时测定交换溶液的Zeta电位,其绝对值在60mv以上后停止搅拌,静置分层后出料得到显碱性的硅溶胶。Then take 625ml, 10% sodium hydroxide solution and inject it into an ion exchange column equipped with 1000ml German Lewatit M500 type wet anion exchange resin for stirring. After stirring for 10min, let it stand for stratification, remove the upper solution, and rinse the remaining with deionized water. the anion exchange resin until its pH value is between 9.5-10 to obtain a basic anion exchange resin. Then the acidic silica sol 536g after the above-mentioned cation resin exchange is added in the above-mentioned 1000ml basic anion-exchange resin, exchange 60min under the situation of stirring, measure the Zeta potential of exchange solution simultaneously, stop stirring after its absolute value is more than 60mv, static After layering, the material is discharged to obtain alkaline silica sol.
再将上述阴离子树脂交换后的碱性硅溶胶536g在搅拌的情况下加入到上述1000ml酸性阳离子交换树脂中,在搅拌的情况下交换60min,同时测定交换溶液的Zeta电位,其绝对值在60mv以上后停止搅拌,静置分层后出料,得到金属离子达到几个ppm的显酸性的硅溶胶。Add 536g of the above-mentioned alkaline silica sol exchanged by the anion resin into the above-mentioned 1000ml acidic cation exchange resin under the condition of stirring, exchange for 60min under the condition of stirring, measure the Zeta potential of the exchange solution at the same time, and its absolute value is above 60mv Finally, the stirring was stopped, and the material was discharged after standing for stratification to obtain an acidic silica sol with metal ions reaching several ppm.
最后将536g的经过阳-阴-阳离子交换后的酸性硅溶胶在搅拌的情况下加入到4ml的FA/O螯合剂中,制得最终的硅溶胶产品。Finally, 536 g of acidic silica sol after cation-anion-cation exchange was added into 4 ml of FA/O chelating agent under stirring to obtain the final silica sol product.
硅溶胶金属离子含量的检测结果如下表所示:The detection results of the metal ion content of silica sol are shown in the following table:
A:交换前:A: Before exchange:
B:交换后金属离子含量:B: Metal ion content after exchange:
附图4为Zeta电位测试结果,横坐标为Zeta电位值,纵坐标为%class。从测试结果来看,Zeta电位的绝对值都大于30mv,处于能使硅溶胶稳定存放的电位范围。Accompanying drawing 4 is the Zeta potential test result, the abscissa is the Zeta potential value, and the ordinate is % class. According to the test results, the absolute value of the Zeta potential is greater than 30mv, which is in the potential range for stable storage of silica sol.
尽管参照实施例对所公开的涉及一种超大规模集成电路专用纳米硅溶胶的纯化方法进行了特别描述,以上描述的实施例是说明性的而不是限制性的,在不脱离本发明的精神和范围的情况下,所有的变化和修改都在本发明的范围之内。Although the disclosed method for purifying nano-silica sol for VLSI is specifically described with reference to the embodiments, the above-described embodiments are illustrative rather than restrictive, without departing from the spirit and spirit of the present invention. All changes and modifications are within the scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100139700A CN100363255C (en) | 2006-05-31 | 2006-05-31 | Purification method of special nano-silica sol for VLSI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100139700A CN100363255C (en) | 2006-05-31 | 2006-05-31 | Purification method of special nano-silica sol for VLSI |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1872682A CN1872682A (en) | 2006-12-06 |
CN100363255C true CN100363255C (en) | 2008-01-23 |
Family
ID=37483313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100139700A Expired - Fee Related CN100363255C (en) | 2006-05-31 | 2006-05-31 | Purification method of special nano-silica sol for VLSI |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100363255C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101585541B (en) * | 2009-06-23 | 2011-06-01 | 济南银丰硅制品有限责任公司 | Method for preparing electronic-grade silica sol |
CN102583406B (en) * | 2012-01-19 | 2014-03-19 | 深圳市力合材料有限公司 | A kind of purification method of high-purity silica sol |
CN103043671B (en) * | 2012-12-27 | 2014-12-03 | 上海新安纳电子科技有限公司 | Production method for polysilicic acid |
CN106115721A (en) * | 2016-06-27 | 2016-11-16 | 霍山县忠福硅溶胶有限公司 | A kind of preparation method of industry silicasol |
CN114132935B (en) * | 2021-12-31 | 2022-09-23 | 山东百特新材料有限公司 | Method for purifying silica sol |
CN114292535B (en) * | 2021-12-31 | 2022-11-15 | 山东百特新材料有限公司 | Method for improving water resistance of nano ceramic coating |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0585718A (en) * | 1991-09-25 | 1993-04-06 | Nissan Chem Ind Ltd | Production of high-purity water-base silica sol |
JPH0616414A (en) * | 1992-02-27 | 1994-01-25 | Nissan Chem Ind Ltd | Production of high-purity aqueous silica sol |
CN1155514A (en) * | 1996-01-25 | 1997-07-30 | 天津市化学试剂一厂 | Manufacture of high purity, high concentration and high granularity large granular silicon dioxide gel |
CN1563574A (en) * | 2004-04-09 | 2005-01-12 | 苏州天马医药集团有限公司 | Method for fabricating nano sol of silicon dioxide in use for papermaking |
CN1594080A (en) * | 2004-07-03 | 2005-03-16 | 河北工业大学 | Method for preparing silicasol with big grain diameter |
-
2006
- 2006-05-31 CN CNB2006100139700A patent/CN100363255C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0585718A (en) * | 1991-09-25 | 1993-04-06 | Nissan Chem Ind Ltd | Production of high-purity water-base silica sol |
JPH0616414A (en) * | 1992-02-27 | 1994-01-25 | Nissan Chem Ind Ltd | Production of high-purity aqueous silica sol |
CN1155514A (en) * | 1996-01-25 | 1997-07-30 | 天津市化学试剂一厂 | Manufacture of high purity, high concentration and high granularity large granular silicon dioxide gel |
CN1563574A (en) * | 2004-04-09 | 2005-01-12 | 苏州天马医药集团有限公司 | Method for fabricating nano sol of silicon dioxide in use for papermaking |
CN1594080A (en) * | 2004-07-03 | 2005-03-16 | 河北工业大学 | Method for preparing silicasol with big grain diameter |
Also Published As
Publication number | Publication date |
---|---|
CN1872682A (en) | 2006-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100363255C (en) | Purification method of special nano-silica sol for VLSI | |
CN101475180B (en) | A kind of purification method of ultra-high purity silica sol | |
CN102974565A (en) | Method for cleaning monocrystalline silicon polished wafer | |
CN103146509A (en) | Cleaning alkaline liquid composition for electronic device comprising a phosphonic acid derivative chelating agent | |
EP3605590B1 (en) | Cleaning solution composition | |
CN102583406B (en) | A kind of purification method of high-purity silica sol | |
CN1861723A (en) | Silicon mono crystal substrate material polishing fluid and preparation process thereof | |
CN102446755B (en) | Method for reducing particle defects after chemically mechanical polishing | |
CN107243783A (en) | Chemical and mechanical grinding method, equipment and cleaning fluid | |
CN113502128B (en) | In-situ formed micro-nano bubble polishing solution, preparation method and application thereof | |
CN103484024A (en) | Chemico-mechanical polishing liquid for silicon dioxide dielectric materials and preparing method thereof | |
CN110813891B (en) | Cleaning solution and cleaning method for cleaning abrasive particles after copper CMP | |
CN101096573A (en) | Polishing liquid for silica dioxide medium and preparation method thereof | |
WO2015159367A1 (en) | Permeability evaluation method | |
CN1872683A (en) | Method for stabilizing Nano silica sol dedicated for super large scale integration | |
CN102744234B (en) | Cleaning method capable of improving surface quality of K9 glass substrate | |
CN109148262B (en) | Cleaning method of solar polycrystalline black silicon wafer | |
TW448475B (en) | Wet cleaning apparatus | |
CN103387890A (en) | Cleaning liquid and application thereof | |
JP3325739B2 (en) | Silicon wafer cleaning method | |
CN117832059A (en) | Cleaning method for reducing particle quantity on surface of silicon wafer | |
WO2023035546A1 (en) | Wafer cleaning method and method for manufacturing semiconductor device | |
CN102010660B (en) | Preparation method of chemical mechanical tantalum polishing solution | |
CN110880449B (en) | Silicon wafer cleaning method | |
CN102816529A (en) | Tungsten chemical-mechanical polishing solution being beneficial for cleaning after polishing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080123 Termination date: 20100531 |